1
|
Sun Y, Xiao L, Chen L, Wang X. Doxorubicin-Induced Cardiac Remodeling: Mechanisms and Mitigation Strategies. Cardiovasc Drugs Ther 2025:10.1007/s10557-025-07673-6. [PMID: 40009315 DOI: 10.1007/s10557-025-07673-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/16/2025] [Indexed: 02/27/2025]
Abstract
BACKGROUND The therapeutic prowess of doxorubicin in oncology is marred by its cardiotoxic consequences, manifesting as cardiac remodeling. Pathophysiological alterations triggered by doxorubicin include inflammatory cascades, fibrotic tissue deposition, vascular and valvular changes, and finally cardiomyopathy. These multifarious consequences collectively orchestrate the deterioration of cardiac architecture and function. METHOD By charting the molecular underpinnings and remedial prospects, this review aspires to contribute a novel perspective using latest publications to the ongoing quest for cardioprotection in cancer therapy. RESULTS AND DISCUSSION Experimental analyses demonstrate the pivotal roles of oxidative stress and subsequent necrosis and apoptosis of cardiomyocytes, muscle cells, endothelial cells, and small muscle cells in different parts of the heart. In addition, severe and unusual infiltration of macrophages, mast cells, and neutrophils can amplify oxidative damage and subsequent impacts such as chronic inflammatory responses, vascular and valvular remodeling, and fibrosis. These modifications can render cardiomyopathy, ischemia, heart attack, and other disorders. In an endeavor to counteract these ramifications, a spectrum of emerging adjuvants and strategies are poised to fortify the heart against doxorubicin's deleterious effects. CONCLUSION The compendium of mitigation tactics such as innovative pharmacological agents hold the potential to attenuate the cardiotoxic burden.
Collapse
Affiliation(s)
- Yanna Sun
- Department of Cardiology, The First Affiliated of Zhengzhou University, Zhengzhou City Henan Province, 450052, China
| | - Lili Xiao
- Department of Cardiology, The First Affiliated of Zhengzhou University, Zhengzhou City Henan Province, 450052, China
| | - Linlin Chen
- Department of Cardiology, The First Affiliated of Zhengzhou University, Zhengzhou City Henan Province, 450052, China
| | - Xiaofang Wang
- Department of Cardiology, The First Affiliated of Zhengzhou University, Zhengzhou City Henan Province, 450052, China.
| |
Collapse
|
2
|
Frandsen JR, Yuan Z, Bedi B, Prasla Z, Choi SR, Narayanasamy P, Sadikot RT. PGC-1α activation to enhance macrophage immune function in mycobacterial infections. PLoS One 2025; 20:e0310908. [PMID: 39913377 PMCID: PMC11801632 DOI: 10.1371/journal.pone.0310908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 09/09/2024] [Indexed: 02/09/2025] Open
Abstract
Nontuberculous Mycobacteria (NTM) are a heterogeneous group of environmental microorganisms with distinct human pathogenesis. Their incidence and prevalence are rising worldwide, due in part to elevated antimicrobial resistance which complicates treatment and potential successful outcomes. Although information exists on the clinical significance of NTMs, little is known about host immune response to infection. NTM infections alter macrophage mitochondrial capacity and decrease ATP production, efficient immune response, and bacterial clearance. Transcription factor peroxisome proliferator activated receptor (PPAR) γ coactivator-1α (PGC-1α) is a master regulator of mitochondrial biogenesis, influencing metabolism, mitochondrial pathways, and antioxidant response. Mitochondrial transcription factor A (TFAM) is a protein essential for mitochondrial DNA (mtDNA) genome stability, integrity, and metabolism. Both PGC-1α and TFAM regulate mitochondrial biogenesis and activity, and their disruption is linked to inflammatory signaling and altered macrophage function. We show that NTM causes macrophage mitochondrial damage and disrupted bioenergetics. Mechanistically we show that this is related to attenuation of expression of PGC-1α and TFAM in infected macrophages. Importantly, rescuing expression of PGC-1α and TFAM using pharmacologic approaches restored macrophage immune function. Our results suggest that pharmacologic approaches to enhance mitochondrial function provide a novel approach to target macrophage immune function and means to combat NTM infections.
Collapse
Affiliation(s)
- Joel R. Frandsen
- Division of Pulmonary, Critical Care & Sleep, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Zhihong Yuan
- Division of Pulmonary, Critical Care & Sleep, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Brahmchetna Bedi
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Zohra Prasla
- Pulmonology and Critical Care Department, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Seoung-Ryoung Choi
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Prabagaran Narayanasamy
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Ruxana T. Sadikot
- Division of Pulmonary, Critical Care & Sleep, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| |
Collapse
|
3
|
Ren J, Xiang B, Song L, René DJ, Luo Y, Wen G, Gu H, Yang Z, Zhang Y. Kaixinsan regulates neuronal mitochondrial homeostasis to improve the cognitive function of Alzheimer's disease by activating CaMKKβ-AMPK-PGC-1α signaling axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156170. [PMID: 39520951 DOI: 10.1016/j.phymed.2024.156170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/02/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disease primarily characterized by cognitive impairments. With the intensification of population aging, AD has become a major health concern affecting the elderly. Kaixinsan, a classical traditional Chinese formula, consists of Ginseng Panax et Rhizoma, Polygalae Radix, Poria and Acori Tatarinowii Rhizoma, and is commonly used in clinical for treating memory decline. However, its mechanism remains unclear, which hinders its popularization and application. METHOD Morris water maze (MWM) was performed to evaluate the effect of Kaixinsan on improving learning and memory ability in SAMP8 (senescence-accelerated mouse prone 8, an AD model mice) mice. Nissl staining, TdT-mediated dUTP Nick End Labeling (TUNEL) and western blotting (Bax and Bcl-2) were used to confirm the effect of Kaixinsan on the neuronal structure and apoptosis of SAMP8 mice. Ultra performance liquid chromatography coupled with quadrupole time of flight mass spectrometry (UPLC-Q-TOF/MS) was performed to identify the distribution components in brain tissue after administration of Kaixinsan extraction. Based on the identified brain distribution components, the mechanism of Kaixinsan improving the cognitive function was predicted by network pharmacology. Then, using HSP60 as a mitochondrial marker and RBFOX3 as a neuronal marker, immunofluorescence co-localization was used to confirm the effect of Kaixinsan on neuronal mitochondria quantity in SAMP8 mice. Western blotting was employed to access the expression of predicted proteins (AMPK, CaMKKβ, PGC-1α and HSP90) implicated in mitochondrial homeostasis. To further confirm the mechanism of Kaixinsan, SH-SY5Y cell injury model induced by amyloid β - protein fragment 25-35 (Aβ25-35) was replicated and the effect of Kaixinsan - containing serum on apoptosis in injured SH-SY5Y cells was investigated by flow cytometer. The expression level of apoptosis-associated proteins (Bax and Bcl-2) and mitochondrial homeostasis related proteins (AMPK, CaMKKβ, PGC-1α and HSP90) in the presence or absence of CaMKKβ inhibitor (STO-609) were compared. RESULTS The results indicate that Kaixinsan can improve the cognitive function of SAMP8 mice, alleviate the hippocampal tissue lesions and inhibit neuron apoptosis. Seventeen brain distribution components of Kaixinsan were identified. Based on the brain distribution components of Kaixinsan, the results of network pharmacology suggest that Kaixinsan may regulate mitochondrial homeostasis through the CaMKKβ-AMPK-PGC-1α signaling axis. In vivo experiments indicated that Kaixinsan could reverse neuronal mitochondrial loss in SAMP8 mice by upregulating CaMKKβ, AMPK, HSP90 and PGC-1α to promote mitochondrial biogenesis and increase the number of neuronal mitochondria. Additionally, the in vitro experiments demonstrated that Kaixinsan can inhibit apoptosis of Aβ25-35 injured SH-SY5Y cells and upregulate mitochondrial homeostasis-related proteins CaMKKβ, AMPK and PGC-1α. However, in addition to CaMKKβ inhibitors, the neuroprotective effect disappeared. CONCLUSION The results indicate that Kaixinsan can improve the cognitive function of SAMP8 mice by regulating CaMKKβ-AMPK-PGC-1α signaling axis to maintain mitochondrial homeostasis and inhibit neuronal apoptosis.
Collapse
Affiliation(s)
- Jiale Ren
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Beibei Xiang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lili Song
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Dehou Jésuton René
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yifang Luo
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guiying Wen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hao Gu
- Data Center of Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhen Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, China.
| | - Yanjun Zhang
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
4
|
Ni D, Lin X, Deng C, Yuan L, Li J, Liu Y, Liang P, Jiang B. Energy metabolism: from physiological changes to targets in sepsis-induced cardiomyopathy. Hellenic J Cardiol 2024; 80:96-106. [PMID: 38734307 DOI: 10.1016/j.hjc.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/07/2024] [Accepted: 05/04/2024] [Indexed: 05/13/2024] Open
Abstract
Sepsis is a systemic inflammatory response syndrome caused by a variety of dysregulated responses to host infection with life-threatening multi-organ dysfunction. Among the injuries or dysfunctions involved in the course of sepsis, cardiac injury and dysfunction often occur and are associated with the pathogenesis of hemodynamic disturbances, also defined as sepsis-induced cardiomyopathy (SIC). The process of myocardial metabolism is tightly regulated and adapts to various cardiac output demands. The heart is a metabolically flexible organ capable of utilizing all classes of energy substrates, including carbohydrates, lipids, amino acids, and ketone bodies, to produce ATP. The demand of cardiac cells for energy metabolism changes substantially in septic cardiomyopathy, with distinct etiological causes and different times. This review describes changes in cardiomyocyte energy metabolism under normal physiological conditions and some features of myocardial energy metabolism in septic cardiomyopathy and briefly outlines the role of the mitochondria as a center of energy metabolism in the septic myocardium, revealing that changes in energy metabolism can serve as a potential future therapy for infectious cardiomyopathy.
Collapse
Affiliation(s)
- Dan Ni
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Xiaofang Lin
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Chuanhuan Deng
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Ludong Yuan
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Jing Li
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Yuxuan Liu
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Pengfei Liang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bimei Jiang
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China.
| |
Collapse
|
5
|
Alamoudi JA, El-Masry TA, El-Nagar MMF, El Zahaby EI, Elmorshedy KE, Gaballa MMS, Alshawwa SZ, Alsunbul M, Alharthi S, Ibrahim HA. Chitosan/hesperidin nanoparticles formulation: a promising approach against ethanol-induced gastric ulcers via Sirt1/FOXO1/PGC-1α/HO-1 pathway. Front Pharmacol 2024; 15:1433793. [PMID: 39314751 PMCID: PMC11417028 DOI: 10.3389/fphar.2024.1433793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/14/2024] [Indexed: 09/25/2024] Open
Abstract
Hesperidin (Hes) protects different organs from damage by acting as a potent antioxidant and anti-inflammatory. This study aims to evaluate the gastroprotective effects of free hesperidin and its chitosan nanoparticles (HNPs) against ethanol-induced gastric ulcers in rats, hypothesizing that HNPs will enhance bioavailability and therapeutic efficacy due to improved solubility and targeted delivery. HNPs were synthesized via ion gelation and characterized using TEM, SEM, and zeta potential analyses. Key assessments included gastric acidity, histological analysis, and markers of inflammation, oxidative stress, and apoptosis. HNPs significantly decreased gastric acidity, reduced inflammatory and apoptotic markers, and enhanced antioxidant enzyme activities compared to free hesperidin and esomeprazole. Furthermore, Sirt-1, PGC-1α, HO-1, and FOXO1 gene expression were also evaluated. HNPs raised Sirt-1, PGC-1α, HO-1, and downregulated FOXO1, and they suppressed the activities of NF-κB p65, COX-2, IL-1β, CD86, FOXO1 P53, and caspase-3 and increased Sirt-1 activity. HNPs treatment notably restored antioxidant enzyme activity, reduced oxidative stress and inflammatory markers, and improved histological outcomes more effectively than free hesperidin and esomeprazole. These results indicate that chitosan nanoparticles significantly enhance the gastroprotective effects of hesperidin against ethanol-induced gastric ulcers, potentially offering a more effective therapeutic strategy. Further research should explore the clinical applications of HNPs in human subjects.
Collapse
Affiliation(s)
- Jawaher Abdullah Alamoudi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Thanaa A. El-Masry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Maysa M. F. El-Nagar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Enas I. El Zahaby
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Kadreya E. Elmorshedy
- Department of Anatomy, Faculty of Medicine, Tanta University, Tanta, Egypt
- Department of Anatomy, King Khaled College of Medicine, Riyadh, Saudi Arabia
| | - Mohamed M. S. Gaballa
- Department of Pathology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Samar Zuhair Alshawwa
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Maha Alsunbul
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Sitah Alharthi
- Department of Pharmaceutics, College of Pharmacy, Shaqra University, Shaqra, Saudi Arabia
| | - Hanaa A. Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
6
|
Liu J, Wang J, Wang Z, Ren H, Zhang Z, Fu Y, Li L, Shen Z, Li T, Tang S, Wei F. PGC-1α/LDHA signaling facilitates glycolysis initiation to regulate mechanically induced bone remodeling under inflammatory microenvironment. Bone 2024; 185:117132. [PMID: 38789096 DOI: 10.1016/j.bone.2024.117132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/29/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
The mechanosensitivity of inflammation can alter cellular mechanotransduction. However, the underlying mechanism remains unclear. This study aims to investigate the metabolic mechanism of inflammation under mechanical force to guide tissue remodeling better. Herein, we found that inflammation hindered bone remodeling under mechanical force, accompanied by a simultaneous enhancement of oxidative phosphorylation (OXPHOS) and glycolysis. The control of metabolism direction through GNE-140 and Visomitin revealed that enhanced glycolysis might act as a compensatory mechanism to resist OXPHOS-induced osteoclastogenesis by promoting osteogenesis. The inhibited osteogenesis induced by inflammatory mechanical stimuli was concomitant with a reduced expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). PGC-1α knockdown impeded osteogenesis under mechanical force and facilitated osteoclastogenesis by enhancing OXPHOS. Conversely, PGC-1α overexpression attenuated the impairment of bone remodeling by inflammatory mechanical signals through promoting glycolysis. This process benefited from the PGC-1α regulation on the transcriptional and translational activity of lactate dehydrogenase A (LDHA) and the tight control of the extracellular acidic environment. Additionally, the increased binding between PGC-1α and LDHA proteins might contribute to the glycolysis promotion within the inflammatory mechanical environment. Notably, LDHA suppression effectively eliminated the bone repair effect mediated by PGC-1α overexpression within inflammatory mechanical environments. In conclusion, this study demonstrated a novel molecular mechanism illustrating how inflammation orchestrated glucose metabolism through glycolysis and OXPHOS to affect mechanically induced bone remodeling.
Collapse
Affiliation(s)
- Jiani Liu
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, Shandong, China
| | - Jixiao Wang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, Shandong, China
| | - Ziyao Wang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, Shandong, China
| | - Huiying Ren
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, Shandong, China
| | - Zijie Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, Shandong, China
| | - Yajing Fu
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, Shandong, China
| | - Lan Li
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, Shandong, China
| | - Zhiyuan Shen
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, Shandong, China
| | - Tianyi Li
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, Shandong, China
| | - Shuai Tang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, Shandong, China
| | - Fulan Wei
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, Shandong, China.
| |
Collapse
|
7
|
Tian Z, Li J, Tang H, Liu W, Hou H, Wang C, Li D, Chen G, Xia T, Wang A. ZLN005 alleviates PBDE-47 induced impairment of mitochondrial translation and neurotoxicity through PGC-1α/ERRα axis. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134331. [PMID: 38677116 DOI: 10.1016/j.jhazmat.2024.134331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/28/2024] [Accepted: 04/15/2024] [Indexed: 04/29/2024]
Abstract
Recent studies are identified the mitochondria as critical targets of 2, 2', 4, 4'-tetrabromodiphenyl ether (PBDE-47) induced neurotoxicity. This study aimed at examining the impact of PBDE-47 exposure on mitochondrial translation, and its subsequent effect on PBDE-47 neurotoxicity. The Sprague-Dawley (SD) rat model and neuroendocrine pheochromocytoma (PC12) cells were adopted for the measurements of mitochondrial ATP levels, mitochondrial translation products, and expressions of important mitochondrial regulators, such as required meiotic nuclear division 1 (RMND1), estrogen-related receptor α (ERRα), and peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α). To delve into the role of PGC-1α/ERRα axis in mitochondrial translation, 2-(4-tert-butylphenyl) benzimidazole (ZLN005) was employed. Both cellular and animal model results shown that PBDE-47 impeded PGC-1α/ERRα axis and mitochondrial translation. PBDE-47 suppressed mitochondrial function in rat hippocampus and PC12 cells by decreasing relative mitochondrial DNA (mtDNA) content, mitochondrial translation products, and mitochondrial ATP levels. Particularly, ZLN005 reversed PBDE-47 neurotoxicity by enhancing mitochondrial translation through activation of PGC-1α/ERRα axis, yet suppressing PGC-1α with siRNA attenuates its neuroprotective effect in vitro. In conclusion, this work highlights the importance of mitochondrial translation in PBDE-47 neurotoxicity by presenting results from cellular and animal models and suggests a potential therapeutic approach through activation of PGC-1α/ERRα axis. ENVIRONMENTAL IMPLICATION: PBDEs have attracted extensive attention because of their high lipophilicity, persistence, and detection levels in various environmental media. Increasing evidence has shown that neurodevelopmental disorders in children are associated with PBDE exposure. Several studies have also found that perinatal PBDE exposure can cause long-lasting neurobehavioral abnormalities in experimental animals. Our recent studies have also demonstrated the impact of PBDE-47 exposure on mitochondrial biogenesis and dynamics, leading to memory and neurobehavioral deficits. Therefore, we explore whether the pathological mechanism of PBDE-47-induced neurotoxicity involves the regulation of mitochondrial translation through the PGC-1α/ERRα axis.
Collapse
Affiliation(s)
- Zhiyuan Tian
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Jing Li
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Huayang Tang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Wenhui Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Haoqi Hou
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Chenxi Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Dongjie Li
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Gaoshuai Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Tao Xia
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| | - Aiguo Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
8
|
Spinelli S, Bruschi M, Passalacqua M, Guida L, Magnone M, Sturla L, Zocchi E. Estrogen-Related Receptor α: A Key Transcription Factor in the Regulation of Energy Metabolism at an Organismic Level and a Target of the ABA/LANCL Hormone Receptor System. Int J Mol Sci 2024; 25:4796. [PMID: 38732013 PMCID: PMC11084903 DOI: 10.3390/ijms25094796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
The orphan nuclear receptor ERRα is the most extensively researched member of the estrogen-related receptor family and holds a pivotal role in various functions associated with energy metabolism, especially in tissues characterized by high energy requirements, such as the heart, skeletal muscle, adipose tissue, kidney, and brain. Abscisic acid (ABA), traditionally acknowledged as a plant stress hormone, is detected and actively functions in organisms beyond the land plant kingdom, encompassing cyanobacteria, fungi, algae, protozoan parasites, lower Metazoa, and mammals. Its ancient, cross-kingdom role enables ABA and its signaling pathway to regulate cell responses to environmental stimuli in various organisms, such as marine sponges, higher plants, and humans. Recent advancements in understanding the physiological function of ABA and its mammalian receptors in governing energy metabolism and mitochondrial function in myocytes, adipocytes, and neuronal cells suggest potential therapeutic applications for ABA in pre-diabetes, diabetes, and cardio-/neuroprotection. The ABA/LANCL1-2 hormone/receptor system emerges as a novel regulator of ERRα expression levels and transcriptional activity, mediated through the AMPK/SIRT1/PGC-1α axis. There exists a reciprocal feed-forward transcriptional relationship between the LANCL proteins and transcriptional coactivators ERRα/PGC-1α, which may be leveraged using natural or synthetic LANCL agonists to enhance mitochondrial function across various clinical contexts.
Collapse
Affiliation(s)
- Sonia Spinelli
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy
| | - Maurizio Bruschi
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy
- Section Biochemistry, Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genova, Italy; (M.P.); (L.G.); (M.M.); (L.S.)
| | - Mario Passalacqua
- Section Biochemistry, Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genova, Italy; (M.P.); (L.G.); (M.M.); (L.S.)
| | - Lucrezia Guida
- Section Biochemistry, Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genova, Italy; (M.P.); (L.G.); (M.M.); (L.S.)
| | - Mirko Magnone
- Section Biochemistry, Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genova, Italy; (M.P.); (L.G.); (M.M.); (L.S.)
| | - Laura Sturla
- Section Biochemistry, Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genova, Italy; (M.P.); (L.G.); (M.M.); (L.S.)
| | - Elena Zocchi
- Section Biochemistry, Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genova, Italy; (M.P.); (L.G.); (M.M.); (L.S.)
| |
Collapse
|
9
|
Behrooz AB, Cordani M, Fiore A, Donadelli M, Gordon JW, Klionsky DJ, Ghavami S. The obesity-autophagy-cancer axis: Mechanistic insights and therapeutic perspectives. Semin Cancer Biol 2024; 99:24-44. [PMID: 38309540 DOI: 10.1016/j.semcancer.2024.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Autophagy, a self-degradative process vital for cellular homeostasis, plays a significant role in adipose tissue metabolism and tumorigenesis. This review aims to elucidate the complex interplay between autophagy, obesity, and cancer development, with a specific emphasis on how obesity-driven changes affect the regulation of autophagy and subsequent implications for cancer risk. The burgeoning epidemic of obesity underscores the relevance of this research, particularly given the established links between obesity, autophagy, and various cancers. Our exploration delves into hormonal influence, notably INS (insulin) and LEP (leptin), on obesity and autophagy interactions. Further, we draw attention to the latest findings on molecular factors linking obesity to cancer, including hormonal changes, altered metabolism, and secretory autophagy. We posit that targeting autophagy modulation may offer a potent therapeutic approach for obesity-associated cancer, pointing to promising advancements in nanocarrier-based targeted therapies for autophagy modulation. However, we also recognize the challenges inherent to these approaches, particularly concerning their precision, control, and the dual roles autophagy can play in cancer. Future research directions include identifying novel biomarkers, refining targeted therapies, and harmonizing these approaches with precision medicine principles, thereby contributing to a more personalized, effective treatment paradigm for obesity-mediated cancer.
Collapse
Affiliation(s)
- Amir Barzegar Behrooz
- Department of Human Anatomy and Cell Science, University of Manitoba, College of Medicine, Winnipeg, Manitoba, Canada; Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, Madrid, Spain; Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain
| | - Alessandra Fiore
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Joseph W Gordon
- Department of Human Anatomy and Cell Science, University of Manitoba, College of Medicine, Winnipeg, Manitoba, Canada; Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Saeid Ghavami
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA; Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland; Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, Manitoba, Canada; Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
10
|
Xu DM, Zhang ZJ, Guo HK, Chen GJ, Ma YL. ERRα regulates synaptic transmission through reactive oxygen species in hippocampal neurons. Heliyon 2024; 10:e23739. [PMID: 38192817 PMCID: PMC10772171 DOI: 10.1016/j.heliyon.2023.e23739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/23/2023] [Accepted: 12/12/2023] [Indexed: 01/10/2024] Open
Abstract
Reactive oxygen species (ROS) play multiple roles in synaptic transmission, and estrogen-related receptor α (ERRα) is involved in regulating ROS production. The purpose of our study was to explore the underlying effect of ERRα on ROS production, neurite formation and synaptic transmission. Our results revealed that knocking down ERRα expression affected the formation of neuronal neurites and dendritic spines, which are the basic structures of synaptic transmission and play important roles in learning, memory and neuronal plasticity; moreover, the amplitude and frequency of miniature excitatory postsynaptic currents (mEPSCs) and miniature inhibitory postsynaptic currents (mIPSCs) were decreased. These abnormalities were reversed by overexpression of human ERRα. Additionally, we also found that knocking down ERRα expression increased intracellular ROS levels in neurons. ROS inhibitor PBN rescued the changes in neurite formation and synaptic transmission induced by ERRα knockdown. These results indicate a new possible cellular mechanism by which ERRα affects intracellular ROS levels, which in turn regulate neurite and dendritic spine formation and synaptic transmission.
Collapse
Affiliation(s)
- De-Mei Xu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Zhi-Juan Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Hao-Kun Guo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Guo-Jun Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Yuan-Lin Ma
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| |
Collapse
|
11
|
Pohjolainen L, Kinnunen SM, Auno S, Kiriazis A, Pohjavaara S, Kari-Koskinen J, Zore M, Jumppanen M, Yli-Kauhaluoma J, Talman V, Ruskoaho H, Välimäki MJ. Switching of hypertrophic signalling towards enhanced cardiomyocyte identity and maturity by a GATA4-targeted compound. Stem Cell Res Ther 2024; 15:5. [PMID: 38167208 PMCID: PMC10763434 DOI: 10.1186/s13287-023-03623-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND The prevalence of heart failure is constantly increasing, and the prognosis of patients remains poor. New treatment strategies to preserve cardiac function and limit cardiac hypertrophy are therefore urgently needed. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are increasingly used as an experimental platform for cardiac in vitro studies. However, in contrast to adult cardiomyocytes, hiPSC-CMs display immature morphology, contractility, gene expression and metabolism and hence express a naive phenotype that resembles more of a foetal cardiomyocyte. METHODS A library of 14 novel compounds was synthesized in-house and screened for GATA4-NKX2-5 reporter activity and cellular toxicity. The most potent compound, 3i-1262, along with previously reported GATA4-acting compounds, were selected to investigate their effects on hypertrophy induced by endothelin-1 or mechanical stretch. Morphological changes and protein expression were characterized using immunofluorescence staining and high-content analysis. Changes in gene expression were studied using qPCR and RNA sequencing. RESULTS The prototype compound 3i-1262 inhibited GATA4-NKX2-5 synergy in a luciferase reporter assay. Additionally, the isoxazole compound 3i-1262 inhibited the hypertrophy biomarker B-type natriuretic peptide (BNP) by reducing BNP promoter activity and proBNP expression in neonatal rat ventricular myocytes and hiPSC-CMs, respectively. Treatment with 3i-1262 increased metabolic activity and cardiac troponin T expression in hiPSC-CMs without affecting GATA4 protein levels. RNA sequencing analysis revealed that 3i-1262 induces gene expression related to metabolic activity and cell cycle exit, indicating a change in the identity and maturity status of hiPSC-CMs. The biological processes that were enriched in upregulated genes in response to 3i-1262 were downregulated in response to mechanical stretch, and conversely, the downregulated processes in response to 3i-1262 were upregulated in response to mechanical stretch. CONCLUSIONS There is currently a lack of systematic understanding of the molecular modulation and control of hiPSC-CM maturation. In this study, we demonstrated that the GATA4-interfering compound 3i-1262 reorganizes the cardiac transcription factor network and converts hypertrophic signalling towards enhanced cardiomyocyte identity and maturity. This conceptually unique approach provides a novel structural scaffold for further development as a modality to promote cardiomyocyte specification and maturity.
Collapse
Affiliation(s)
- Lotta Pohjolainen
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - Sini M Kinnunen
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - Samuli Auno
- Drug Research Program and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Alexandros Kiriazis
- Drug Research Program and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Saana Pohjavaara
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - Julia Kari-Koskinen
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - Matej Zore
- Drug Research Program and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Mikael Jumppanen
- Drug Research Program and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Jari Yli-Kauhaluoma
- Drug Research Program and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Virpi Talman
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - Heikki Ruskoaho
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - Mika J Välimäki
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland.
| |
Collapse
|
12
|
Chen L, Qi E, Liu X, Cui L, Fan X, Wei T, Hu Y. The lack of homology domain and leucine rich repeat protein phosphatase 2 ameliorates visual impairment in rats with diabetic retinopathy through regulation of the AKT-GSK-3β-Nrf2 signal cascade. Toxicol Appl Pharmacol 2024; 482:116766. [PMID: 37995808 DOI: 10.1016/j.taap.2023.116766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/29/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
Pleckstrin homology domain and leucine rich repeat protein phosphatase 2 (PHLPP2) is an emerging player in diverse disorders. Our previous findings have documented that reducing PHLPP2 levels in cultured retinal ganglion cells protects against cellular damage caused by high glucose, indicating a possible link between PHLPP2 and diabetic retinopathy (DR). The present work was dedicated to the investigation of PHLPP2 in DR through in vivo experiments with rat models induced by intraperitoneal injection of streptozotocin. Compared to normal rats, the retinas of rats with DR exhibited a notable increase in the level of PHLPP2. The reduction of PHLPP2 levels in the retina was achieved by the intravitreal administration of adeno-associated viruses expressing specific shRNA targeting PHLPP2. Decreasing the expression of PHLPP2 ameliorated visual function impairment and improved the pathological changes of retina in DR rats. Moreover, decreasing the expression of PHLPP2 repressed the apoptosis, oxidative stress and proinflammatory response in the retinas of rats with DR. Reduction of PHLPP2 levels led to an increase in the levels of phosphorylated AKT and glycogen synthase kinase-3β (GSK-3β). Decreasing the expression of PHLPP2 resulted in increased activation of nuclear factor erythroid 2-related factor 2 (Nrf2), which was reversed by suppressing AKT. Notably, the protective effect of reducing PHLPP2 on DR was eliminated when Nrf2 was restrained. These observations show that the down-regulation of PHLPP2 has protective effects on DR by preserving the structure and function of the retina by regulating the AKT-GSK-3β-Nrf2 signal cascade. Therefore, targeting PHLPP2 may hold promise in the treatment of DR.
Collapse
Affiliation(s)
- Li Chen
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - En Qi
- Department of Ophthalmology, Qinghai Provincial People's Hospital, Xining 810007, Qinghai, China
| | - Xuan Liu
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China.
| | - Lijun Cui
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Xiaojuan Fan
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Ting Wei
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Yaguang Hu
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| |
Collapse
|
13
|
Kounatidis D, Brozou V, Anagnostopoulos D, Pantos C, Lourbopoulos A, Mourouzis I. Donor Heart Preservation: Current Knowledge and the New Era of Machine Perfusion. Int J Mol Sci 2023; 24:16693. [PMID: 38069017 PMCID: PMC10706714 DOI: 10.3390/ijms242316693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Heart transplantation remains the conventional treatment in end-stage heart failure, with static cold storage (SCS) being the standard technique used for donor preservation. Nevertheless, prolonged cold ischemic storage is associated with the increased risk of early graft dysfunction attributed to residual ischemia, reperfusion, and rewarming damage. In addition, the demand for the use of marginal grafts requires the development of new methods for organ preservation and repair. In this review, we focus on current knowledge and novel methods of donor preservation in heart transplantation. Hypothermic or normothermic machine perfusion may be a promising novel method of donor preservation based on the administration of cardioprotective agents. Machine perfusion seems to be comparable to cold cardioplegia regarding donor preservation and allows potential repair treatments to be employed and the assessment of graft function before implantation. It is also a promising platform for using marginal organs and increasing donor pool. New pharmacological cardiac repair treatments, as well as cardioprotective interventions have emerged and could allow for the optimization of this modality, making it more practical and cost-effective for the real world of transplantation. Recently, the use of triiodothyronine during normothermic perfusion has shown a favorable profile on cardiac function and microvascular dysfunction, likely by suppressing pro-apoptotic signaling and increasing the expression of cardioprotective molecules.
Collapse
Affiliation(s)
| | | | | | | | | | - Iordanis Mourouzis
- Department of Pharmacology, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.K.); (V.B.); (D.A.); (C.P.); (A.L.)
| |
Collapse
|
14
|
Shipra, Tembhre MK, Hote MP, Bhari N, Lakshmy R, Kumaran SS. PGC-1α Agonist Rescues Doxorubicin-Induced Cardiomyopathy by Mitigating the Oxidative Stress and Necroptosis. Antioxidants (Basel) 2023; 12:1720. [PMID: 37760023 PMCID: PMC10525725 DOI: 10.3390/antiox12091720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/10/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Cardiomyopathy (particularly dilated cardiomyopathy (DCM)) significantly contributes to development and progression of heart failure (HF), and inflammatory factors further deteriorate the symptoms. Morphological and functional defects of the heart in doxorubicin (DOX)-induced cardiomyopathy (cardiotoxicity) are similar to those of DCM. We used anagonist of PGC-1α (PPAR (peroxisome proliferator-activated receptor-gamma)-γ coactivator-1α) that is considered as the 'master regulator' of mitochondrial biogenesis with an aim to rescue the DOX-induced deleterious effects on the heart. Forty male C57BL/6J mice (8 weeks old) were divided in four groups, Control, DOX, ZLN005, and ZLN005 + DOX (n = 10 each group). The DOX-induced (10 mg/kg, single dose) cardiomyopathy mimics a DCM-like phenotype with marked morphologic alteration in cardiac tissue and functional derangements. Significant increased staining was observed for Masson Trichrome/Picrosirius red and α-Smooth Muscle Actinin (α-SMA) that indicated enhanced fibrosis in the DOX group compared to the control that was attenuated by (peroxisome proliferator-activated receptor-gamma (PPAR-γ) coactivator) (PGC)-1α (alpha) agonist (four doses of 2.5 mg/kg/dose; cumulative dose = 10 mg/kg). Similarly, elevated expression of necroptosis markers along with enhanced oxidative stress in the DOX group were alleviated by PGC-1α agonist. These data collectively suggested the potent therapeutic efficacy of PGC-1α agonist in mitigating the deleterious effects of DOX-induced cardiomyopathy, and it may be targeted in developing the future therapeutics for the management of DCM/HF.
Collapse
Affiliation(s)
- Shipra
- Department of Cardiac Biochemistry, AIIMS, New Delhi 110029, India; (S.)
| | | | | | - Neetu Bhari
- Dermatology & Venereology, AIIMS, New Delhi 110029, India
| | | | | |
Collapse
|
15
|
Mani S, Ralph SJ, Swargiary G, Rani M, Wasnik S, Singh SP, Devi A. Therapeutic Targeting of Mitochondrial Plasticity and Redox Control to Overcome Cancer Chemoresistance. Antioxid Redox Signal 2023; 39:591-619. [PMID: 37470214 DOI: 10.1089/ars.2023.0379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Significance: Mitochondria are subcellular organelles performing essential metabolic functions contributing to cellular bioenergetics and regulation of cell growth or death. The basic mitochondrial function in fulfilling the need for cell growth and vitality is evidenced whereby cancer cells with depleted mitochondrial DNA (rho zero, p0 cells) no longer form tumors until newly recruited mitochondria are internalized into the rho zero cells. Herein lies the absolute dependency on mitochondria for tumor growth. Hence, mitochondria are key regulators of cell death (by apoptosis, necroptosis, or other forms of cell death) and are, therefore, important targets for anticancer therapy. Recent Advances: Mitochondrial plasticity regulating their state of fusion or fission is key to the chemoresistance properties of cancer cells by promoting pro-survival pathways, enabling the mitochondria to mitigate against the cellular stresses and extreme conditions within the tumor microenvironment caused by chemotherapy, hypoxia, or oxidative stress. Critical Issues: This review discusses many characteristics of mitochondria, the processes and pathways controlling the dynamic changes occurring in the morphology of mitochondria, the roles of reactive oxygen species, and their relationship with mitochondrial fission or fusion. It also examines the relationship of redox to mitophagy when mitochondria become compromised and its effect on cancer cell survival, stemness, and the changes accompanying malignant progression from primary tumors to metastatic disease. Future Directions: A challenging question that arises is whether the changes in mitochondrial dynamics and their regulation can provide opportunities for improving drug targeting during cancer treatment and enhancing survival outcomes. Antioxid. Redox Signal. 39, 591-619.
Collapse
Affiliation(s)
- Shalini Mani
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Stephen J Ralph
- School of Pharmacy and Medical Sciences, Griffith University, Southport, Australia
| | - Geeta Swargiary
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Madhu Rani
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Samiksha Wasnik
- Department of Regenerative Medicine, Loma Linda University Health, Loma Linda, California, USA
| | - Shashi Prakash Singh
- Special Centre of Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Annu Devi
- Special Centre of Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
16
|
Yang YN, Zhang MQ, Yu FL, Han B, Bao MY, Yan-He, Li X, Zhang Y. Peroxisom proliferator-activated receptor-γ coactivator-1α in neurodegenerative disorders: A promising therapeutic target. Biochem Pharmacol 2023; 215:115717. [PMID: 37516277 DOI: 10.1016/j.bcp.2023.115717] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Neurodegenerative disorders (NDDs) are characterized by progressive loss of selectively vulnerable neuronal populations and myelin sheath, leading to behavioral and cognitive dysfunction that adversely affect the quality of life. Identifying novel therapies that attenuate the progression of NDDs would be of significance. Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), a widely expressed transcriptional regulator, modulates the expression of genes engaged in mitochondrial biosynthesis, metabolic regulation, and oxidative stress (OS). Emerging evidences point to the strong connection between PGC-1α and NDDs, suggesting its positive impaction on the progression of NDDs. Therefore, it is urgent to gain a deeper and broader understanding between PGC-1α and NDDs. To this end, this review presents a comprehensive overview of PGC-1α, including its basic characteristics, the post-translational modulations, as well as the interacting transcription factors. Secondly, the pathogenesis of PGC-1α in various NDDs, such as Alzheimer's (AD), Parkinson's (PD), and Huntington's disease (HD) is briefly discussed. Additionally, this study summarizes the underlying mechanisms that PGC-1α is neuroprotective in NDDs via regulating neuroinflammation, OS, and mitochondrial dysfunction. Finally, we briefly outline the shortcomings of current NDDs drug therapy, and summarize the functions and potential applications of currently available PGC-1α modulators (activator or inhibitors). Generally, this review updates our insight of the important role of PGC-1α on the development of NDDs, and provides a promising therapeutic target/ drug for the treatment of NDDs.
Collapse
Affiliation(s)
- Ya-Na Yang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Mao-Qing Zhang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Feng-Lin Yu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Bing Han
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Ming-Yue Bao
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yan-He
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Xing Li
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yuan Zhang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| |
Collapse
|
17
|
Huang L, Gao W, He X, Yuan T, Zhang H, Zhang X, Zheng W, Wu Q, Liu J, Wang W, Yang L, Zhu Y. Maternal zinc alleviates tert-butyl hydroperoxide-induced mitochondrial oxidative stress on embryonic development involving the activation of Nrf2/PGC-1α pathway. J Anim Sci Biotechnol 2023; 14:45. [PMID: 37041604 PMCID: PMC10091542 DOI: 10.1186/s40104-023-00852-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 02/12/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND Mitochondrial dysfunction induced by excessive mitochondrial reactive oxygen species (ROS) damages embryonic development and leads to growth arrest. OBJECTIVE The purpose of this study is to elucidate whether maternal zinc (Zn) exert protective effect on oxidative stress targeting mitochondrial function using an avian model. RESULT In ovo injected tert-butyl hydroperoxide (BHP) increases (P < 0.05) hepatic mitochondrial ROS, malondialdehyde (MDA) and 8-hydroxy-2-deoxyguanosine (8-OHdG), and decreases (P < 0.05) mitochondrial membrane potential (MMP), mitochondrial DNA (mtDNA) copy number and adenosine triphosphate (ATP) content, contributing to mitochondrial dysfunction. In vivo and in vitro studies revealed that Zn addition enhances (P < 0.05) ATP synthesis and metallothionein 4 (MT4) content and expression as well as alleviates (P < 0.05) the BHP-induced mitochondrial ROS generation, oxidative damage and dysfunction, exerting a protective effect on mitochondrial function by enhancing antioxidant capacity and upregulating the mRNA and protein expressions of Nrf2 and PGC-1α. CONCLUSIONS The present study provides a new way to protect offspring against oxidative damage by maternal Zn supplementation through the process of targeting mitochondria involving the activation of Nrf2/PGC-1α signaling.
Collapse
Affiliation(s)
- Liang Huang
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, 510000, China
| | - Wei Gao
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, 510000, China
| | - Xuri He
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, 510000, China
| | - Tong Yuan
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, 510000, China
| | - Huaqi Zhang
- Tongren Polytechnic College, Tongren, 554000, China
| | - Xiufen Zhang
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, 510000, China
| | - Wenxuan Zheng
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, 510000, China
| | - Qilin Wu
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, 510000, China
| | - Ju Liu
- Enping Long Industrial Co. Ltd, Enping, 529400, China
| | - Wence Wang
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, 510000, China
| | - Lin Yang
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, 510000, China.
| | - Yongwen Zhu
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, 510000, China.
| |
Collapse
|
18
|
Tian Z, Li J, Song L, Xie L, Li D, Xia T, Wang A. PBDE-47 induces impairment of mitochondrial biogenesis and subsequent neurotoxicity through miR-128-3p/PGC-1α axis. Toxicol Sci 2023; 191:123-134. [PMID: 36269211 DOI: 10.1093/toxsci/kfac110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The potential adverse effects of 2,2',4,4'-tetrabromodiphenyl ether (PBDE-47) on neurons are extensively studied, and mitochondria are identified as critical targets. This study aimed to investigate whether PBDE-47 impairs mitochondrial biogenesis via the miR-128-3p/PGC-1α axis to trigger mitochondrial dysfunction-related neuronal damage. In vitro neuroendocrine pheochromocytoma (PC12) cells and in vivo Sprague Dawley rat model were adopted. In this study, biochemical methods were used to examine mitochondrial ATP content, cell viability, and expressions of key mitochondrial biogenesis regulators, including peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α), nuclear respiratory factor 1 (NRF1), and mitochondrial transcription factor A (TFAM). Mimics and inhibitors of miR-128-3p were employed to explore its role in PBDE-47-induced neurotoxicity. Both in vivo and in vitro evidences suggested that PBDE-47 suppressed PGC-1α/NRF1/TFAM signaling pathways and mitochondrial DNA (mtDNA) encoding proteins synthesis. PBDE-47 also suppressed the relative mtDNA content, mRNA levels of mtDNA-encoded subunits, and mitochondrial ATP levels in vitro. Specifically, 2-(4-tert-butylphenyl) benzimidazole (ZLN005) alleviated PBDE-47-induced neuronal death through the improvement of mitochondrial function by activating PGC-1α/NRF1/TFAM signaling pathways. Mechanistically, PBDE-47 dramatically upregulated miR-128-3p expression. Furthermore, miR-128-3p inhibition enhanced PGC-1α/NRF1/TFAM signaling and abolished PBDE-47-induced impairment of mitochondrial biogenesis. In summary, this study provides in vitro evidence to reveal the role of mitochondrial biogenesis in PBDE-47-induced mitochondrial dysfunction and related neurotoxicity and suggests that miR-128-3p/PGC-1α axis may be a therapeutic target for PBDE-47 neurotoxicity.
Collapse
Affiliation(s)
- Zhiyuan Tian
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Jing Li
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Li Song
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Li Xie
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Dongjie Li
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Tao Xia
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Aiguo Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| |
Collapse
|
19
|
Chirico N, Kessler EL, Maas RGC, Fang J, Qin J, Dokter I, Daniels M, Šarić T, Neef K, Buikema JW, Lei Z, Doevendans PA, Sluijter JPG, van Mil A. Small molecule-mediated rapid maturation of human induced pluripotent stem cell-derived cardiomyocytes. Stem Cell Res Ther 2022; 13:531. [PMID: 36575473 PMCID: PMC9795728 DOI: 10.1186/s13287-022-03209-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/01/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (iPSC-CMs) do not display all hallmarks of mature primary cardiomyocytes, especially the ability to use fatty acids (FA) as an energy source, containing high mitochondrial mass, presenting binucleation and increased DNA content per nuclei (polyploidism), and synchronized electrical conduction. This immaturity represents a bottleneck to their application in (1) disease modelling-as most cardiac (genetic) diseases have a middle-age onset-and (2) clinically relevant models, where integration and functional coupling are key. So far, several methods have been reported to enhance iPSC-CM maturation; however, these protocols are laborious, costly, and not easily scalable. Therefore, we developed a simple, low-cost, and rapid protocol to promote cardiomyocyte maturation using two small molecule activators of the peroxisome proliferator-activated receptor β/δ and gamma coactivator 1-alpha (PPAR/PGC-1α) pathway: asiatic acid (AA) and GW501516 (GW). METHODS AND RESULTS: Monolayers of iPSC-CMs were incubated with AA or GW every other day for ten days resulting in increased expression of FA metabolism-related genes and markers for mitochondrial activity. AA-treated iPSC-CMs responsiveness to the mitochondrial respiratory chain inhibitors increased and exhibited higher flexibility in substrate utilization. Additionally, structural maturity improved after treatment as demonstrated by an increase in mRNA expression of sarcomeric-related genes and higher nuclear polyploidy in AA-treated samples. Furthermore, treatment led to increased ion channel gene expression and protein levels. CONCLUSIONS Collectively, we developed a fast, easy, and economical method to induce iPSC-CMs maturation via PPAR/PGC-1α activation. Treatment with AA or GW led to increased metabolic, structural, functional, and electrophysiological maturation, evaluated using a multiparametric quality assessment.
Collapse
Affiliation(s)
- Nino Chirico
- grid.5477.10000000120346234Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Elise L. Kessler
- grid.5477.10000000120346234Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Renée G. C. Maas
- grid.5477.10000000120346234Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Juntao Fang
- grid.5477.10000000120346234Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jiabin Qin
- grid.5477.10000000120346234Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Inge Dokter
- grid.5477.10000000120346234Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mark Daniels
- grid.5477.10000000120346234Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tomo Šarić
- grid.6190.e0000 0000 8580 3777Center for Physiology and Pathophysiology, Institute for Neurophysiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Klaus Neef
- grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.491096.3Department of Cardiology, Amsterdam Medical Centre, 1105 AZ Amsterdam, The Netherlands
| | - Jan-Willem Buikema
- grid.5477.10000000120346234Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Zhiyong Lei
- grid.5477.10000000120346234Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pieter A. Doevendans
- grid.5477.10000000120346234Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.411737.7Netherlands Heart Institute, Utrecht, The Netherlands
| | - Joost P. G. Sluijter
- grid.5477.10000000120346234Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Alain van Mil
- grid.5477.10000000120346234Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.7692.a0000000090126352Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
20
|
Yan Y, Li M, Lin J, Ji Y, Wang K, Yan D, Shen Y, Wang W, Huang Z, Jiang H, Sun H, Qi L. Adenosine monophosphate activated protein kinase contributes to skeletal muscle health through the control of mitochondrial function. Front Pharmacol 2022; 13:947387. [PMID: 36339617 PMCID: PMC9632297 DOI: 10.3389/fphar.2022.947387] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/06/2022] [Indexed: 11/26/2022] Open
Abstract
Skeletal muscle is one of the largest organs in the body and the largest protein repository. Mitochondria are the main energy-producing organelles in cells and play an important role in skeletal muscle health and function. They participate in several biological processes related to skeletal muscle metabolism, growth, and regeneration. Adenosine monophosphate-activated protein kinase (AMPK) is a metabolic sensor and regulator of systemic energy balance. AMPK is involved in the control of energy metabolism by regulating many downstream targets. In this review, we propose that AMPK directly controls several facets of mitochondrial function, which in turn controls skeletal muscle metabolism and health. This review is divided into four parts. First, we summarize the properties of AMPK signal transduction and its upstream activators. Second, we discuss the role of mitochondria in myogenesis, muscle atrophy, regeneration post-injury of skeletal muscle cells. Third, we elaborate the effects of AMPK on mitochondrial biogenesis, fusion, fission and mitochondrial autophagy, and discuss how AMPK regulates the metabolism of skeletal muscle by regulating mitochondrial function. Finally, we discuss the effects of AMPK activators on muscle disease status. This review thus represents a foundation for understanding this biological process of mitochondrial dynamics regulated by AMPK in the metabolism of skeletal muscle. A better understanding of the role of AMPK on mitochondrial dynamic is essential to improve mitochondrial function, and hence promote skeletal muscle health and function.
Collapse
Affiliation(s)
- Yan Yan
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Ming Li
- Department of Laboratory Medicine, Binhai County People’s Hospital Affiliated to Kangda College of Nanjing Medical University, Yancheng, China
| | - Jie Lin
- Department of Infectious Disease, Affiliated Hospital of Nantong University, Nantong, China
| | - Yanan Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Kexin Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Dajun Yan
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Wei Wang
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
- Department of Pathology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Zhongwei Huang
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Haiyan Jiang
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Haiyan Jiang, ; Hualin Sun, ; Lei Qi,
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
- *Correspondence: Haiyan Jiang, ; Hualin Sun, ; Lei Qi,
| | - Lei Qi
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Haiyan Jiang, ; Hualin Sun, ; Lei Qi,
| |
Collapse
|
21
|
Mitochondrial homeostasis is involved in inhibiting hippocampus neuronal apoptosis during ZSWF ameliorate the cognitive dysfunction of SAMP8 mice. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|