1
|
Li W, Gong X, Niu X, Zhou Y, Ren L, Man Z, Tu P, Xiong X, Liu W, Song Y. Quantitative comparison of bile acid glucuronides sub-metabolome between intrahepatic cholestasis and healthy pregnant women. Anal Bioanal Chem 2025; 417:2823-2835. [PMID: 38990360 DOI: 10.1007/s00216-024-05430-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/15/2024] [Accepted: 06/27/2024] [Indexed: 07/12/2024]
Abstract
Because of the pathological indication and the physiological functions, bile acids (BAs) have occupied the research hotspot in recent decades. Although extensive efforts have been paid onto BAs sub-metabolome characterization, as the subfamily, BA glucuronides (gluA-BAs) profile is seldom concerned. Here, we made efforts to develop a LC-MS/MS program enabling quantitative gluA-BAs sub-metabolome characterization and to explore the differential species in serum between intrahepatic cholestasis of pregnancy (ICP) patients and healthy subjects. To gain as many authentic gluA-BAs as possible, liver microsomes from humans, rats, and mice were deployed to conjugate glucuronyl group to authentic BAs through in vitro incubation. Eighty gluA-BAs were captured and subsequently served as authentic compounds to correlate MS/MS spectral behaviors to structural features using squared energy-resolved MS program. Optimal collision energy (OCE) of [M-H]->[M-H-176.1]- was jointly administrated by [M-H]- mass and glucuronidation site, and identical exciting energies corresponding to 50% survival rate of 1st-generation fragment ion (EE50) were observed merely when the aglycone of a gluA-BA was consistent with the suspected structure. Through integrating high-resolution m/z, OCE, and EE50 information to identify gluA-BAs in a BAs pool, 97 ones were found and identified, and further, quantitative program was built for all annotated gluA-BAs by assigning OCEs to [M-H]->[M-H-176.1]- ion transitions. Quantitative gluA-BAs sub-metabolome of ICP was different from that of the healthy group. More GCDCA-3-G, GDCA-3-G, TCDCA-7-G, TDCA-3-G, and T-β-MCA-3-G were distributed in the ICP group. Above all, this study not only offered a promising analytical tool for in-depth gluA-BAs sub-metabolome characterization, but also clarified gluA-BAs allowing the differentiation of ICP and healthy subjects.
Collapse
Affiliation(s)
- Wei Li
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102401, China
| | - Xingcheng Gong
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102401, China
| | - Xiaoya Niu
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102401, China
| | - Yuxuan Zhou
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102401, China
| | - Luyao Ren
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102401, China
| | - Zhuo Man
- SCIEX China, Beijing, 100015, China
| | - Pengfei Tu
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102401, China
| | - Xin Xiong
- Department of Pharmacy, Peking University Third Hospital, Beijing, 100191, China.
| | - Wenjing Liu
- School of Pharmacy, Henan University of Chinese Medicine, Jinshui East Road, Zhengdong New District, Zhengzhou, 450046, China.
| | - Yuelin Song
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102401, China.
| |
Collapse
|
2
|
You P, Ding M, Li X, Shao Y, Jiang T, Jia Y, Wang Y, Zhang X. Determining Urinary Bile Acid Profiles to Predict Maternal and Neonatal Outcomes in Patients with Intrahepatic Cholestasis of Pregnancy. Diagnostics (Basel) 2025; 15:657. [PMID: 40150000 PMCID: PMC11941055 DOI: 10.3390/diagnostics15060657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/28/2025] [Accepted: 03/06/2025] [Indexed: 03/29/2025] Open
Abstract
Objective: Intrahepatic cholestasis of pregnancy (ICP) is associated with an elevated risk of adverse perinatal outcomes, including perinatal morbidity and mortality. The objectives of this study were to evaluate the bile acid (BA) metabolism profiles in the urine of patients with ICP and to investigate the association between specific BAs and maternal and neonatal outcomes in patients with ICP. Methods: A total of 127 Chinese women with ICP and 55 healthy pregnant women were enrolled in our retrospective study. Spot urine samples and clinical data were collected from pregnant women from January 2019 to December 2022 at the First Affiliated Hospital of Chongqing Medical University, Chongqing. Based on total bile acid (TBA) levels, the ICP group was subdivided into mild (10-40 μmol/L) and severe (≥40 μmol/L) ICP groups. Patients in the ICP group were further divided into two categories according to neonatal outcomes: an ICP with adverse pregnancy outcomes group and an ICP with non-adverse pregnancy outcomes group. Metabolites from maternal urine were collected and analyzed using ultra-high-performance liquid chromatography-triple quadrupole time-of-flight mass spectroscopy (UPLC-triple TOF-MS). Results: Significant differences were observed between the mild and severe ICP groups in the onset time of symptoms, gestational weeks at time of ICP diagnosis, the duration of using ursodeoxycholic acid (UDCA) drugs during pregnancy, gestational age at delivery, premature delivery, and cesarean delivery. The expression levels of the composition of different urinary bile acids including THCA, TCA, T-ω-MCA, TCA-3-S, TCDCA-3-S, TDCA-3-S, GCDCA-3-S, DCA-3-G and GDCA-3-G were remarkably higher in the ICP with adverse pregnancy outcomes group than those in the ICP with non-adverse pregnancy outcomes group and the control group. The single-parameter model used to predict adverse pregnancy outcomes in ICP had similar areas under the curve (AUCs) of the receiver operating characteristic (ROC), ranging from 0.755 to 0.869. However, an AUC of 0.886 and 95% CI were obtained by the index of combined urinary bile acids in multiple prediction models (95% CI 0.790 to 0.983, p < 0.05). TCA-3-S in the urinary bile acids had a strong positive correlation with the aspartate aminotransferase (AST) level (r = 0.617, p < 0.05). Furthermore, TCDCA-3-S and GCDCA-3-S in the urinary bile acids had a strong positive correlation with the alanine aminotransferase (ALT) level (r = 0.607, p < 0.05; r = 0.611, p < 0.05) and AST level (r = 0.629, p < 0.05; r = 0.619, p < 0.05). Conclusions: Maternal urinary bile acid profiles were prominent for the prognosis of maternal and neonatal outcomes of ICP. Elevated levels of TCA-3-S, TCDCA-3-S, and GCDCA-3-S in urine might be important predictors for indicating adverse pregnancy outcomes in ICP.
Collapse
Affiliation(s)
- Ping You
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education of China), School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China; (P.Y.); (M.D.); (X.L.); (T.J.); (Y.J.); (Y.W.)
| | - Min Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education of China), School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China; (P.Y.); (M.D.); (X.L.); (T.J.); (Y.J.); (Y.W.)
| | - Xue Li
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education of China), School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China; (P.Y.); (M.D.); (X.L.); (T.J.); (Y.J.); (Y.W.)
| | - Yong Shao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China;
| | - Tingting Jiang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education of China), School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China; (P.Y.); (M.D.); (X.L.); (T.J.); (Y.J.); (Y.W.)
| | - Yuanyuan Jia
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education of China), School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China; (P.Y.); (M.D.); (X.L.); (T.J.); (Y.J.); (Y.W.)
| | - Yuxuan Wang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education of China), School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China; (P.Y.); (M.D.); (X.L.); (T.J.); (Y.J.); (Y.W.)
| | - Xiaoqing Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education of China), School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China; (P.Y.); (M.D.); (X.L.); (T.J.); (Y.J.); (Y.W.)
| |
Collapse
|
3
|
Yang J, Zhao T, Fan J, Zou H, Lan G, Guo F, Shi Y, Ke H, Yu H, Yue Z, Wang X, Bai Y, Li S, Liu Y, Wang X, Chen Y, Li Y, Lei X. Structure-guided discovery of bile acid derivatives for treating liver diseases without causing itch. Cell 2024; 187:7164-7182.e18. [PMID: 39476841 DOI: 10.1016/j.cell.2024.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/11/2024] [Accepted: 10/02/2024] [Indexed: 12/15/2024]
Abstract
Chronic itch is a debilitating symptom profoundly impacting the quality of life in patients with liver diseases like cholestasis. Activation of the human G-protein coupled receptor, MRGPRX4 (hX4), by bile acids (BAs) is implicated in promoting cholestasis itch. However, the detailed underlying mechanisms remain elusive. Here, we identified 3-sulfated BAs that are elevated in cholestatic patients with itch symptoms. We solved the cryo-EM structure of hX4-Gq in a complex with 3-phosphated deoxycholic acid (DCA-3P), a mimic of the endogenous 3-sulfated deoxycholic acid (DCA-3S). This structure revealed an unprecedented ligand-binding pocket in MRGPR family proteins, highlighting the crucial role of the 3-hydroxyl (3-OH) group on BAs in activating hX4. Guided by this structural information, we designed and developed compound 7 (C7), a BA derivative lacking the 3-OH. Notably, C7 effectively alleviates hepatic injury and fibrosis in liver disease models while significantly mitigating the itch side effects.
Collapse
Affiliation(s)
- Jun Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Tianjun Zhao
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, New Cornerstone Science Laboratory, Beijing 100871, China
| | - Junping Fan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Huaibin Zou
- Fourth Department of Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Guangyi Lan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, New Cornerstone Science Laboratory, Beijing 100871, China
| | - Fusheng Guo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yaocheng Shi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Han Ke
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Huasheng Yu
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zongwei Yue
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xin Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Institute for Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Yingjie Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Institute for Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Shuai Li
- Hepaitech (Beijing) Biopharma Technology Co., Ltd., Beijing, China
| | - Yingjun Liu
- Hepaitech (Beijing) Biopharma Technology Co., Ltd., Beijing, China
| | - Xiaoming Wang
- Hepaitech (Beijing) Biopharma Technology Co., Ltd., Beijing, China
| | - Yu Chen
- Fourth Department of Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China.
| | - Yulong Li
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, New Cornerstone Science Laboratory, Beijing 100871, China.
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Institute for Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518107, China.
| |
Collapse
|
4
|
Herrmann M, Rodriguez-Blanco G, Balasso M, Sobolewska K, Semeraro MD, Alonso N, Herrmann W. The role of bile acid metabolism in bone and muscle: from analytics to mechanisms. Crit Rev Clin Lab Sci 2024; 61:510-528. [PMID: 38488591 DOI: 10.1080/10408363.2024.2323132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/09/2024] [Accepted: 02/21/2024] [Indexed: 08/25/2024]
Abstract
Osteoporosis and sarcopenia are both common age-related disorders that are associated with increased morbidity and mortality. Bone and muscle are metabolically very active tissues that require large amounts of energy. Bile acids (BAs), a group of liver-derived steroid compounds, are primarily known as emulsifiers that facilitate the resorption of dietary fat and lipids. In addition, they have pleiotropic metabolic functions in lipoprotein and glucose metabolism, inflammation, and intestinal bacterial growth. Through these effects, they are related to metabolic diseases, such as diabetes, hypertriglyceridemia, atherosclerosis, and nonalcoholic steatohepatitis. BAs mediate their metabolic effects through receptor dependent and receptor-independent mechanisms. Emerging evidence suggests that BAs are also involved in bone and muscle metabolism. Under normal circumstances, BAs support bone health by shifting the delicate equilibrium of bone turnover toward bone formation. In contrast, low or excessive amounts of BAs promote bone resorption. In cholestatic liver disease, BAs accumulate in the liver, reach toxic concentrations in the circulation, and thus may contribute to bone loss and muscle wasting. In addition, the measurement of BAs is in rapid evolution with modern mass spectrometry techniques that allow for the detection of a continuously growing number of BAs. This review provides a comprehensive overview of the biochemistry, physiology and measurement of bile acids. Furthermore, it summarizes the existing literature regarding their role in bone and muscle.
Collapse
Affiliation(s)
- Markus Herrmann
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Giovanny Rodriguez-Blanco
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Marco Balasso
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Katarzyna Sobolewska
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Maria Donatella Semeraro
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Nerea Alonso
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Wolfgang Herrmann
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| |
Collapse
|
5
|
Xiong L, Tang M, Liu H, Cai J, Jin Y, Huang C, Xing S, Yang X. LC-MS/MS untargeted lipidomics uncovers placenta lipid signatures from intrahepatic cholestasis of pregnancy. Front Physiol 2024; 15:1276722. [PMID: 38887316 PMCID: PMC11180999 DOI: 10.3389/fphys.2024.1276722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 01/23/2024] [Indexed: 06/20/2024] Open
Abstract
Aims: Intrahepatic cholestasis of pregnancy (ICP) stands as the predominant liver disorder affecting pregnant women, with a prevalence ranging from 0.2% to 15.6%. While ICP is known to heighten the chances of perinatal mortality and morbidity, its pathogenesis remains elusive, and therapeutic options are limited. The objective of this study was to explore the characteristic lipid signature in placentas collected from normal pregnancies and those with mild and severe intrahepatic cholestasis of pregnancy. This research aims to clarify the pathogenesis and identify lipid biomarker for ICP through LC-MS/MS based lipidomic analysis. Methods and materials: Placenta samples were collected from 30 normal pregnancy women and 30 mild and severe ICP women respectively. Women with normal pregnancy and ICP were recruit from April 2021 to July 2022 in Chengdu, China. And LC-MS/MS based lipidomic analysis was used to explore the characteristic placental lipids in mild and severe ICP. Results: Fourty-four lipids were differentially expressed both in mild and severe ICP placenta. The pathway analysis revealed these lipids are mainly enriched in glycerophospholipid metabolism and autophagy pathway. Weighted correlation network analysis (WGCNA) identified the correlation network module of lipids highly related to ICP. Using multiple logistic regression analysis, we identified three and four combined metabolites that had an area under receiver operating characteristic curves (AUC) ≥ 0.90. Conclusion: Our results systematically revealed the lipid signature in mild and severe ICP placenta. The results may provide new insight into the treatment and early prediction of ICP.
Collapse
Affiliation(s)
- Liling Xiong
- Obstetrics Department, Chengdu Women’s and Children’s Center Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Mi Tang
- GCP Institution, Chengdu Women’s and Children’s Center Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hong Liu
- Obstetrics Department, Chengdu Women’s and Children’s Center Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jianghui Cai
- Department of Pharmacy, Chengdu Women’s and Children’s Center Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ying Jin
- Obstetrics Department, Chengdu Women’s and Children’s Center Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Cheng Huang
- Clinical Lab, Chengdu Women’s and Children’s Center Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Shasha Xing
- GCP Institution, Chengdu Women’s and Children’s Center Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiao Yang
- Obstetrics Department, Chengdu Women’s and Children’s Center Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
6
|
Zhang F, Liu F, Xu X, Su W, Rong Y, Tian FY, Xiao W, Wu Y, Law KP, Wen P. Metabolomic profiling of serum and tongue coating of pregnant women with intrahepatic cholestasis in pregnancy. Clin Chim Acta 2024; 557:117854. [PMID: 38513931 DOI: 10.1016/j.cca.2024.117854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/08/2024] [Accepted: 03/03/2024] [Indexed: 03/23/2024]
Abstract
Intrahepatic cholestasis of pregnancy (ICP) is associated with an increased risk of cesarean section and adverse fetal outcomes. Currently, ICP diagnosis depends largely on serum levels of bile acids and lacks sensitivity and specificity for accurate diagnosis. Tongue diagnosis is an important diagnostic tool in traditional Chinese medicine (TCM) and is used in our clinic as complementary treatment and personalized medicine for ICP. However, the molecular basis of the manifestation of greasy white tongue coatings in ICP remains unknown. In this study, we performed untargeted metabolomic profiling of the serum, tongue coating, and saliva of 66 pregnant women, including 22 with ICP. The metabolomic profiles of the serum and tongue coatings showed marked differences between the two clinical groups. Forty-six differentially abundant metabolites were identified, and their relative concentrations correlated with total bile acid levels. These differential metabolites included bile acids, lipids, microbiota- and diet-related metabolites, and exposomes. Conventional biochemical markers, including serum aminotransferases and bilirubin, were not significantly increased in the ICP group, whereas the total cholesterol and triglyceride levels were significantly increased as early as the first trimester. Our data provide insights into the pathophysiology of ICP and implicate the gut-liver axis and environmental exposure. Tongue coating has the potential to be a non-invasive diagnostic approach. Further studies are required to validate the clinical utility of these findings.
Collapse
Affiliation(s)
- Feng Zhang
- Division of Stomatology, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, China
| | - Fang Liu
- Division of Obstetrics & Gynecology, Shenzhen Maternity & Child Healthcare Hospital, Shenzhen, China
| | - Xiaoyi Xu
- Institute of Maternal and Child Medicine, Shenzhen Maternity & Child Healthcare Hospital, Shenzhen, China
| | - Weilan Su
- Division of Obstetrics & Gynecology, Shenzhen Maternity & Child Healthcare Hospital, Shenzhen, China
| | - Yu Rong
- Institute of Maternal and Child Medicine, Shenzhen Maternity & Child Healthcare Hospital, Shenzhen, China
| | - Fu-Ying Tian
- Division of Obstetrics & Gynecology, Shenzhen Maternity & Child Healthcare Hospital, Shenzhen, China
| | - Weimin Xiao
- Precision Medical Testing Research Center, Shenzhen Academy of Metrology & Quality Inspection, Shenzhen, Guangdong, China; Shenzhen SMQ Group Medical Laboratory, Shenzhen Academy of Metrology & Quality Inspection, Shenzhen, Guangdong, China
| | - Yichun Wu
- Precision Medical Testing Research Center, Shenzhen Academy of Metrology & Quality Inspection, Shenzhen, Guangdong, China; Shenzhen SMQ Group Medical Laboratory, Shenzhen Academy of Metrology & Quality Inspection, Shenzhen, Guangdong, China
| | - Kai P Law
- Shenzhen SMQ Group Medical Laboratory, Shenzhen Academy of Metrology & Quality Inspection, Shenzhen, Guangdong, China.
| | - Ping Wen
- Institute of Maternal and Child Medicine, Shenzhen Maternity & Child Healthcare Hospital, Shenzhen, China.
| |
Collapse
|
7
|
Németh K, Sterczer Á, Kiss DS, Lányi RK, Hemző V, Vámos K, Bartha T, Buzás A, Lányi K. Determination of Bile Acids in Canine Biological Samples: Diagnostic Significance. Metabolites 2024; 14:178. [PMID: 38668306 PMCID: PMC11052161 DOI: 10.3390/metabo14040178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
The comprehensive examination of bile acids is of paramount importance across various fields of health sciences, influencing physiology, microbiology, internal medicine, and pharmacology. While enzymatic reaction-based photometric methods remain fundamental for total BA measurements, there is a burgeoning demand for more sophisticated techniques such as liquid chromatography-tandem mass spectrometry (LC-MS/MS) for comprehensive BA profiling. This evolution reflects a need for nuanced diagnostic assessments in clinical practice. In canines, a BA assessment involves considering factors, such as food composition, transit times, and breed-specific variations. Multiple matrices, including blood, feces, urine, liver tissue, and gallbladder bile, offer insights into BA profiles, yet interpretations remain complex, particularly in fecal analysis due to sampling challenges and breed-specific differences. Despite ongoing efforts, a consensus regarding optimal matrices and diagnostic thresholds remains elusive, highlighting the need for further research. Emphasizing the scarcity of systematic animal studies and underscoring the importance of ap-propriate sampling methodologies, our review advocates for targeted investigations into BA alterations in canine pathology, promising insights into pathomechanisms, early disease detection, and therapeutic avenues.
Collapse
Affiliation(s)
- Krisztián Németh
- Department of Physiology and Biochemistry, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary; (K.N.); (D.S.K.); (V.H.); (T.B.)
| | - Ágnes Sterczer
- Department of Internal Medicine, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary;
| | - Dávid Sándor Kiss
- Department of Physiology and Biochemistry, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary; (K.N.); (D.S.K.); (V.H.); (T.B.)
| | - Réka Katalin Lányi
- Faculty of Pharmacy, University of Szeged, Zrínyi u. 9, H-6720 Szeged, Hungary;
| | - Vivien Hemző
- Department of Physiology and Biochemistry, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary; (K.N.); (D.S.K.); (V.H.); (T.B.)
| | - Kriszta Vámos
- Department of Internal Medicine, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary;
| | - Tibor Bartha
- Department of Physiology and Biochemistry, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary; (K.N.); (D.S.K.); (V.H.); (T.B.)
| | - Anna Buzás
- Institute of Food Chain Science, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary; (A.B.); (K.L.)
| | - Katalin Lányi
- Institute of Food Chain Science, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary; (A.B.); (K.L.)
| |
Collapse
|
8
|
Tang M, Xiong L, Cai J, Fu J, Liu H, Ye Y, Yang L, Xing S, Yang X. Intrahepatic cholestasis of pregnancy: insights into pathogenesis and advances in omics studies. Hepatol Int 2024; 18:50-62. [PMID: 37957532 DOI: 10.1007/s12072-023-10604-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/28/2023] [Indexed: 11/15/2023]
Abstract
Intrahepatic cholestasis of pregnancy (ICP) is the most common pregnancy-specific liver disease. It is characterized by pruritus, abnormal liver function and elevated total bile acid (TBA) levels, increasing the risk of maternal and fetal adverse outcomes. Its etiology remains poorly elucidated. Over the years, various omics techniques, including metabolomics, microbiome, genomics, etc., have emerged with the advancement of bioinformatics, providing a new direction for exploring the pathogenesis, diagnosis and treatment of ICP. In this review, we first summarize the role of bile acids and related components in the pathogenesis of ICP and then further illustrate the results of omics studies.
Collapse
Affiliation(s)
- Mi Tang
- GCP Institution, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Liling Xiong
- Obstetrics Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Jianghui Cai
- Department of Pharmacy, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jinzhu Fu
- Obstetrics Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Hong Liu
- Operating Theater, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Ying Ye
- Operating Theater, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Li Yang
- Obstetrics Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - ShaSha Xing
- GCP Institution, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Xiao Yang
- Obstetrics Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| |
Collapse
|
9
|
Wang M, Chen L, Li J, You Y, Qian Z, Liu J, Jiang Y, Zhou T, Gu Y, Zhang Y. An omics review and perspective of researches on intrahepatic cholestasis of pregnancy. Front Endocrinol (Lausanne) 2024; 14:1267195. [PMID: 38260124 PMCID: PMC10801044 DOI: 10.3389/fendo.2023.1267195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Intrahepatic cholestasis of pregnancy (ICP) is one of the common pregnancy complications that may threaten the health of both pregnant women and their fetuses. Hence, it is of vital importance to identify key moleculars and the associated functional pathways of ICP, which will help us to better understand the pathological mechanisms as well as to develop precise clinical biomarkers. The emerging and developing of multiple omics approaches enable comprehensive studies of the genome, transcriptome, proteome and metabolome of clinical samples. The present review collected and summarized the omics based studies of ICP, aiming to provide an overview of the current progress, limitations and future directions. Briefly, these studies covered a broad range of research contents by the comparing of different experimental groups including ICP patients, ICP subtypes, ICP fetuses, ICP models and other complications. Correspondingly, the studied samples contain various types of clinical samples, in vitro cultured tissues, cell lines and the samples from animal models. According to the main research objectives, we further categorized these studies into two groups: pathogenesis and diagnosis analyses. The pathogenesis studies identified tens of functional pathways that may represent the key regulatory events for the occurrence, progression, treatment and fetal effects of ICP. On the other hand, the diagnosis studies tested more than 40 potential models for the early-prediction, diagnosis, grading, prognosis or differential diagnosis of ICP. Apart from these achievements, we also evaluated the limitations of current studies, and emphasized that many aspects of clinical characteristics, sample processing, and analytical method can greatly affect the reliability and repeatability of omics results. Finally, we also pointed out several new directions for the omics based analyses of ICP and other perinatal associated conditions in the future.
Collapse
Affiliation(s)
- Min Wang
- Center for Reproductive Medicine, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Lingyan Chen
- Department of Gynaecology and Obstetrics, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Jingyang Li
- Department of Gynaecology and Obstetrics, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Yilan You
- Department of Gynaecology and Obstetrics, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Zhiwen Qian
- Department of Gynaecology and Obstetrics, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Jiayu Liu
- Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Ying Jiang
- Department of Gynaecology and Obstetrics, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Tao Zhou
- Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Ying Gu
- Department of Gynaecology and Obstetrics, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
- Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yan Zhang
- Department of Gynaecology and Obstetrics, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
- Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|
10
|
Application of metabolomics in intrahepatic cholestasis of pregnancy: a systematic review. Eur J Med Res 2022; 27:178. [PMID: 36104763 PMCID: PMC9472355 DOI: 10.1186/s40001-022-00802-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/07/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Intrahepatic cholestasis of pregnancy (ICP) is a severe idiopathic disorder of bile metabolism; however, the etiology and pathogenesis of ICP remain unclear.
Aims
This study comprehensively reviewed metabolomics studies related to ICP, to help in identifying the pathophysiological changes of ICP and evaluating the potential application of metabolomics in its diagnosis.
Methods
Relevant articles were searched through 2 online databases (PubMed and Web of Science) from January 2000 to March 2022. The metabolites involved were systematically examined and compared. Pathway analysis was conducted through the online software MetaboAnalyst 5.0.
Results
A total of 14 papers reporting 212 metabolites were included in this study. There were several highly reported metabolites: bile acids, such as glycocholic acid, taurochenodeoxycholic acid, taurocholic acid, tauroursodeoxycholic acid, and glycochenodeoxycholic acid. Dysregulation of metabolic pathways involved bile acid metabolism and lipid metabolism. Metabolites related to lipid metabolism include phosphatidylcholine, phosphorylcholine, phosphatidylserine, sphingomyelin, and ceramide.
Conclusions
This study provides a systematic review of metabolomics of ICP and deepens our understanding of the etiology of ICP.
Collapse
|
11
|
Characterization and quantification of representative bile acids in ileal contents and feces of diet-induced obese mice by UPLC-MS/MS. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Liu W, Wang Q, Chang J, Bhetuwal A, Bhattarai N, Ni X. Circulatory Metabolomics Reveals the Association of the Metabolites With Clinical Features in the Patients With Intrahepatic Cholestasis of Pregnancy. Front Physiol 2022; 13:848508. [PMID: 35899031 PMCID: PMC9309339 DOI: 10.3389/fphys.2022.848508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: Intrahepatic cholestasis of pregnancy (ICP) is associated with an increased risk of adverse pregnancy to the mother and fetus. As yet, the metabolic profiles and the association of the clinical features remain obscure. Methods: Fifty-seven healthy pregnant women and 52 patients with ICP were recruited in this study. Plasma samples were collected from pregnancies who received prenatal care between 30 and 36 weeks. Untargeted metabolomics to portray the metabolic profiles were performed by LC/MS. Multivariate combined with the univariate analysis was performed to screen out differential metabolites between the ICP and control groups. A de-biased sparse partial correlation (DSPC) network analysis of differential metabolites was conducted to explore the potential mutual regulation among metabolites on the basis of de-sparsified graphical lasso modeling. The pathway analysis was carried out using MetaboAnalyst. Linear regression and Pearson correlation analysis was applied to analyze correlations of bile acid levels, metabolites, newborn weights, and pregnancy outcomes in ICP patients. Results: Conspicuous metabolic changes and choreographed metabolic profiles were disclosed: 125 annotated metabolites and 18 metabolic pathways were disturbed in ICP patients. DSPC networks indicated dense interactions among amino acids and their derivatives, bile acids, carbohydrates, and organic acids. The levels of total bile acid (TBA) were increased in ICP patients with meconium-stained amniotic fluid (MSAF) compared with those without MSAF. An abnormal tryptophan metabolism, elevated long chain saturated fatty acids and estrone sulfate levels, and a low-antioxidant capacity were relevant to increased bile acid levels. Newborn weights were significantly associated with the levels of bile acids and some metabolites of amino acids. Conclusion: Our study revealed the metabolomic profiles in circulation and the correlation of the metabolites with clinical features in ICP patients. Our data suggest that disturbances in metabolic pathways might be associated with adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Wenhu Liu
- Department of Gynecology and Obstetrics, International Collaborative Research Center for Medical Metabolomics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, China
- School of Pharmacy, School of Basic Medical Sciences and Forensic Medical, North Sichuan Medical College, Nanchong, China
| | - Qiang Wang
- Department of Laboratory Medicine, Translational Medicine Research Center, North Sichuan Medical College, Nanchong, China
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jinxia Chang
- School of Pharmacy, School of Basic Medical Sciences and Forensic Medical, North Sichuan Medical College, Nanchong, China
| | - Anup Bhetuwal
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Nisha Bhattarai
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xin Ni
- Department of Gynecology and Obstetrics, International Collaborative Research Center for Medical Metabolomics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, China
- *Correspondence: Xin Ni,
| |
Collapse
|
13
|
Dosedělová V, Laštovičková M, Ayala-Cabrera JF, Dolina J, Konečný Š, Schmitz OJ, Kubáň P. Quantification and identification of bile acids in saliva by liquid chromatography-mass spectrometry: Possible non-invasive diagnostics of Barret´s esophagus? J Chromatogr A 2022; 1676:463287. [DOI: 10.1016/j.chroma.2022.463287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 10/17/2022]
|
14
|
Sun X, Qu T, Wang W, Li C, Yang X, He X, Wang Y, Xing G, Xu X, Yang L, Zhang H. Untargeted lipidomics analysis in women with intrahepatic cholestasis of pregnancy: a cross-sectional study. BJOG 2022; 129:880-888. [PMID: 34797934 DOI: 10.1111/1471-0528.17026] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2021] [Indexed: 01/02/2023]
Abstract
OBJECTIVE To compare the plasma lipid profiles in women with normal pregnancies and those with mild or severe intrahepatic cholestasis of pregnancy (ICP). Our goal was to reveal lipidome-wide alterations in ICP and delve into the pathogenesis of ICP from a lipid metabolism perspective. DESIGN Cross-sectional study, including women with normal pregnancies, women with mild ICP and women with severe ICP. SETTING Gansu Provincial Hospital. POPULATION Women with ICP were recruited from October 2019 to March 2020 in Gansu, China. METHODS Untargeted lipidomics was used to analyse differentially expressed plasma lipids in controls, in women with mild ICP and in women with severe ICP (n = 30 per group). For lipidomics, liquid chromatography and Q-Exactive Plus Orbitrap mass spectrometry were performed. MAIN OUTCOME MEASURES Differentially expressed lipids. RESULTS Thirty-three lipids were differentially expressed in the severe and mild ICP groups, compared with the control group, and 20 of those were sphingolipids (ceramide, six species; sphingomyelin, 14 species). All differentially expressed sphingolipids in women with mild ICP were also differentially expressed in women with severe ICP; the fold change and significance of the differential expression were positively correlated with disease severity. CONCLUSIONS We systematically characterized the lipidome-wide alterations in mild and severe ICP groups. The results indicated a link between ICP and disordered sphingolipid homeostasis. TWEETABLE ABSTRACT Abnormal sphingolipid metabolism is involved in the pathogenesis of ICP.
Collapse
Affiliation(s)
- X Sun
- Department of Obstetrics, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - T Qu
- Department of Biotherapy Center, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - W Wang
- School of Life Science, Northwest Normal University, Lanzhou, Gansu, China
| | - C Li
- Department of Obstetrics, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - X Yang
- Department of Obstetrics, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - X He
- Department of Obstetrics, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Y Wang
- Department of Obstetrics, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - G Xing
- Department of Obstetrics, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - X Xu
- Department of Biotherapy Center, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - L Yang
- Department of Obstetrics, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - H Zhang
- Department of Obstetrics, Gansu Provincial Hospital, Lanzhou, Gansu, China
| |
Collapse
|
15
|
Small non-coding RNA profiling in breast cancer: plasma U6 snRNA, miR-451a and miR-548b-5p as novel diagnostic and prognostic biomarkers. Mol Biol Rep 2022; 49:1955-1971. [PMID: 34993725 DOI: 10.1007/s11033-021-07010-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 11/24/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Breast cancer is a leading cause of cancer-related death in women. Most cases are invasive ductal carcinomas of no special type (NST breast carcinomas). METHODS AND RESULTS In this prospective, multicentric biomarker discovery study, we analyzed the expression of small non-coding RNAs (mainly microRNAs) in plasma by qPCR and evaluated their association with NST breast cancer. Large-scale expression profiling and subsequent validations have been performed in patient and control groups and compared with clinicopathological data. Small nuclear U6 snRNA, miR-548b-5p and miR-451a have been identified as candidate biomarkers. U6 snRNA was remarkably overexpressed in all the validations, miR-548b-5p levels were generally elevated and miR-451a expression was mostly downregulated in breast cancer groups. Combined U6 snRNA/miR-548b-5p signature demonstrated the best diagnostic performance based on the ROC curve analysis with AUC of 0.813, sensitivity 73.1% and specificity 82.6%. There was a trend towards increased expression of both miR-548b-5p and U6 snRNA in more advanced stages. Further, increased miR-548b-5p levels have been partially associated with higher grades, multifocality, Ki-67 positivity, and luminal B rather than luminal A samples. On the other hand, an association has been observed between high miR-451a expression and progesterone receptor positivity, lower grade, unifocal samples, Ki-67-negativity, luminal A rather than luminal B samples as well as improved progression-free survival and overall survival. CONCLUSIONS Our results indicated that U6 snRNA and miR-548b-5p may have pro-oncogenic functions, while miR-451a may act as tumor suppressor in breast cancer.
Collapse
|
16
|
Liu L, Wu Q, Miao X, Fan T, Meng Z, Chen X, Zhu W. Study on toxicity effects of environmental pollutants based on metabolomics: A review. CHEMOSPHERE 2022; 286:131815. [PMID: 34375834 DOI: 10.1016/j.chemosphere.2021.131815] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/23/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
In the past few decades, the toxic effects of environmental pollutants on non-target organisms have received more and more attention. As a new omics technology, metabolomics can clarify the metabolic homeostasis of the organism at the overall level by studying the changes in the relative contents of endogenous metabolites in the organism. Recently, a large number of studies have used metabolomics technology to study the toxic effects of environmental pollutants on organisms. In this review, we reviewed the analysis processes and data processes of metabolomics and its application in the study of the toxic effects of environmental pollutants including heavy metals, pesticides, polychlorinated biphenyls, polycyclic aromatic hydrocarbons, polybrominated diphenyl ethers and microplastics. In addition, we emphasized that the combination of metabolomics and other omics technologies will help to explore the toxic mechanism of environmental pollutants and provide new research ideas for the toxicological evaluation of environmental pollutants.
Collapse
Affiliation(s)
- Li Liu
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Qinchao Wu
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Xinyi Miao
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Tianle Fan
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Zhiyuan Meng
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| | - Xiaojun Chen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Wentao Zhu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
17
|
Ren S, Zhou Y, Xuan R. Research progress in the role of gut microbiota and its metabolites in intrahepatic cholestasis of pregnancy. Expert Rev Gastroenterol Hepatol 2021; 15:1361-1366. [PMID: 34845962 DOI: 10.1080/17474124.2021.2011211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
INTRODUCTION Intrahepatic cholestasis of pregnancy (ICP) is a liver disease that occurs during pregnancy. While ICP has a minimal impact on the mother, it primarily affects the pregnancy outcome of fetus, resulting in spontaneous miscarriage and even the intrauterine death of fetus. AREAS COVERED This review covers current progress in the role of gut microbiota and bile acids in ICP. EXPERT OPINION The causes and pathogenesis of ICP are currently unclear, and the serum bile acid level is the main clinical evidence for ICP diagnosis. The gastrointestinal tract is home to a tremendous number and type of microbes, which play critical roles in the synthesis and metabolism of bile acids. Studies in recent years have shown that the changes in gut microbiota and bile acid metabolic profiles are closely associated with ICP. This review discusses some of the future prospects in this area of research.
Collapse
Affiliation(s)
- Shuaijun Ren
- Department of Obstetrics and Gynecology, The Affiliated Hospital of School of Medicine of Ningbo University, Ningbo, China.,School of Medicine of Ningbo University, Ningbo, China
| | - Yuping Zhou
- Department of Gastroenterology, The Affiliated Hospital of School of Medicine of Ningbo University, Ningbo, China.,Institute of Digestive Disease of Ningbo University, Ningbo, China
| | - Rongrong Xuan
- Department of Obstetrics and Gynecology, The Affiliated Hospital of School of Medicine of Ningbo University, Ningbo, China
| |
Collapse
|
18
|
Zheng Q, Shen L, Zhao D, Zhang H, Liang Y, Zhu Y, Khan NU, Liu X, Zhang J, Lin J, Tang X. Metabolic characteristics of plasma bile acids in patients with intrahepatic cholestasis of pregnancy-mass spectrometric study. Metabolomics 2021; 17:93. [PMID: 34595616 DOI: 10.1007/s11306-021-01844-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/21/2021] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Intrahepatic cholestasis of pregnancy (ICP) is one of the more common complications in the middle and late stages of pregnancy, which requires early detection and intervention. OBJECTIVE The aim of the study is to investigate the changes in the metabolic profile of bile acids (BAs) in plasma of pregnant women with ICP and to look biomarkers for the diagnosis and grading of ICP, and to explore the disease mechanism. METHODS The targeted metabolomics based on high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was used to analyze plasma BAs. RESULTS Twenty-seven BAs can be quantified in all participants. Among them, 22 BAs were identified as differential BAs between ICP and control groups. Five BAs include 3β-CA, 3β-DCA, CDCA-3Gln, NCA, and Tβ-MCA, were found to be associated with ICP for the first time. Nine BAs include NCA, GCA, GCDCA, GHCA, GUDCA, HCA, TCA, TCDCA and THCA, can be used as possible ICP diagnostic biomarkers. Four BAs, i.e., GLCA, THCA, GHCA and TLCA-3S may be used as potential biomarkers for ICP grading. CONCLUSION There were significant differences in plasma BA profiles between ICP patients and the control. The BA profiles of mild ICP group and severe ICP group partially overlapped. Potential diagnostic and grading BA markers were identified. A significant characteristic of ICP group was the increase of conjugated BAs. A mechanism to sustain the equilibrium of BA metabolism and adaptive response has been developed in ICP patients to accelerate excretion and detoxification.
Collapse
Affiliation(s)
- Qihong Zheng
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Liming Shen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China.
- Brain Disease and Big Data Research Institute, Shenzhen University, Shenzhen, 518071, People's Republic of China.
| | - Danqing Zhao
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Huajie Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Yi Liang
- Department of Clinical Nutrition, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Yuhua Zhu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Naseer Ullah Khan
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Xukun Liu
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Jun Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Jing Lin
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, People's Republic of China
| | - Xiaoxiao Tang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen, 518071, People's Republic of China
| |
Collapse
|
19
|
Lyu J, Li H, Yin D, Zhao M, Sun Q, Guo M. Analysis of eight bile acids in urine of gastric cancer patients based on covalent organic framework enrichment coupled with liquid chromatography-tandem mass spectrometry. J Chromatogr A 2021; 1653:462422. [PMID: 34348207 DOI: 10.1016/j.chroma.2021.462422] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022]
Abstract
Gastric carcinoma is one of the most common and deadly forms of cancer. Early detection is critical for successful treatment of gastric cancer, and examination of BAs in urine may provide a critical diagnostic tool for identifying gastric cancer at stages when it can still be cured. Bile acids (BAs) are a crucial toxic factor correlated with the injury of gastric mucosa and as such, quantifying the amount of BA in patient's urine could provide a new means to quickly and non-invasively identify the presence of gastric cancer in the early stages. Here, a covalent organic framework (COF) material synthesized on the basis of 1,3,5-tris(4-nitrophenyl)benzene (TAPB) and pyromellitic dianhydride (PMDA) was used as stationary phase for SPE column that was coupled to LC-MS/MS for quantitative analysis of eight BAs in human urine, including cholic acid (CA), deoxycholic acid (DCA), glycochenodeoxycholic acid (GCDCA), glycocholic acid (GCA), taurochenodeoxycholic acid (TCDCA), lithocholic acid (LCA), hyodeoxycholic acid (HDCA), and chenodeoxycholic acid (CDCA). The enrichment effect of synthesized COF material was better than commercial SPE and HLB column. The sensitivity can increase 9.37- to 54.30- fold (calculated by the ratio of peak area between before and after enrichment). The probable mechanism is due to the great porosity and the similar polarity with BAs of the COF material. By compared with previous literatures, our method had the minimum limit of detection, which achieved 46.40, 25.75, 47.40, 47.37, 30.42, and 33.92 pg /mL, respectively, for GCA, GCDCA, CA, CDCA, HDCA and DCA after enrichment. These eight BAs also accomplished excellent linearity from 0.34 to 10,000 ng/mL. This material was successfully applied in the measurements of these six BAs in human urine from 76 gastric cancer patients and 32 healthy people. Compared to healthy people, levels of CA, CDCA, DCA, and HDCA were significantly elevated and levels of GCDCA were depressed, respectively, in gastric cancer patients. Our work suggests that these acids may act as potential biomarkers for gastric cancer and our framework provides a method for "non-invasive" diagnosis of gastric cancer.
Collapse
Affiliation(s)
- Jinxiu Lyu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Haijuan Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Dengyang Yin
- Jingjiang People's Hospital, Taizhou, Jiangsu, 214500, China
| | - Meng Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Qiang Sun
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Mengzhe Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China.
| |
Collapse
|
20
|
Łuczykowski K, Warmuzińska N, Bojko B. Current approaches to the analysis of bile and the determination of bile acids in various biological matrices as supportive tools to traditional diagnostic testing for liver dysfunction and biliary diseases. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Alamoudi JA, Li W, Gautam N, Olivera M, Meza J, Mukherjee S, Alnouti Y. Bile acid indices as biomarkers for liver diseases I: Diagnostic markers. World J Hepatol 2021; 13:433-455. [PMID: 33959226 PMCID: PMC8080550 DOI: 10.4254/wjh.v13.i4.433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/11/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatobiliary diseases result in the accumulation of toxic bile acids (BA) in the liver, blood, and other tissues which may contribute to an unfavorable prognosis. AIM To discover and validate diagnostic biomarkers of cholestatic liver diseases based on the urinary BA profile. METHODS We analyzed urine samples by liquid chromatography-tandem mass spectrometry and compared the urinary BA profile between 300 patients with hepatobiliary diseases vs 103 healthy controls by statistical analysis. The BA profile was characterized using BA indices, which quantifies the composition, metabolism, hydrophilicity, and toxicity of the BA profile. BA indices have much lower inter- and intra-individual variability compared to absolute concentrations of BA. In addition, BA indices demonstrate high area under the receiver operating characteristic curves, and changes of BA indices are associated with the risk of having a liver disease, which demonstrates their use as diagnostic biomarkers for cholestatic liver diseases. RESULTS Total and individual BA concentrations were higher in all patients. The percentage of secondary BA (lithocholic acid and deoxycholic acid) was significantly lower, while the percentage of primary BA (chenodeoxycholic acid, cholic acid, and hyocholic acid) was markedly higher in patients compared to controls. In addition, the percentage of taurine-amidation was higher in patients than controls. The increase in the non-12α-OH BA was more profound than 12α-OH BA (cholic acid and deoxycholic acid) causing a decrease in the 12α-OH/ non-12α-OH ratio in patients. This trend was stronger in patients with more advanced liver diseases as reflected by the model for end-stage liver disease score and the presence of hepatic decompensation. The percentage of sulfation was also higher in patients with more severe forms of liver diseases. CONCLUSION BA indices have much lower inter- and intra-individual variability compared to absolute BA concentrations and changes of BA indices are associated with the risk of developing liver diseases.
Collapse
Affiliation(s)
- Jawaher Abdullah Alamoudi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Wenkuan Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Nagsen Gautam
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Marco Olivera
- Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Jane Meza
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Sandeep Mukherjee
- Department of Internal Medicine, College of Medicine, Creighton University Medical Center, Omaha, NE 68124, United States
| | - Yazen Alnouti
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, United States.
| |
Collapse
|
22
|
Zhao A, Zhang L, Zhang X, Edirisinghe I, Burton-Freeman BM, Sandhu AK. Comprehensive Characterization of Bile Acids in Human Biological Samples and Effect of 4-Week Strawberry Intake on Bile Acid Composition in Human Plasma. Metabolites 2021; 11:99. [PMID: 33578858 PMCID: PMC7916557 DOI: 10.3390/metabo11020099] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
Primary bile acids (BAs) and their gut microbial metabolites have a role in regulating human health. Comprehensive characterization of BAs species in human biological samples will aid in understanding the interaction between diet, gut microbiota, and bile acid metabolism. Therefore, we developed a qualitative method using ultra-high performance liquid chromatography (UHPLC) coupled with a quadrupole time-of-flight (Q-TOF) to identify BAs in human plasma, feces, and urine samples. A quantitative method was developed using UHPLC coupled with triple quadrupole (QQQ) and applied to a previous clinical trial conducted by our group to understand the bile acid metabolism in overweight/obese middle-aged adults (n = 34) after four weeks strawberry vs. control intervention. The qualitative study tentatively identified a total of 81 BAs in human biological samples. Several BA glucuronide-conjugates were characterized for the first time in human plasma and/or urine samples. The four-week strawberry intervention significantly reduced plasma concentrations of individual secondary BAs, deoxycholic acid, lithocholic acid and their glycine conjugates, as well as glycoursodeoxycholic acid compared to control (p < 0.05); total glucuronide-, total oxidized-, total dehydroxyl-, total secondary, and total plasma BAs were also lowered compared to control (p < 0.05). The reduced secondary BAs concentrations suggest that regular strawberry intake modulates the microbial metabolism of BAs.
Collapse
Affiliation(s)
| | | | | | | | | | - Amandeep K. Sandhu
- Department of Food Science and Nutrition and Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL 60616, USA; (A.Z.); (L.Z.); (X.Z.); (I.E.); (B.M.B.-F.)
| |
Collapse
|
23
|
Dosedělová V, Itterheimová P, Kubáň P. Analysis of bile acids in human biological samples by microcolumn separation techniques: A review. Electrophoresis 2020; 42:68-85. [PMID: 32645223 DOI: 10.1002/elps.202000139] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 12/13/2022]
Abstract
Bile acids are a group of compounds essential for lipid digestion and absorption with a steroid skeleton and a carboxylate side chain usually conjugated to glycine or taurine. Bile acids are regulatory molecules for a number of metabolic processes and can be used as biomarkers of various disorders. Since the middle of the twentieth century, the detection of bile acids has evolved from simple qualitative analysis to accurate quantification in complicated mixtures. Advanced methods are required to characterize and quantify individual bile acids in these mixtures. This article overviews the literature from the last two decades (2000-2020) and focuses on bile acid analysis in various human biological samples. The methods for sample preparation, including the sample treatment of conventional (blood plasma, blood serum, and urine) and unconventional samples (bile, saliva, duodenal/gastric juice, feces, etc.) are shortly discussed. Eventually, the focus is on novel analytical approaches and methods for each particular biological sample, providing an overview of the microcolumn separation techniques, such as high-performance liquid chromatography, gas chromatography, and capillary electrophoresis, used in their analysis. This is followed by a discussion on selected clinical applications.
Collapse
Affiliation(s)
- Věra Dosedělová
- Department of Bioanalytical Instrumentation, CEITEC Masaryk University, Brno, Czech Republic
| | - Petra Itterheimová
- Department of Bioanalytical Instrumentation, CEITEC Masaryk University, Brno, Czech Republic
| | - Petr Kubáň
- Department of Bioanalytical Instrumentation, Institute of Analytical Chemistry, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| |
Collapse
|
24
|
Beyoğlu D, Idle JR. Metabolomic and Lipidomic Biomarkers for Premalignant Liver Disease Diagnosis and Therapy. Metabolites 2020; 10:E50. [PMID: 32012846 PMCID: PMC7074571 DOI: 10.3390/metabo10020050] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 01/24/2020] [Accepted: 01/26/2020] [Indexed: 02/07/2023] Open
Abstract
In recent years, there has been a plethora of attempts to discover biomarkers that are more reliable than α-fetoprotein for the early prediction and prognosis of hepatocellular carcinoma (HCC). Efforts have involved such fields as genomics, transcriptomics, epigenetics, microRNA, exosomes, proteomics, glycoproteomics, and metabolomics. HCC arises against a background of inflammation, steatosis, and cirrhosis, due mainly to hepatic insults caused by alcohol abuse, hepatitis B and C virus infection, adiposity, and diabetes. Metabolomics offers an opportunity, without recourse to liver biopsy, to discover biomarkers for premalignant liver disease, thereby alerting the potential of impending HCC. We have reviewed metabolomic studies in alcoholic liver disease (ALD), cholestasis, fibrosis, cirrhosis, nonalcoholic fatty liver (NAFL), and nonalcoholic steatohepatitis (NASH). Specificity was our major criterion in proposing clinical evaluation of indole-3-lactic acid, phenyllactic acid, N-lauroylglycine, decatrienoate, N-acetyltaurine for ALD, urinary sulfated bile acids for cholestasis, cervonoyl ethanolamide for fibrosis, 16α-hydroxyestrone for cirrhosis, and the pattern of acyl carnitines for NAFL and NASH. These examples derive from a large body of published metabolomic observations in various liver diseases in adults, adolescents, and children, together with animal models. Many other options have been tabulated. Metabolomic biomarkers for premalignant liver disease may help reduce the incidence of HCC.
Collapse
Affiliation(s)
| | - Jeffrey R. Idle
- Arthur G. Zupko’s Division of Systems Pharmacology and Pharmacogenomics, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, 75 Dekalb Avenue, Brooklyn, NY 11201, USA;
| |
Collapse
|
25
|
Chen X, Zhang X, Xu B, Cui Y, He Y, Yang T, Shao Y, Ding M. The urinary bile acid profiling analysis of asymptomatic hypercholanemia of pregnancy: A pseudo-targeted metabolomics study. Clin Chim Acta 2019; 497:67-75. [DOI: 10.1016/j.cca.2019.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/26/2019] [Accepted: 07/01/2019] [Indexed: 12/20/2022]
|
26
|
Dutta M, Cai J, Gui W, Patterson AD. A review of analytical platforms for accurate bile acid measurement. Anal Bioanal Chem 2019; 411:4541-4549. [PMID: 31127337 DOI: 10.1007/s00216-019-01890-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/19/2019] [Accepted: 04/30/2019] [Indexed: 12/23/2022]
Abstract
Bile acids are acidic steroids which help in lipid absorption, act as signaling molecules, and are key intermediate molecules between host and gut microbial metabolism. Perturbations in the circulating bile acid pool can lead to dysregulated metabolic and immunological function which may be associated with liver and intestinal disease. Bile acids have chemically diverse structures and are present in a broad range of concentrations in a wide variety of samples with complex biological matrices. Advanced analytical methods are therefore required to identify and accurately quantify individual bile acids. Though enzymatic determination of total bile acid is most popular in clinical laboratories, these methods provide limited information about individual bile acids. Advanced analytical methods such as gas chromatography- and liquid chromatography-mass spectrometry and nuclear magnetic resonance spectroscopy are highly informative techniques which help in identification and quantification of individual bile acids in complex biological matrices. Here, we review the detection technologies currently used for bile acid identification and quantification. We further discuss the advantages and disadvantages of these analytical techniques with respect to sensitivity, specificity, robustness, and ease of use. Graphical abstract.
Collapse
Affiliation(s)
- Mainak Dutta
- Department of Biotechnology, Birla Institute of Technology and Science, Pilani, Dubai Campus, Dubai International Academic City, Dubai, UAE
| | - Jingwei Cai
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, 322 Life Sciences Building, University Park, State College, PA, 16802, USA
| | - Wei Gui
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, 322 Life Sciences Building, University Park, State College, PA, 16802, USA
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, 322 Life Sciences Building, University Park, State College, PA, 16802, USA.
| |
Collapse
|