1
|
Wang S, Chen X, Wang K, Yang S. The Regulatory Role of NcRNAs in Pyroptosis and Disease Pathogenesis. Cell Biochem Biophys 2025:10.1007/s12013-025-01720-7. [PMID: 40249522 DOI: 10.1007/s12013-025-01720-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2025] [Indexed: 04/19/2025]
Abstract
Non-coding RNAs (ncRNAs), as critical regulators of gene expression, play a pivotal role in the modulation of pyroptosis and exhibit a close association with a wide range of diseases. Pyroptosis is a form of programmed cell death mediated by inflammasomes, characterized by cell membrane perforation, release of inflammatory cytokines, and a robust immune response. Recent studies have revealed that ncRNAs influence the initiation and execution of pyroptosis by regulating the expression of pyroptosis-related genes or modulating associated signaling pathways. This review systematically summarizes the molecular mechanisms and applications of ncRNAs in diseases such as cancer, infectious diseases, neurological disorders, cardiovascular diseases, and metabolic disorders. It further explores the potential of ncRNAs as diagnostic biomarkers and therapeutic targets, elucidates the intricate interactions among ncRNAs, pyroptosis, and diseases, and provides novel strategies and directions for the precision treatment of related diseases.
Collapse
Affiliation(s)
- Shaocong Wang
- Department of Cardiovascular Surgery, Institute of Chronic Diseases, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Xinzhe Chen
- Department of Cardiovascular Surgery, Institute of Chronic Diseases, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Kun Wang
- Department of Cardiovascular Surgery, Institute of Chronic Diseases, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.
| | - Sumin Yang
- Department of Cardiovascular Surgery, Institute of Chronic Diseases, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
2
|
Hsu CY, Jamal A, Kamal MA, Ahmad F, Bokov DO, Mustafa YF, Saud A, Kulsum SN, Jawad MA, Gabble BC. Pathological roles of lncRNA HOTAIR in liver cancer: An updated review. Gene 2025; 940:149180. [PMID: 39708931 DOI: 10.1016/j.gene.2024.149180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/07/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Liver cancer ranks as the sixth most prevalent form of cancer and stands as the fourth leading cause of cancer-related fatalities on a global scale. The two primary types of liver cancer are hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). While ICC originates from the bile ducts, HCC develops from hepatocytes, which are the primary functional cells of the liver. In cases where liver cancer is detected in its early stages, it can be effectively treated through locoregional interventions such as surgical resection, Radiofrequency Ablation, Transarterial chemoembolization, or liver transplantation. However, HCC is typically diagnosed at advanced stages, rendering these treatment options ineffective due to the unresectable nature of the tumor. LncRNAs, a novel class of RNA molecules and epigenetic regulators, have emerged as key players in the development and advancement of different types of tumors. They exert their influence by regulating the expression of downstream genes in cancer-related signaling pathways, thereby promoting the proliferation, migration, and invasion of tumor cells. Additionally, these transcripts have the ability to modify the activity and expression of tumor suppressors and oncogenes, further contributing to tumorigenesis. Recently, growing numbers of experiments have demonstrated the elevated expression of HOX antisense intergenic RNA (HOTAIR), a spliced and poly-adenylated lncRNA, in liver cancers and its association with cancer patient's prognosis and overall survival, as well as tumor cells' growth, metastasis, and resistance to therapies. This updated review will summarize molecular pathways by which lncRNA HOTAIR promotes liver cancer development, and highlight its diagnostic and therapeutic potential, though.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, AZ 85004, USA
| | - Azfar Jamal
- Department of Biology, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia; Health and Basic Science Research Centre, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Mohammad Azhar Kamal
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Fuzail Ahmad
- Respiratory Care Department, College of Applied Sciences, Almaarefa University, Diriya, Riyadh 13713, Saudi Arabia
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy named after A.P. Nelyubin, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow 119991, Russian Federation; Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow 109240, Russian Federation
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | | | - Syeda Nazia Kulsum
- Department of Basic Medical Sciences, College of Medicine, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| | | | - Baneen C Gabble
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq; Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
3
|
Wu Y, Liang Z, Li K, Feng J. Knockdown of HOTAIR Alleviates High Glucose-Induced Apoptosis and Inflammation in Retinal Pigment Epithelial Cells. Appl Biochem Biotechnol 2025; 197:1743-1759. [PMID: 39607470 DOI: 10.1007/s12010-024-05083-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2024] [Indexed: 11/29/2024]
Abstract
Diabetic retinopathy (DR) is one of the most common microvascular complications in diabetes. Accumulating evidence demonstrated that long non-coding RNAs (lncRNAs) played critical regulatory roles in DR. However, the role of lncRNA HOX Transcript Antisense Intergenic RNA (HOTAIR) in the high glucose (HG)-induced human retinal pigment epithelial (RPE) cell injury remains unclear. Herein, we found the expression of HOTAIR was increased in the retina of DR rats and HG-induced ARPE-19 cells. Knockdown of HOTAIR improved viability, inhibited apoptosis, increased Bcl-2 protein levels, and decreased Bax and cleaved caspase 3 protein levels in HG-treated ARPE-19 cells. Moreover, enzyme-linked immunosorbent assay showed that HOTAIR silencing reduced interleukin 6 and tumor necrosis factor-α release of ARPE-19 cells under HG conditions. Mechanistically, luciferase reporter assay and RNA immunoprecipitation assay validated that HOTAIR could directly sponge miR-326 to upregulate transcription factor 4 (TCF4) expression. Furthermore, rescue experiments confirmed that HOTAIR promoted apoptosis and inflammation of HG-treated ARPE-19 cells by the miR-326/TCF4 axis. In summary, HOTAIR enhanced HG-induced retinal pigment epithelial cell injury by promoting apoptosis and inflammation, shedding light on the importance of HOTAIR as a novel potential target for DR treatment.
Collapse
Affiliation(s)
- Yanping Wu
- Department of Pediatric Ophthalmology, Cangzhou Central Hospital, No. 16, Xinhua West Street, Cangzhou, 061000, Hebei Province, China.
| | - Zenghui Liang
- Department of Interventional Medicine, Cangzhou People's Hospital, Cangzhou, China
| | - Kun Li
- Department of Pediatric Ophthalmology, Cangzhou Central Hospital, No. 16, Xinhua West Street, Cangzhou, 061000, Hebei Province, China
| | - Junli Feng
- Department of Pediatric Ophthalmology, Cangzhou Central Hospital, No. 16, Xinhua West Street, Cangzhou, 061000, Hebei Province, China
| |
Collapse
|
4
|
Zhang R, Jin S, Xu Q, Dai R. Exploring the role of epigenetic regulation in cancer prognosis with epigenetic score. Front Pharmacol 2025; 16:1538205. [PMID: 40041484 PMCID: PMC11876425 DOI: 10.3389/fphar.2025.1538205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/23/2025] [Indexed: 03/06/2025] Open
Abstract
Background The mechanisms of epigenetic regulation emerge as a fundamental determinant in the complex landscape of cancer initiation and advancement. However, the specific impact of epigenetic regulation on cancer progression remains unclear. To explore the relationship between epigenetic regulation and cancer progression, we utilized transcriptomic data from The Cancer Genome Atlas (TCGA) datasets to investigate the association. Methods We obtained transcriptomic data of epigenetic gene dataset from the TCGA database and calculated an epigenetic score using the Least Absolute Shrinkage and Selection Operator (LASSO) Cox model. Additionally, we created a nomogram that integrates the epigenetic score and clinical features, providing a more comprehensive tool for tumor patients prognosis assessment. Results We calculated the epigenetic score based on the expression levels of epigenetic-related genes. The nomogram we developed incorporates the epigenetic score and clinical characteristics. The epigenetic score was positively correlated with the expression of genes related to hallmarkers of cancer, including glycolysis, epithelial-mesenchymal transition (EMT), cell cycle, DNA repair, angiogenesis, and inflammatory response. Furthermore, we performed gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) analysis to explore the signaling pathways and biological processes in high epigenetic score group. Conclusion The epigenetic scoring system developed in this investigation represents an innovative approach that demonstrates remarkable potential in forecasting survival trajectories across diverse cancer types. These groundbreaking insights not only illuminate the intricate interactions between epigenetic mechanisms and gene expression regulation in oncological contexts, but also indicate that the derived epigenetic metric could potentially emerge as a significant prognostic biomarker for cancer outcomes.
Collapse
Affiliation(s)
- Ruiguang Zhang
- Department of Neurosurgery, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Shimin Jin
- Department of Neurosurgery, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Qi Xu
- Department of Gastroenterology, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Rongxiao Dai
- Department of Neurosurgery, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
5
|
Li Z, Wang D, Zhu X. Unveiling the functions of five recently characterized lncRNAs in cancer progression. Clin Transl Oncol 2025; 27:458-465. [PMID: 39066874 DOI: 10.1007/s12094-024-03619-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024]
Abstract
Numerous studies over the past few decades have shown that RNAs are multifaceted, multifunctional regulators of most cellular processes, contrary to the initial belief that they only act as mediators for translating DNA into proteins. LncRNAs, which refer to transcripts longer than 200nt and lack the ability to code for proteins, have recently been identified as central regulators of a variety of biochemical and cellular processes, particularly cancer. When they are abnormally expressed, they are closely associated with tumor occurrence, metastasis, and tumor staging. Therefore, through searches on Google Scholar, PubMed, and CNKI, we identified five five recently characterized lncRNAs-Lnc-SLC2A12-10:1, LncRNA BCRT1, lncRNA IGFBP4-1, LncRNA PCNAP1, and LncRNA CDC6-that have been linked to the promotion of cancer cell proliferation, invasion, and metastasis. Consequently, this review encapsulates the existing research and molecular underpinnings of these five newly identified lncRNAs across various types of cancer. It suggests that these novel lncRNAs hold potential as independent biomarkers for clinical diagnosis and prognosis, as well as candidates for therapeutic intervention. In parallel, we discuss the challenges inherent in the research on these five newly discovered lncRNAs and look forward to the avenues for future exploration in this field.
Collapse
Affiliation(s)
- Zhicheng Li
- Department of Urology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China
| | - Dan Wang
- Department of Urology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China
| | - Xiaojun Zhu
- Department of Urology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China.
| |
Collapse
|
6
|
Rasuli E, Javidi-Aghdam K, Akbarzadeh-Khiavi M, Abdshah A, Gadakchi L, Jafarpour M, Khabbazi A, Farajnia S, Safary A, Shaykh-Baygloo N. Immunoregulatory role of AC007278.3 and HOTAIR long non-coding RNAs in lupus nephritis: potential biomarkers and therapeutic targets. Mol Biol Rep 2024; 51:1075. [PMID: 39425850 DOI: 10.1007/s11033-024-10019-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) have emerged as crucial regulators in various biological processes, including immune regulation and autoimmune pathologies. However, their specific significance in modulating the cytokine network in systemic lupus erythematosus (SLE) remains largely unexplored. This study assessed the expression patterns of immune-related lncRNAs, HOTAIR, and AC007278.3, along with their related protein-coding genes, TNF-α and IL18RAP, in nephritic SLE patients. Additionally, the potential of selected genes as diagnostic biomarkers for SLE was evaluated. METHODS AND RESULTS Blood samples were obtained from SLE patients (n = 30) and age-sex-matched healthy controls (HCs) (n = 60). Subsequently, RNA was isolated from peripheral blood mononuclear cells (PBMCs), and cDNA was synthesized to analyze the expression levels of the target genes using real-time PCR. The correlation analysis between the relative expressions of different genes was examined in both the patient and HC groups. The diagnostic potential of the lncRNAs was determined by calculating the Area Under the Curve of the Receiver Operating Characteristics (AUC of ROC), Cut-off, sensitivity, and specificity. Our results indicated a significant upregulation of lncRNAs AC007278.3 (fold change [FC] = 14.13, p-value < 0.0001) and HOTAIR (FC = 14.1, p-value < 0.0001). Correspondingly, their associated target genes, TNF-α and IL18RAP, were also overexpressed in patients (FC = 2.66 and FC = 5.18, respectively, p-value < 0.001). Notably, a strong positive correlation was observed between IL18RAP and AC007278.3 in SLE patients. Moreover, the AUC of ROC analyses underscored the diagnostic efficacy of AC007278.3 alone and combined with HOTAIR, yielding values of 0.89 and 0.86, respectively. CONCLUSION These findings highlight the potential immunoregulatory roles of lncRNAs AC007278.3 and HOTAIR, emphasizing their significance as promising diagnostic biomarkers and potential therapeutic targets for SLE. Additionally, they provide valuable insights into the molecular mechanisms underpinning the disease's pathogenesis.
Collapse
Affiliation(s)
- Elahe Rasuli
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biology, Faculty of Science, Urmia University, Urmia, 5756151818, Iran
| | - Kamran Javidi-Aghdam
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Akbarzadeh-Khiavi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Abdshah
- Department of Public Health Sciences, Division of Biostatistics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Leyla Gadakchi
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Jafarpour
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Khabbazi
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safar Farajnia
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azam Safary
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Nima Shaykh-Baygloo
- Department of Biology, Faculty of Science, Urmia University, Urmia, 5756151818, Iran.
| |
Collapse
|
7
|
Elimam H, Abdel Mageed SS, Hatawsh A, Moussa R, Radwan AF, Elfar N, Alhamshry NAA, Abd-Elmawla MA, Mohammed OA, Zaki MB, Doghish AS. Unraveling the influence of LncRNA in gastric cancer pathogenesis: a comprehensive review focus on signaling pathways interplay. Med Oncol 2024; 41:218. [PMID: 39103705 DOI: 10.1007/s12032-024-02455-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/16/2024] [Indexed: 08/07/2024]
Abstract
Gastric cancers (GCs) are among the most common and fatal malignancies in the world. Despite our increasing understanding of the molecular mechanisms underlying GC, further biomarkers are still needed for more in-depth examination, focused prognosis, and treatment. GC is one among the long non-coding RNAs, or lncRNAs, that have emerged as key regulators of the pathophysiology of cancer. This comprehensive review focuses on the diverse functions of long noncoding RNAs (lncRNAs) in the development of GC and their interactions with important intracellular signaling pathways. LncRNAs affect GC-related carcinogenic signaling cascades including pathways for EGFR, PI3K/AKT/mTOR, p53, Wnt/β-catenin, JAK/STAT, Hedgehog, NF-κB, and hypoxia-inducible factor. Dysregulated long non-coding RNA (lncRNA) expression has been associated with multiple characteristics of cancer, such as extended growth, apoptosis resistance, enhanced invasion and metastasis, angiogenesis, and therapy resistance. For instance, lncRNAs such as HOTAIR, MALAT1, and H19 promote the development of GC via altering these pathways. Beyond their main roles, GC lncRNAs exhibit potential as diagnostic and prognostic biomarkers. The overview discusses CRISPR/Cas9 genome-modifying methods, antisense oligonucleotides, small molecules, and RNA interference as potential therapeutic approaches to regulate the expression of long noncoding RNAs (lncRNAs). An in-depth discussion of the intricate functions that lncRNAs play in the development of the majority of stomach malignancies is provided in this review. It provides the groundwork for future translational research in lncRNA-based whole processes toward GC by highlighting their carcinogenic effects, regulatory roles in significant signaling cascades, and practical scientific uses as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt.
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Abdulrahman Hatawsh
- Biotechnology School, Nile University, 26th of July Corridor, Sheikh Zayed City, 12588, Giza, Egypt
| | - Rewan Moussa
- Faculty of Medicine, Helwan University, Cairo, 11795, Egypt
| | - Abdullah F Radwan
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, 11829, Cairo, Egypt
| | - Nourhan Elfar
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, 11578, Cairo, Egypt
- Egyptian Drug Authority (EDA), Ministry of Health and Population, Cairo, 11567, Egypt
| | - Nora A A Alhamshry
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt.
- Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| |
Collapse
|
8
|
Li Z, Xia Q, He Y, Li L, Yin P. MDSCs in bone metastasis: Mechanisms and therapeutic potential. Cancer Lett 2024; 592:216906. [PMID: 38649108 DOI: 10.1016/j.canlet.2024.216906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Bone metastasis (BM) is a frequent complication associated with advanced cancer that significantly increases patient mortality. Myeloid-derived suppressor cells (MDSCs) play a pivotal role in BM progression by promoting angiogenesis, inhibiting immune responses, and inducing osteoclastogenesis. MDSCs induce immunosuppression through diverse mechanisms, including the generation of reactive oxygen species, nitric oxide, and immunosuppressive cytokines. Within the bone metastasis niche (BMN), MDSCs engage in intricate interactions with tumor, stromal, and bone cells, thereby establishing a complex regulatory network. The biological activities and functions of MDSCs are regulated by the microenvironment within BMN. Conversely, MDSCs actively contribute to microenvironmental regulation, thereby promoting BM development. A comprehensive understanding of the indispensable role played by MDSCs in BM is imperative for the development of novel therapeutic strategies. This review highlights the involvement of MDSCs in BM development, their regulatory mechanisms, and their potential as viable therapeutic targets.
Collapse
Affiliation(s)
- Zhi Li
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China; Department of General Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Qi Xia
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Yujie He
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Lei Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China.
| | - Peihao Yin
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China.
| |
Collapse
|
9
|
Li L, Yu S, Dou N, Wang X, Gao Y, Li Y. A new tandem repeat-enriched lncRNA XLOC_008672 promotes gastric carcinogenesis by regulating G3BP1 expression. Cancer Sci 2024; 115:1851-1865. [PMID: 38581120 PMCID: PMC11145122 DOI: 10.1111/cas.16172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/11/2024] [Accepted: 03/23/2024] [Indexed: 04/08/2024] Open
Abstract
Aberrant expression of forkhead box transcription factor 1 (FOXM1) plays critical roles in a variety of human malignancies and predicts poor prognosis. However, little is known about the crosstalk between FOXM1 and long noncoding RNAs (lncRNAs) in tumorigenesis. The present study identifies a previously uncharacterized lncRNA XLOC_008672 in gastric cancer (GC), which is regulated by FOXM1 and possesses multiple copies of tandem repetitive sequences. LncRNA microarrays are used to screen differentially expressed lncRNAs in FOXM1 knockdown GC cells, and then the highest fold downregulation lncRNA XLOC_008672 is screened out. Sequence analysis reveals that the new lncRNA contains 62 copies of 37-bp tandem repeats. It is transcriptionally activated by FOXM1 and functions as a downstream effector of FOXM1 in GC cells through in vitro and in vivo functional assays. Elevated expression of XLOC_008672 is found in GC tissues and indicates worse prognosis. Mechanistically, XLOC_008672 can bind to small nuclear ribonucleoprotein polypeptide A (SNRPA), thereby enhancing mRNA stability of Ras-GTPase-activating protein SH3 domain-binding protein 1 (G3BP1) and, consequently, facilitating GC cell proliferation and migration. Our study discovers a new uncharacterized lncRNA XLOC_008672 involved in GC carcinogenesis and progression. Targeting FOXM1/XLOC_008672/SNRPA/G3BP1 signaling axis might be a promising therapeutic strategy for GC.
Collapse
Affiliation(s)
- Li Li
- Department of Oncology, Shanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Shijun Yu
- Department of Oncology, Shanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Ning Dou
- Department of Oncology, Shanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Xiao Wang
- Department of Medical Oncology, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Yong Gao
- Department of Oncology, Shanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Yandong Li
- Department of Oncology, Shanghai East HospitalTongji University School of MedicineShanghaiChina
| |
Collapse
|
10
|
Bakinowska E, Kiełbowski K, Skórka P, Dach A, Olejnik-Wojciechowska J, Szwedkowicz A, Pawlik A. Non-Coding RNA as Biomarkers and Their Role in the Pathogenesis of Gastric Cancer-A Narrative Review. Int J Mol Sci 2024; 25:5144. [PMID: 38791187 PMCID: PMC11121563 DOI: 10.3390/ijms25105144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Non-coding RNAs (ncRNAs) represent a broad family of molecules that regulate gene expression, including microRNAs, long non-coding RNAs and circular RNAs, amongst others. Dysregulated expression of ncRNAs alters gene expression, which is implicated in the pathogenesis of several malignancies and inflammatory diseases. Gastric cancer is the fifth most frequently diagnosed cancer and the fourth most common cause of cancer-related death. Studies have found that altered expression of ncRNAs may contribute to tumourigenesis through regulating proliferation, apoptosis, drug resistance and metastasis. This review describes the potential use of ncRNAs as diagnostic and prognostic biomarkers. Moreover, we discuss the involvement of ncRNAs in the pathogenesis of gastric cancer, including their interactions with the members of major signalling pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.); (P.S.); (A.D.); (J.O.-W.); (A.S.)
| |
Collapse
|
11
|
Kaur J, Sharma A, Mundlia P, Sood V, Pandey A, Singh G, Barnwal RP. RNA-Small-Molecule Interaction: Challenging the "Undruggable" Tag. J Med Chem 2024; 67:4259-4297. [PMID: 38498010 DOI: 10.1021/acs.jmedchem.3c01354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
RNA targeting, specifically with small molecules, is a relatively new and rapidly emerging avenue with the promise to expand the target space in the drug discovery field. From being "disregarded" as an "undruggable" messenger molecule to FDA approval of an RNA-targeting small-molecule drug Risdiplam, a radical change in perspective toward RNA has been observed in the past decade. RNAs serve important regulatory functions beyond canonical protein synthesis, and their dysregulation has been reported in many diseases. A deeper understanding of RNA biology reveals that RNA molecules can adopt a variety of structures, carrying defined binding pockets that can accommodate small-molecule drugs. Due to its functional diversity and structural complexity, RNA can be perceived as a prospective target for therapeutic intervention. This perspective highlights the proof of concept of RNA-small-molecule interactions, exemplified by targeting of various transcripts with functional modulators. The advent of RNA-oriented knowledge would help expedite drug discovery.
Collapse
Affiliation(s)
- Jaskirat Kaur
- Department of Biophysics, Panjab University, Chandigarh 160014, India
| | - Akanksha Sharma
- Department of Biophysics, Panjab University, Chandigarh 160014, India
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Poonam Mundlia
- Department of Biophysics, Panjab University, Chandigarh 160014, India
| | - Vikas Sood
- Department of Biochemistry, Jamia Hamdard, New Delhi 110062, India
| | - Ankur Pandey
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | | |
Collapse
|
12
|
Zabeti Touchaei A, Vahidi S, Samadani AA. Decoding the regulatory landscape of lncRNAs as potential diagnostic and prognostic biomarkers for gastric and colorectal cancers. Clin Exp Med 2024; 24:29. [PMID: 38294554 PMCID: PMC10830721 DOI: 10.1007/s10238-023-01260-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/12/2023] [Indexed: 02/01/2024]
Abstract
Colorectal cancer (CRC) and gastric cancer (GC) are major contributors to cancer-related mortality worldwide. Despite advancements in understanding molecular mechanisms and improved drug treatments, the overall survival rate for patients remains unsatisfactory. Metastasis and drug resistance are major challenges contributing to the high mortality rate in both CRC and GC. Recent research has shed light on the role of long noncoding RNAs (lncRNAs) in the development and progression of these cancers. LncRNAs regulate gene expression through various mechanisms, including epigenetic modifications and interactions with microRNAs (miRNAs) and proteins. They can serve as miRNA precursors or pseudogenes, modulating gene expression at transcriptional and post-transcriptional levels. Additionally, circulating lncRNAs have emerged as non-invasive biomarkers for the diagnosis, prognosis, and prediction of drug therapy response in CRC and GC. This review explores the intricate relationship between lncRNAs and CRC/GC, encompassing their roles in cancer development, progression, and chemoresistance. Furthermore, it discusses the potential of lncRNAs as therapeutic targets in these malignancies. The interplay between lncRNAs, miRNAs, and tumor microenvironment is also highlighted, emphasizing their impact on the complexity of cancer biology. Understanding the regulatory landscape and molecular mechanisms governed by lncRNAs in CRC and GC is crucial for the development of effective diagnostic and prognostic biomarkers, as well as novel therapeutic strategies. This review provides a comprehensive overview of the current knowledge and paves the way for further exploration of lncRNAs as key players in the management of CRC and GC.
Collapse
Affiliation(s)
| | - Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
13
|
Baili E, Gazouli M, Lazaris AC, Kanavidis P, Boura M, Michalinos A, Charalabopoulos A, Liakakos T, Alexandrou A. Genetic Impact of HOTAIR, LINC00951, POLR2E and HULC Polymorphisms in Histopathological and Laboratory Prognostic Factors in Esophageal Cancer in the West: A Case-Control Study. Cancers (Basel) 2024; 16:537. [PMID: 38339289 PMCID: PMC10854877 DOI: 10.3390/cancers16030537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Long non-coding RNAs' HOTAIR rs920778, LINC00951 rs11752942, POLR2E rs3787016, and HULC rs7763881 are progressively reported having a close genetic affinity with esophageal carcinogenesis in the East. Nonetheless, their correlation with variables already endorsed as significant prognostic factors in terms of staging, guiding treatment and predicting recurrence, metastasis, and survival have yet to be explored. Herein, we investigated their prognostic value by correlating them with clinicopathological and laboratory prognostic markers in esophageal cancer in the West. Formalin-fixed paraffin-embedded tissue specimens from 95 consecutive patients operated on for esophageal cancer between 2014 and 2018 were compared with 121 healthy community controls. HULC was not detected differently in any of the cancer prognostic subgroups. LINC00951 was underrepresented in Ca19.9 elevated subgroup. HOTAIR was more frequent in both worse differentiation grade and positive Signet-Ring-Cell and Ca19.9 subgroups. POLR2E was identified less frequently in Adenocarcinoma, Signet-Ring-Cell, and Diffuse histologies, as well as in Perineural, Lymphovascular, and Perivascular Invasion positive, while it was overrepresented in CEA positive subgroup. These lncRNAs polymorphisms may hold great potential not only as future therapeutic agents but also as novel markers for predictive analysis of esophageal cancer risk, clinical outcome, and survival. Clinical implications of these findings need to be validated with prospective larger sample-size studies.
Collapse
Affiliation(s)
- Efstratia Baili
- Upper Gastrointestinal and General Surgery Unit, First Department of Surgery, Laiko General Hospital, School of Medicine, National and Kapodistrian University of Athens, 15772 Athens, Greece; (P.K.); (M.B.); (A.C.); (T.L.); (A.A.)
- King’s Health Partners, London SE1 9RT, UK
| | - Maria Gazouli
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Andreas C. Lazaris
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Prodromos Kanavidis
- Upper Gastrointestinal and General Surgery Unit, First Department of Surgery, Laiko General Hospital, School of Medicine, National and Kapodistrian University of Athens, 15772 Athens, Greece; (P.K.); (M.B.); (A.C.); (T.L.); (A.A.)
| | - Maria Boura
- Upper Gastrointestinal and General Surgery Unit, First Department of Surgery, Laiko General Hospital, School of Medicine, National and Kapodistrian University of Athens, 15772 Athens, Greece; (P.K.); (M.B.); (A.C.); (T.L.); (A.A.)
| | | | - Alexandros Charalabopoulos
- Upper Gastrointestinal and General Surgery Unit, First Department of Surgery, Laiko General Hospital, School of Medicine, National and Kapodistrian University of Athens, 15772 Athens, Greece; (P.K.); (M.B.); (A.C.); (T.L.); (A.A.)
| | - Theodore Liakakos
- Upper Gastrointestinal and General Surgery Unit, First Department of Surgery, Laiko General Hospital, School of Medicine, National and Kapodistrian University of Athens, 15772 Athens, Greece; (P.K.); (M.B.); (A.C.); (T.L.); (A.A.)
| | - Andreas Alexandrou
- Upper Gastrointestinal and General Surgery Unit, First Department of Surgery, Laiko General Hospital, School of Medicine, National and Kapodistrian University of Athens, 15772 Athens, Greece; (P.K.); (M.B.); (A.C.); (T.L.); (A.A.)
| |
Collapse
|
14
|
Zhang J, Chen L, Wei W, Mao F. Long non-coding RNA signature for predicting gastric cancer survival based on genomic instability. Aging (Albany NY) 2023; 15:15114-15133. [PMID: 38127056 PMCID: PMC10781445 DOI: 10.18632/aging.205336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/08/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Gastric cancer is a prevalent type of tumor with a poor prognosis. Given the high occurrence of genomic instability in gastric cancer, it is essential to investigate the prognostic significance of genes associated with genomic instability in this disease. METHODS We identified genomic instability-related lncRNAs (GInLncRNAs) by analyzing somatic mutation and transcriptome profiles. We evaluated co-expression and enrichment using various analyses, including univariate COX analysis and LASSO regression. Based on these findings, we established an lncRNA signature associated with genomic instability, which we subsequently assessed for prognostic value, immune cell and checkpoint analysis, drug sensitivity, and external validation. Finally, PCR assay was used to verify the expression of key lncRNAs. RESULTS Our study resulted in the establishment of a seven-lncRNA prognostic signature, including PTENP1-AS, LINC00163, RP11-169F17.1, C8ORF87, RP11-389G6.3, LINCO1210, and RP11-115H13.1. This signature exhibited independent prognostic value and was associated with specific immune cells and checkpoints in gastric cancer. Additionally, the model was correlated with somatic mutation and several chemotherapeutic drugs. We further confirmed the prognostic value of LINC00163, which was included in our model, in an independent dataset. Our model demonstrated superior performance compared to other models. PCR showed that LINC00163 was significantly up-regulated in 4 adjacent normal tissues compared with the GC tissues. CONCLUSIONS Our study resulted in the establishment of a seven-lncRNA signature associated with genomic instability, which demonstrated robust prognostic value in predicting the prognosis of gastric cancer. The signature also identified potential chemotherapeutic drugs, making it a valuable tool for clinical decision-making and medication use.
Collapse
Affiliation(s)
- Jialing Zhang
- Department of Gastroenterology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huaian 223300, Jiangsu, People’s Republic of China
| | - Liang Chen
- Department of Hepatobiliary and Pancreatic Surgery, Conversion Therapy Center for Hepatobiliary and Pancreatic Tumors, First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing 314000, Zhejiang, P.R. China
| | - Wei Wei
- Department of Anesthesiology and Pain Research Center, The First Hospital of Jiaxing or The Affiliated Hospital of Jiaxing University, Jiaxing 314000, Zhejiang, China
| | - Fei Mao
- Department of Urology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huaian 223300, Jiangsu, People’s Republic of China
| |
Collapse
|
15
|
Wang J, Mi Y, Sun X, Xue X, Zhao H, Zhang M, Hu B, Bukhari I, Zheng P. Lnc-PTCHD4-AS inhibits gastric cancer through MSH2-MSH6 dimerization and ATM-p53-p21 activation. Aging (Albany NY) 2023; 15:13558-13578. [PMID: 38016120 DOI: 10.18632/aging.205329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/06/2023] [Indexed: 11/30/2023]
Abstract
Conserved long non-coding RNAs (lncRNAs) have not thoroughly been studied in many cancers, including gastric cancer (GC). We have identified a novel lncRNA PTCHD4-AS which was highly conserved between humans and mice and naturally downregulated in GC cell lines and tissues. Notably, PTCHD4-AS was found to be transcriptionally induced by DNA damage agents and its upregulation led to cell cycle arrest at the G2/M phase, in parallel, it facilitated the cell apoptosis induced by cisplatin (CDDP) in GC. Mechanistically, PTCHD4-AS directly bound to the DNA mismatch repair protein MSH2-MSH6 dimer, and facilitated the binding of dimer to ATM, thereby promoting the expression of phosphorylated ATM, p53 and p21. Here we conclude that the upregulation of PTCHD4-AS inhibits proliferation and increases CDDP sensitivity of GC cells via binding with MSH2-MSH6 dimer, activating the ATM-p53-p21 pathway.
Collapse
Affiliation(s)
- Jingyun Wang
- Henan Key Laboratory for Helicobacter pylori and Microbiota and GI Cancer, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou 450000, China
| | - Yang Mi
- Henan Key Laboratory for Helicobacter pylori and Microbiota and GI Cancer, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou 450000, China
- Department of Gastroenterology, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Xiangdong Sun
- Henan Key Laboratory for Helicobacter pylori and Microbiota and GI Cancer, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou 450000, China
| | - Xia Xue
- Henan Key Laboratory for Helicobacter pylori and Microbiota and GI Cancer, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Huanjie Zhao
- Henan Key Laboratory for Helicobacter pylori and Microbiota and GI Cancer, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou 450000, China
| | - Mengfei Zhang
- Henan Key Laboratory for Helicobacter pylori and Microbiota and GI Cancer, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
- Department of Gastroenterology, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Baitong Hu
- Henan Key Laboratory for Helicobacter pylori and Microbiota and GI Cancer, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou 450000, China
| | - Ihtisham Bukhari
- Henan Key Laboratory for Helicobacter pylori and Microbiota and GI Cancer, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
- Department of Gastroenterology, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Pengyuan Zheng
- Henan Key Laboratory for Helicobacter pylori and Microbiota and GI Cancer, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou 450000, China
- Department of Gastroenterology, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
16
|
Luo Y, Lu X, Ma W, Xiao Y, Wei C, Yuan X, Wu Y, Wang Y, Xiong Y, Yu X, Wu X, He S, Liu Y, Wang J, Wu Q, Zhou H, Jiang Z. Dampening HOTAIR sensitizes the gastric cancer cells to oxaliplatin through miR-195-5p and ABCG2 pathway. J Cell Mol Med 2023; 27:3591-3600. [PMID: 37621132 PMCID: PMC10660622 DOI: 10.1111/jcmm.17925] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/22/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023] Open
Abstract
Long non-coding RNAs (lncRNA) have an extensive role in the progression and chemoresistance of gastric cancer (GC). Deeply study the regulatory role of lncRNAs could provide potential therapeutic targets. The aim of this study is to explore the regulatory role of HOTAIR in the progression and oxaliplatin resistance of GC. The expression of HOTAIR in GC and cell lines were detected by using qRT-PCR. Cell proliferation and apoptosis were analysed by CCK-8, EdU incorporation and flow cytometry. Luciferase reporter assay was used to identify the interaction between HOTAIR and ABCG2 (ATP-binding cassette (ABC) superfamily G member 2, ABCG2) via miR-195-5p. The regulatory functions were verified by using molecular biology experiments. HOTAIR was significantly overexpressed in GC and associated with poor prognosis. Knock-down of HOTAIR inhibited the GC cells proliferation and oxaliplatin resistance, while overexpression of HOTAIR showed opposite functions. Further studies found that HOTAIR acted as a competing endogenous RNA (ceRNA) to absorb miR-195-5p and elevated the expression of ABCG2, which leads to resistance of GC cells to oxaliplatin. Taken together, our findings demonstrated that HOTAIR regulates ABCG2 induced resistance of GC to oxaliplatin through miR-195-5p signalling and illustrate the great potential of developing new therapeutic targets for GC patients.
Collapse
Affiliation(s)
- Yaomin Luo
- Institute of Basic Medicine and Forensic MedicineNorth Sichuan Medical CollegeNanchongChina
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and Forensic MedicineNorth Sichuan Medical CollegeNanchongChina
| | - Xintong Lu
- Institute of Basic Medicine and Forensic MedicineNorth Sichuan Medical CollegeNanchongChina
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and Forensic MedicineNorth Sichuan Medical CollegeNanchongChina
| | - Wenrong Ma
- School of PharmacyNorth Sichuan Medical CollegeNanchongChina
| | - Yang Xiao
- Institute of Basic Medicine and Forensic MedicineNorth Sichuan Medical CollegeNanchongChina
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and Forensic MedicineNorth Sichuan Medical CollegeNanchongChina
| | - Chen Wei
- Institute of Basic Medicine and Forensic MedicineNorth Sichuan Medical CollegeNanchongChina
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and Forensic MedicineNorth Sichuan Medical CollegeNanchongChina
| | - Xiaoxia Yuan
- Institute of Basic Medicine and Forensic MedicineNorth Sichuan Medical CollegeNanchongChina
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and Forensic MedicineNorth Sichuan Medical CollegeNanchongChina
- School of PharmacyNorth Sichuan Medical CollegeNanchongChina
| | - Yueyue Wu
- Institute of Basic Medicine and Forensic MedicineNorth Sichuan Medical CollegeNanchongChina
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and Forensic MedicineNorth Sichuan Medical CollegeNanchongChina
| | - Yunlin Wang
- Institute of Basic Medicine and Forensic MedicineNorth Sichuan Medical CollegeNanchongChina
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and Forensic MedicineNorth Sichuan Medical CollegeNanchongChina
| | - Yiman Xiong
- Institute of Basic Medicine and Forensic MedicineNorth Sichuan Medical CollegeNanchongChina
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and Forensic MedicineNorth Sichuan Medical CollegeNanchongChina
| | - Xin Yu
- Institute of Basic Medicine and Forensic MedicineNorth Sichuan Medical CollegeNanchongChina
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and Forensic MedicineNorth Sichuan Medical CollegeNanchongChina
| | - Xue Wu
- Institute of Basic Medicine and Forensic MedicineNorth Sichuan Medical CollegeNanchongChina
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and Forensic MedicineNorth Sichuan Medical CollegeNanchongChina
| | - Siqi He
- Institute of Basic Medicine and Forensic MedicineNorth Sichuan Medical CollegeNanchongChina
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and Forensic MedicineNorth Sichuan Medical CollegeNanchongChina
| | - Yayudie Liu
- Institute of Basic Medicine and Forensic MedicineNorth Sichuan Medical CollegeNanchongChina
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and Forensic MedicineNorth Sichuan Medical CollegeNanchongChina
| | - Jinjing Wang
- Institute of Basic Medicine and Forensic MedicineNorth Sichuan Medical CollegeNanchongChina
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and Forensic MedicineNorth Sichuan Medical CollegeNanchongChina
| | - Qing Wu
- Department of Rehabilitation Medicinethe Affiliated Hospital of North Sichuan Medical CollegeNanchongChina
| | - Hui Zhou
- Department of Clinical Laboratorythe Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Zhen Jiang
- Institute of Basic Medicine and Forensic MedicineNorth Sichuan Medical CollegeNanchongChina
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and Forensic MedicineNorth Sichuan Medical CollegeNanchongChina
| |
Collapse
|
17
|
Zheng L, Gan LH, Yao L, Li B, Huang YQ, Zhang FB, Kuang MQ, Fang N. Serum basic fibroblast growth factor and interleukin-1β predict the effect of first-line chemotherapy in patients with advanced gastric cancer. World J Clin Cases 2023; 11:6083-6090. [PMID: 37731570 PMCID: PMC10507556 DOI: 10.12998/wjcc.v11.i26.6083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/12/2023] [Accepted: 08/11/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND The incidence and mortality rates of gastric cancer in China are the second-highest in the world, and most patients with gastric cancer lose their chance of surgery by the time of their diagnosis. AIM To explore the predictive potential of serum basic fibroblast growth factor and interleukin-1β levels for the effect of first-line chemotherapy in patients with advanced gastric cancer. METHODS From the gastric cancer patients admitted to our hospital from May 2019 to April 2023, 84 patients were selected and randomly and equally assigned to the experimental or control group. The FLOT group received the FLOT chemotherapy regimen (composed of oxaliplatin + calcium folinate + fluorouracil + paclitaxel), while the SOX group received the SOX chemotherapy regimen (composed of oxaliplatin + tiga capsules). The clinical efficacy, tumor marker levels, adverse reactions, and survival rates of the two groups were compared 7 days after the end of the relevant treatments. RESULTS The target effective rate of the FLOT group was 54.76%, which was much higher than that of the SOX group (33.33%; P < 0.05). After treatment, both the groups demonstrated lower levels of cancer antigen (CEA), carbohydrate antigen 199 (CA199), and peptide tissue antigen (TPS). For several patients before treatment (P < 0.05). Third and fourth grades. In terms of adverse reactions, the level of white blood cells in both the groups was lower. Moreover, the incidence of hand-foot skin reactions in these two study groups was lower (P < 0.05), while those of peripheral neuritis, vomiting, diarrhea, and abnormal liver function were significant (P < 0.05). No statistically significant difference was noted between the two groups (P < 0.05). The 1-year survival rate was higher in the FLOT group (P < 0.05). CONCLUSION The FLOT regimen was effective in reducing the serum CEA, CA199, and TPS levels as well as in improving the 1-year survival rate of patients with good tolerability, making it worthy of clinical promotion and application.
Collapse
Affiliation(s)
- Li Zheng
- Department of Gastroenterology, The First Hospital of Nanchang, Nanchang 330008, Jiangxi Province, China
| | - Li-Hong Gan
- Department of Gastroenterology, The First Hospital of Nanchang, Nanchang 330008, Jiangxi Province, China
| | - Ling Yao
- Department of Gastroenterology, The First Hospital of Nanchang, Nanchang 330008, Jiangxi Province, China
| | - Bin Li
- Department of Gastroenterology, The First Hospital of Nanchang, Nanchang 330008, Jiangxi Province, China
| | - Ya-Qin Huang
- Department of Gastroenterology, The First Hospital of Nanchang, Nanchang 330008, Jiangxi Province, China
| | - Fu-Bao Zhang
- Department of Stomatology, The First Hospital of Nanchang, Nanchang 330008, Jiangxi Province, China
| | - Meng-Qi Kuang
- Department of Gastroenterology, The First Hospital of Nanchang, Nanchang 330008, Jiangxi Province, China
| | - Nian Fang
- Department of Gastroenterology, The First Hospital of Nanchang, Nanchang 330008, Jiangxi Province, China
| |
Collapse
|
18
|
Zhang Z, Li Y, Fan L, Wang B, Liu W, Cui J, Tan B. LncRNA THUMPD3-AS1 promotes invasion and EMT in gastric cancer by regulating the miR-1297/BCAT1 pathway. iScience 2023; 26:107673. [PMID: 37705956 PMCID: PMC10495635 DOI: 10.1016/j.isci.2023.107673] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/23/2023] [Accepted: 08/15/2023] [Indexed: 09/15/2023] Open
Abstract
Long noncoding RNA (lncRNA) plays crucial roles in the development of gastric cancer (GC); however, studies of their mechanisms of action are needed to determine their clinical value. The aim of this study is to explore the effects and mechanisms of THUMPD3-AS1 in GC. Elevated levels of THUMPD3-AS1 were observed in GC and demonstrated a significant positive correlation with poor prognosis. Functionally, THUMPD3-AS1 promoted GC cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) and induced tumor growth in vivo. THUMPD3-AS1 exerts its regulatory function on BCAT1 through competitive binding with miR-1297. Further investigations confirmed that both THUMPD3-AS1 and miR-1297 interact with BCAT1. These findings suggest that THUMPD3-AS1 promotes GC invasion and EMT by regulating the miR-1297/BCAT1 pathway, indicating that THUMPD3-AS1 may serve as a biomarker and therapeutic target for GC.
Collapse
Affiliation(s)
- Zaibo Zhang
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, 12 Health Road, Chang’an District, Shijiazhuang 050011, China
| | - Yong Li
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, 12 Health Road, Chang’an District, Shijiazhuang 050011, China
| | - Liqiao Fan
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, 12 Health Road, Chang’an District, Shijiazhuang 050011, China
| | - Bingyu Wang
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, 12 Health Road, Chang’an District, Shijiazhuang 050011, China
| | - Wenbo Liu
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, 12 Health Road, Chang’an District, Shijiazhuang 050011, China
| | - Jiaxiang Cui
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, 12 Health Road, Chang’an District, Shijiazhuang 050011, China
| | - Bibo Tan
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, 12 Health Road, Chang’an District, Shijiazhuang 050011, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, 12 Health Road, Chang’an District, Shijiazhuang 050011, China
| |
Collapse
|
19
|
Jiang C, Zhang J, Wang W, Shan Z, Sun F, Tan Y, Tong Y, Qiu Y. Extracellular vesicles in gastric cancer: role of exosomal lncRNA and microRNA as diagnostic and therapeutic targets. Front Physiol 2023; 14:1158839. [PMID: 37664422 PMCID: PMC10469264 DOI: 10.3389/fphys.2023.1158839] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Extracellular vesicles (EVs), including exosomes, play a crucial role in intercellular communication and have emerged as important mediators in the development and progression of gastric cancer. This review discusses the current understanding of the role of EVs, particularly exosomal lncRNA and microRNA, in gastric cancer and their potential as diagnostic and therapeutic targets. Exosomes are small membrane-bound particles secreted by both cancer cells and stromal cells within the tumor microenvironment. They contain various ncRNA and biomolecules, which can be transferred to recipient cells to promote tumor growth and metastasis. In this review, we highlighted the importance of exosomal lncRNA and microRNA in gastric cancer. Exosomal lncRNAs have been shown to regulate gene expression by interacting with transcription factors or chromatin-modifying enzymes, which regulate gene expression by binding to target mRNAs. We also discuss the potential use of exosomal lncRNAs and microRNAs as diagnostic biomarkers for gastric cancer. Exosomes can be isolated from various bodily fluids, including blood, urine, and saliva. They contain specific molecules that reflect the molecular characteristics of the tumor, making them promising candidates for non-invasive diagnostic tests. Finally, the potential of targeting exosomal lncRNAs and microRNAs as a therapeutic strategy for gastric cancer were reviewed as wee. Inhibition of specific molecules within exosomes has been shown to suppress tumor growth and metastasis in preclinical models. In conclusion, this review article provides an overview of the current understanding of the role of exosomal lncRNA and microRNA in gastric cancer. We suggest that further research into these molecules could lead to new diagnostic tools and therapeutic strategies for this deadly disease.
Collapse
Affiliation(s)
- Chengyao Jiang
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Jianjun Zhang
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Wentao Wang
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Zexing Shan
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Fan Sun
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Yuen Tan
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Yilin Tong
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Yue Qiu
- Medical Oncology Department of Gastrointestinal Cancer, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| |
Collapse
|
20
|
Han J, Liu Q, Zhou Y, Li D, Wang R. Landscape of internal N7-methylguanosine of long non-coding RNA modifications in resistant acute myeloid leukemia. BMC Genomics 2023; 24:425. [PMID: 37501118 PMCID: PMC10375699 DOI: 10.1186/s12864-023-09526-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 07/20/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Growing evidence indicates that RNA methylation plays a fundamental role in epigenetic regulation, which is associated with the tumorigenesis and drug resistance. Among them, acute myeloid leukemia (AML), as the top acute leukemia for adults, is a deadly disease threatening human health. Although N7-methylguanosine (m7G) has been identified as an important regulatory modification, its distribution has still remained elusive. METHODS The present study aimed to explore the long non-coding RNA (lncRNA) functional profile of m7G in AML and drug-resistant AML cells. The transcriptome-wide m7G methylation of lncRNA was analyzed in AML and drug-resistant AML cells. RNA MeRIP-seq was performed to identify m7G peaks on lncRNA and differences in m7G distribution between AML and drug-resistant AML cells. The Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted to predict the possible roles and m7G-associated pathway. RESULTS Using m7G peak sequencing, it was found that a sequence motif was necessary for m7G methylation in drug-resistant AML lncRNA. Unsupervised hierarchical cluster analysis confirmed that lncRNA m7G methylation occurred more frequently in drug-resistant AML cells than in AML cells. RNA sequencing demonstrated that more genes were upregulated by methylation in drug-resistant AML cells, while methylation downregulated more genes in AML cells. The GO and KEGG pathway enrichment analyses revealed that genes having a significant correlation with m7G sites in lncRNA were involved in drug-resistant AML signaling pathways. CONCLUSION Significant differences in the levels and patterns of m7G methylation between drug-resistant AML cells and AML cells were revealed. Furthermore, the cellular functions potentially influenced by m7G in drug-resistant AML cells were predicted, providing evidence implicating m7G-mediated lncRNA epigenetic regulation in the progression of drug resistance in AML. These findings highlight the involvement of m7G in the development of drug resistance in AML.
Collapse
Affiliation(s)
- Jingyi Han
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Qinqin Liu
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yao Zhou
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Dong Li
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Ran Wang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
21
|
Usman M, Beilerli A, Sufianov A, Kudryashov V, Ilyasova T, Balaev P, Danilov A, Lu H, Gareev I. Investigations into the impact of non-coding RNA on the sensitivity of gastric cancer to radiotherapy. Front Physiol 2023; 14:1149821. [PMID: 36909247 PMCID: PMC9998927 DOI: 10.3389/fphys.2023.1149821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/16/2023] [Indexed: 02/26/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are a newly discovered functional RNA different from messenger RNA, which can participate in regulating the occurrence and development of tumors. More and more research results show that ncRNAs can participate in the regulation of gastric cancer (GC) radiotherapy response, and its mechanism may be related to its effect on DNA damage repair, gastric cancer cell stemness, cell apoptosis, activation of epidermal growth factor receptor signaling pathway, etc. This article summarizes the relevant mechanisms of ncRNAs regulating the response to radiotherapy in gastric cancer, which will be directly important for the introduction of ncRNAs particularly microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) into clinical medicine as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Muhammad Usman
- Department of Medical Imaging, Central Hospital Affiliated to Chongqing University of Technology, Chongqing, China
| | - Aferin Beilerli
- Department of Obstetrics and Gynecology, Tyumen State Medical University, Tyumen, Russia
| | - Albert Sufianov
- Department of Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,Department of Internal Diseases, Bashkir State Medical University, Ufa, Russia
| | - Valentin Kudryashov
- Gastric Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Tatiana Ilyasova
- Department of Internal Diseases, Bashkir State Medical University, Ufa, Russia
| | - Pavel Balaev
- Department of Oncology and Radiology, Ural State Medical University, Yekaterinburg, Russia
| | - Andrei Danilov
- Department of Clinical Pharmacology, Smolensk State Medical University, Smolensk, Russia
| | - Hong Lu
- Department of Medical Imaging, Central Hospital Affiliated to Chongqing University of Technology, Chongqing, China
| | - Ilgiz Gareev
- Educational and Scientific Institute of Neurosurgery, Рeoples' Friendship University of Russia (RUDN University), Moscow, Russia
| |
Collapse
|
22
|
Gasic V, Karan-Djurasevic T, Pavlovic D, Zukic B, Pavlovic S, Tosic N. Diagnostic and Therapeutic Implications of Long Non-Coding RNAs in Leukemia. Life (Basel) 2022; 12:1770. [PMID: 36362925 PMCID: PMC9695865 DOI: 10.3390/life12111770] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 08/26/2023] Open
Abstract
Leukemia is a heterogenous group of hematological malignancies categorized in four main types (acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), chronic myeloid leukemia (CML) and chronic lymphocytic leukemia (CLL). Several cytogenetic and molecular markers have become a part of routine analysis for leukemia patients. These markers have been used in diagnosis, risk-stratification and targeted therapy application. Recent studies have indicated that numerous regulatory RNAs, such as long non-coding RNAs (lncRNAs), have a role in tumor initiation and progression. When it comes to leukemia, data for lncRNA involvement in its etiology, progression, diagnosis, treatment and prognosis is limited. The aim of this review is to summarize research data on lncRNAs in different types of leukemia, on their expression pattern, their role in leukemic transformation and disease progression. The usefulness of this information in the clinical setting, i.e., for diagnostic and prognostic purposes, will be emphasized. Finally, how particular lncRNAs could be used as potential targets for the application of targeted therapy will be considered.
Collapse
Affiliation(s)
- Vladimir Gasic
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia
| | | | | | | | | | | |
Collapse
|
23
|
Wang R, Shiu HT, Lee WYW. Emerging role of lncRNAs in osteoarthritis: An updated review. Front Immunol 2022; 13:982773. [PMID: 36304464 PMCID: PMC9593085 DOI: 10.3389/fimmu.2022.982773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022] Open
Abstract
Osteoarthritis (OA) is a prevalent joint disease, which is associated with progressive articular cartilage loss, synovial inflammation, subchondral sclerosis and meniscus injury. The molecular mechanism underlying OA pathogenesis is multifactorial. Long non-coding RNAs (lncRNAs) are non-protein coding RNAs with length more than 200 nucleotides. They have various functions such as modulating transcription and protein activity, as well as forming endogenous small interfering RNAs (siRNAs) and microRNA (miRNA) sponges. Emerging evidence suggests that lncRNAs might be involved in the pathogenesis of OA which opens up a new avenue for the development of new biomarkers and therapeutic strategies. The purpose of this review is to summarize the current clinical and basic experiments related to lncRNAs and OA with a focus on the extensively studied H19, GAS5, MALAT1, XIST and HOTAIR. The potential translational value of these lncRNAs as therapeutic targets for OA is also discussed.
Collapse
Affiliation(s)
- Rongliang Wang
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong, China
| | - Hoi Ting Shiu
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Wayne Yuk Wai Lee
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong, China
- *Correspondence: Wayne Yuk Wai Lee,
| |
Collapse
|
24
|
An X, Liu Y. HOTAIR in solid tumors: Emerging mechanisms and clinical strategies. Biomed Pharmacother 2022; 154:113594. [DOI: 10.1016/j.biopha.2022.113594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/02/2022] Open
|