1
|
Guo Q, Qin H, Chen Z, Zhang W, Zheng L, Qin T. Key roles of ubiquitination in regulating critical regulators of cancer stem cell functionality. Genes Dis 2025; 12:101311. [PMID: 40034124 PMCID: PMC11875185 DOI: 10.1016/j.gendis.2024.101311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/23/2024] [Accepted: 03/07/2024] [Indexed: 03/05/2025] Open
Abstract
The ubiquitin (Ub) system, a ubiquitous presence across eukaryotes, plays a crucial role in the precise orchestration of diverse cellular protein processes. From steering cellular signaling pathways and orchestrating cell cycle progression to guiding receptor trafficking and modulating immune responses, this process plays a crucial role in regulating various biological functions. The dysregulation of Ub-mediated signaling pathways in prevalent cancers ushers in a spectrum of clinical outcomes ranging from tumorigenesis and metastasis to recurrence and drug resistance. Ubiquitination, a linchpin process mediated by Ub, assumes a central mantle in molding cellular signaling dynamics. It navigates transitions in biological cues and ultimately shapes the destiny of proteins. Recent years have witnessed an upsurge in the momentum surrounding the development of protein-based therapeutics aimed at targeting the Ub system under the sway of cancer stem cells. The article provides a comprehensive overview of the ongoing in-depth discussions regarding the regulation of the Ub system and its impact on the development of cancer stem cells. Amidst the tapestry of insights, the article delves into the expansive roles of E3 Ub ligases, deubiquitinases, and transcription factors entwined with cancer stem cells. Furthermore, the spotlight turns to the interplay with pivotal signaling pathways the Notch, Hedgehog, Wnt/β-catenin, and Hippo-YAP signaling pathways all play crucial roles in the regulation of cancer stem cells followed by the specific modulation of Ub-proteasome.
Collapse
Affiliation(s)
- Qianqian Guo
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Hai Qin
- Department of Clinical Laboratory, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, Guizhou 550014, China
| | - Zelong Chen
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Artificial Intelligence and IoT Smart Medical Engineering Research Center of Henan Province, Zhengzhou, Henan 450008, China
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Lufeng Zheng
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Tingting Qin
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| |
Collapse
|
2
|
Hao X, Hu Z, Li M, Zhang S, Tang M, Hao C, Qi S, Liang Y, Almeida MF, Smith K, Zuo C, Feng Y, Guo M, Ma D, Li S, Wang Z, Sun Y, Deng Z, Mao C, Xia Z, Jiang Y, Gao Y, Xu Y, Schisler JC, Shi C. E3 ubiquitin ligase CHIP facilitates cAMP and cGMP signalling cross-talk by polyubiquitinating PDE9A. EMBO J 2025; 44:1249-1273. [PMID: 39806097 PMCID: PMC11833080 DOI: 10.1038/s44318-024-00351-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
The carboxyl terminus of Hsc70-interacting protein (CHIP) is pivotal for managing misfolded and aggregated proteins via chaperone networks and degradation pathways. In a preclinical rodent model of CHIP-related ataxia, we observed that CHIP mutations lead to increased levels of phosphodiesterase 9A (PDE9A), whose role in this context remains poorly understood. Here, we investigated the molecular mechanisms underlying the role of PDE9A in CHIP-related ataxia and demonstrated that CHIP binds to PDE9A, facilitating its polyubiquitination and autophagic degradation. Conversely, dysfunctional CHIP disrupts this process, resulting in PDE9A accumulation, increased cGMP hydrolysis, and impaired PKG phosphorylation of CHIP at serine 19. This cascade further amplifies PDE9A accumulation, ultimately disrupting mitophagy and triggering neuronal apoptosis. Elevated PKA levels inhibit PDE9A degradation, further exacerbating this neuronal dysfunction. Notably, pharmacological inhibition of PDE9A via Bay 73-6691 or virus-mediated CHIP expression restored the balance of cGMP/cAMP signalling. These interventions protect against cerebellar neuropathologies, particularly Purkinje neuron mitophagy dysfunction. Thus, PDE9A upregulation considerably exacerbates ataxia associated with CHIP mutations, and targeting the interaction between PDE9A and CHIP is an innovative therapeutic strategy for CHIP-related ataxia.
Collapse
Affiliation(s)
- Xiaoyan Hao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Zhengwei Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Mengjie Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Shuo Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Mibo Tang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Chenwei Hao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Shasha Qi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Yuanyuan Liang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Michael F Almeida
- McAllister Heart Institute and the Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kaitlan Smith
- McAllister Heart Institute and the Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Chunyan Zuo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Yanmei Feng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Mengnan Guo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Dongrui Ma
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Shuangjie Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Zhiyun Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Yuemeng Sun
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Zhifen Deng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Chengyuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, 450000, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Zongping Xia
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Yong Jiang
- State Key Laboratory of Antiviral Drugs, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450000, China
- Henan Key Laboratory of Critical Care Medicine, Department of Emergency Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450000, China
- Institute of Infection and Immunity, Henan Academy of Innovations in Medical Science, Zhengzhou, 450000, China
| | - Yanxia Gao
- State Key Laboratory of Antiviral Drugs, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450000, China
- Henan Key Laboratory of Critical Care Medicine, Department of Emergency Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450000, China
- Institute of Infection and Immunity, Henan Academy of Innovations in Medical Science, Zhengzhou, 450000, China
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Medical Key Laboratory of Poisoning Diseases of Henan Province, Zhengzhou, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China.
| | - Jonathan C Schisler
- McAllister Heart Institute and the Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
3
|
Ma S, Sun Y, Gao G, Zeng J, Chen K, Zhao Z. The ubiquitin ligase STUB1 suppresses tumorigenesis of renal cell carcinomas through regulating YTHDF1 stability. Carcinogenesis 2024; 45:903-915. [PMID: 38795009 DOI: 10.1093/carcin/bgae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 05/27/2024] Open
Abstract
STIP1 homology and U-box protein 1 (STUB1), a crucial member of the RING family E3 ubiquitin ligase, serve dual roles as an oncogene and a tumor suppressor in various human cancers. However, the role and mechanism of STUB1 in clear cell renal cell carcinoma (ccRCC) remain poorly defined. Here, we identified YTHDF1 as a novel STUB1 interaction partner using affinity purification mass spectrometry. Furthermore, we revealed that STUB1 promotes the ubiquitination and degradation of YTHDF1. Consequently, STUB1 depletion leads to YTHDF1 upregulation in renal cancer cells. Functionally, STUB1 depletion promoted migration and invasion of ccRCC cells in a YTHDF1-dependent manner. Additionally, the depletion of STUB1 also increased the tumorigenic potential of ccRCC in a xenograft model. Importantly, STUB1 expression is downregulated in ccRCC tissues, and its low expression level correlates with advanced tumor stage and poor overall survival in ccRCC patients. Taken together, these findings reveal that STUB1 inhibits the tumorigenicity of ccRCC by regulating YTHDF1 stability.
Collapse
Affiliation(s)
- Siquan Ma
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P.R. China
- Hubei Institute of Urology, Wuhan 430030, Hubei, P.R. China
| | - Yi Sun
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P.R. China
- Hubei Institute of Urology, Wuhan 430030, Hubei, P.R. China
| | - Guoyao Gao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P.R. China
- Hubei Institute of Urology, Wuhan 430030, Hubei, P.R. China
| | - Jin Zeng
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi, P.R. China
| | - Ke Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P.R. China
- Hubei Institute of Urology, Wuhan 430030, Hubei, P.R. China
| | - Zhenyu Zhao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P.R. China
- Hubei Institute of Urology, Wuhan 430030, Hubei, P.R. China
| |
Collapse
|
4
|
Hou M, Yue M, Han X, Sun T, Zhu Y, Li Z, Han J, Zhao B, Tu M, An Y. Comparative analysis of BAG1 and BAG2: Insights into their structures, functions and implications in disease pathogenesis. Int Immunopharmacol 2024; 143:113369. [PMID: 39405938 DOI: 10.1016/j.intimp.2024.113369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/22/2024] [Accepted: 10/06/2024] [Indexed: 10/30/2024]
Abstract
As BAG family members, Bcl-2 associated athanogene family protein 1 (BAG1) and 2 (BAG2) are implicated in multiple cellular processes, including apoptosis, autophagy, protein folding and homeostasis. Although structurally similar, they considerably differ in many ways. Unlike BAG2, BAG1 has four isoforms (BAG1L, BAG1M, BAG1S and BAG1 p29) displaying different expression features and functional patterns. BAG1 and BAG2 play different cellular functions by interacting with different molecules to participate in the regulation of various diseases, including cancer/tumor and neurodegenerative diseases. Commonly, BAG1 acts as a protective factor to predict a good prognosis of patients with some types of cancer or a risk factor in some other cancers, while BAG2 is regarded as a risk factor to promote cancer/tumor progression. In neurodegenerative diseases, BAG2 commonly acts as a neuroprotective factor. In this review, we summarized the differences in molacular structure and biological function between BAG1 and BAG2, as well as the influences of them on pathogenesis of diseases, and explore the prospects for their clinical therapy application by specifying the activators and inhibitors of BAG1 and BAG2, which might provide a better understanding of the underlying pathogenesis and developing the targeted therapy strategies for diseases.
Collapse
Affiliation(s)
- Mengwen Hou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; School of Stomatology, Henan University, Kaifeng 475004, China
| | - Man Yue
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; School of Stomatology, Henan University, Kaifeng 475004, China
| | - Xu Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; School of Stomatology, Henan University, Kaifeng 475004, China
| | - Tiantian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; School of Stomatology, Henan University, Kaifeng 475004, China
| | - Yonghao Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; School of Stomatology, Henan University, Kaifeng 475004, China
| | - Zhihao Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng 475004, China
| | - Jiayang Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; School of Stomatology, Henan University, Kaifeng 475004, China
| | - Binbin Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; School of Stomatology, Henan University, Kaifeng 475004, China
| | - Mengjie Tu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; School of Stomatology, Henan University, Kaifeng 475004, China
| | - Yang An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng 475004, China.
| |
Collapse
|
5
|
Vladimirova SA, Kokoreva NE, Guzhova IV, Alhasan BA, Margulis BA, Nikotina AD. Unveiling the HSF1 Interaction Network: Key Regulators of Its Function in Cancer. Cancers (Basel) 2024; 16:4030. [PMID: 39682216 DOI: 10.3390/cancers16234030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Heat shock factor 1 (HSF1) plays a central role in orchestrating the heat shock response (HSR), leading to the activation of multiple heat shock proteins (HSPs) genes and approximately thousands of other genes involved in various cellular functions. In cancer cells, HSPs play a particular role in coping with the accumulation of damaged proteins resulting from dysregulated translation and post-translational processes. This proteotoxic stress is a hallmark of cancer cells and causes constitutive activation of HSR. Beyond its role in the HSR, HSF1 regulates diverse processes critical for tumor cells, including proliferation, cell death, and drug resistance. Emerging evidence also highlights HSF1's involvement in remodeling the tumor immune microenvironment as well as in the maintenance of cancer stem cells. Consequently, HSF1 has emerged as an attractive therapeutic target, prompting the development of specific HSF1 inhibitors that have progressed to clinical trials. Importantly, HSF1 possesses a broad interactome, forming protein-protein interactions (PPIs) with components of signaling pathways, transcription factors, and chromatin regulators. Many of these interactors modulate HSF1's activity and HSF1-dependent gene expression and are well-recognized targets for cancer therapy. This review summarizes the current knowledge on HSF1 interactions with molecular chaperones, protein kinases, and other regulatory proteins. Understanding the key HSF1 interactions promoting cancer progression, along with identifying factors that disrupt these protein complexes, may offer valuable insights for developing innovative therapeutic strategies against cancer.
Collapse
Affiliation(s)
- Snezhana A Vladimirova
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia
| | - Nadezhda E Kokoreva
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia
| | - Irina V Guzhova
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia
| | - Bashar A Alhasan
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia
| | - Boris A Margulis
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia
| | - Alina D Nikotina
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia
| |
Collapse
|
6
|
Ryu KJ, Lee KW, Park SH, Kim T, Hong KS, Kim H, Kim M, Ok DW, Kwon GNB, Park YJ, Kwon HK, Hwangbo C, Kim KD, Lee JE, Yoo J. Chaperone-mediated autophagy modulates Snail protein stability: implications for breast cancer metastasis. Mol Cancer 2024; 23:227. [PMID: 39390584 PMCID: PMC11468019 DOI: 10.1186/s12943-024-02138-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024] Open
Abstract
Breast cancer remains a significant health concern, with triple-negative breast cancer (TNBC) being an aggressive subtype with poor prognosis. Epithelial-mesenchymal transition (EMT) is important in early-stage tumor to invasive malignancy progression. Snail, a central EMT component, is tightly regulated and may be subjected to proteasomal degradation. We report a novel proteasomal independent pathway involving chaperone-mediated autophagy (CMA) in Snail degradation, mediated via its cytosolic interaction with HSC70 and lysosomal targeting, which prevented its accumulation in luminal-type breast cancer cells. Conversely, Snail predominantly localized to the nucleus, thus evading CMA-mediated degradation in TNBC cells. Starvation-induced CMA activation downregulated Snail in TNBC cells by promoting cytoplasmic translocation. Evasion of CMA-mediated Snail degradation induced EMT, and enhanced metastatic potential of luminal-type breast cancer cells. Our findings elucidate a previously unrecognized role of CMA in Snail regulation, highlight its significance in breast cancer, and provide a potential therapeutic target for clinical interventions.
Collapse
Affiliation(s)
- Ki-Jun Ryu
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Korea
| | - Ki Won Lee
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Korea
| | - Seung-Ho Park
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| | - Taeyoung Kim
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Korea
| | - Keun-Seok Hong
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Korea
| | - Hyemin Kim
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Korea
| | - Minju Kim
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Korea
| | - Dong Woo Ok
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Korea
| | - Gu Neut Bom Kwon
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Korea
| | - Young-Jun Park
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| | - Hyuk-Kwon Kwon
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Korea
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, 52828, Korea
| | - Cheol Hwangbo
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Korea
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, 52828, Korea
| | - Kwang Dong Kim
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Korea
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, 52828, Korea
| | - J Eugene Lee
- Division of Biometrology, Korea Research Institute of Standards and Science, Daejeon, 34113, Korea
| | - Jiyun Yoo
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Korea.
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, 52828, Korea.
| |
Collapse
|
7
|
Dong M, Song Y, Wang W, Song X, Wu W, Wang L, Song L. E3 Ubiquitin Ligase CHIP Inhibits Haemocyte Proliferation and Differentiation via the Ubiquitination of Runx in the Pacific Oyster. Cells 2024; 13:1535. [PMID: 39329719 PMCID: PMC11430624 DOI: 10.3390/cells13181535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/01/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Mollusca first evolve primitive immune cells (namely, haemocytes), which assemble a notable complex innate immune system, which are continuously produced through proliferation and differentiation and infused in the haemolymph. As a typical E3 ligase, CHIP is critical for immune cell turnover and homeostasis in vertebrates. In this study, a CHIP homolog (CgCHIP) with a high expression in haemocytes was identified in oysters to investigate its role in the proliferation and differentiation of ancient innate immune cells. CgCHIP exhibited a widespread distribution across all haemocyte subpopulations, and the knockdown of CgCHIP altered the composition of haemocytes as examined by flow cytometry. Mechanistically screened with bioinformatics and immunoprecipitation, a key haematopoietic transcription factor CgRunx was identified as a substrate of CgCHIP. Moreover, amino acids in the interacted intervals of CgCHIP and CgRunx were determined by molecular docking. Experimental evidence from an in vitro culture model of an agranulocyte subpopulation and an in vivo oyster model revealed that the knockdown of CgCHIP and CgRunx had opposing effects on agranulocyte (precursor cells) differentiation and granulocyte (effector cells) proliferation. In summary, CgCHIP negatively regulated agranulocyte differentiation and granulocyte proliferation by mediating the ubiquitination and degradation of CgRunx in oysters. These results offer insight into the involvement of ubiquitylation in controlling haemocyte turnover in primitive invertebrates.
Collapse
Affiliation(s)
- Miren Dong
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; (M.D.); (Y.S.); (W.W.); (X.S.); (W.W.)
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Ying Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; (M.D.); (Y.S.); (W.W.); (X.S.); (W.W.)
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Weilin Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; (M.D.); (Y.S.); (W.W.); (X.S.); (W.W.)
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Xiaorui Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; (M.D.); (Y.S.); (W.W.); (X.S.); (W.W.)
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Wei Wu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; (M.D.); (Y.S.); (W.W.); (X.S.); (W.W.)
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; (M.D.); (Y.S.); (W.W.); (X.S.); (W.W.)
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
- Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; (M.D.); (Y.S.); (W.W.); (X.S.); (W.W.)
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
- Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
| |
Collapse
|
8
|
Shi J. Early 2-Factor Transcription Factors Associated with Progression and Recurrence in Bevacizumab-Responsive Subtypes of Glioblastoma. Cancers (Basel) 2024; 16:2536. [PMID: 39061176 PMCID: PMC11275000 DOI: 10.3390/cancers16142536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
The early 2-factor (E2F) family of transcription factors, including E2F1 through 8, plays a critical role in apoptosis, metabolism, proliferation, and angiogenesis within glioblastoma (GBM). However, the specific functions of E2F transcription factors (E2Fs) and their impact on the malignancy of Bevacizumab (BVZ)-responsive GBM subtypes remain unclear. This study used data from The Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA), European Molecular Biology Laboratory's European Bioinformatics Institute (EMBL-EBI), and Gene Expression Omnibus (GEO) to explore the impact of eight E2F family members on the clinical characteristics of BVZ-responsive GBM subtypes and possible mechanisms of recurrence after BVZ treatment. Using machine learning algorithms, including TreeBagger and deep neural networks, we systematically predicted and validated GBM patient survival terms based on the expression profiles of E2Fs across BVZ-responsive GBM subtypes. Our bioinformatics analyses suggested that a significant increase in E2F8 post-BVZ treatment may enhance the function of angiogenesis and stem cell proliferation, implicating this factor as a candidate mechanism of GBM recurrence after treatment. In addition, BVZ treatment in unresponsive GBM patients may potentially worsen disease progression. These insights underscore that E2F family members play important roles in GBM malignancy and BVZ treatment response, highlighting their potential as prognostic biomarkers, therapeutic targets, and recommending precision BVZ treatment to individual GBM patients.
Collapse
Affiliation(s)
- Jian Shi
- Department of Neurology, San Francisco Veterans Affairs Health Care System and University of California, San Francisco, CA 94121, USA
| |
Collapse
|
9
|
Jia W, Wu Q, Shen M, Yu X, An S, Zhao L, Huang G, Liu J. PFKFB3 regulates breast cancer tumorigenesis and Fulvestrant sensitivity by affecting ERα stability. Cell Signal 2024; 119:111184. [PMID: 38640982 DOI: 10.1016/j.cellsig.2024.111184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/07/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Estrogen receptor alpha (ERα) is expressed in approximately 70% of breast cancer cases and determines the sensitivity and effectiveness of endocrine therapy. 6-phosphofructo-2-kinase/fructose-2, 6-biphosphatase3 (PFKFB3) is a glycolytic enzyme that is highly expressed in a great many human tumors, and recent studies have shown that it plays a significant role in improving drug sensitivity. However, the role of PFKFB3 in regulating ERα expression and the underlying mechanism remains unclear. Here, we find by using immunohistochemistry (IHC) that PFKFB3 is elevated in ER-positive breast cancer and high expression of PFKFB3 resulted in a worse prognosis. In vitro and in vivo experiments verify that PFKFB3 promotes ER-positive breast cancer cell proliferation. The overexpression of PFKFB3 promotes the estrogen-independent ER-positive breast cancer growth. In an estrogen-free condition, RNA-sequencing data from MCF7 cells treated with siPFKFB3 showed enrichment of the estrogen signaling pathway, and a luciferase assay demonstrated that knockdown of PFKFB3 inhibited the ERα transcriptional activity. Mechanistically, down-regulation of PFKFB3 promotes STUB1 binding to ERα, which accelerates ERα degradation by K48-based ubiquitin linkage. Finally, growth of ER-positive breast cancer cells in vivo was more potently inhibited by fulvestrant combined with the PFKFB3 inhibitor PFK158 than for each drug alone. In conclusion, these data suggest that PFKFB3 is identified as an adverse prognosis factor for ER-positive breast cancer and plays a previously unrecognized role in the regulation of ERα stability and activity. Our results further explores an effective approach to improve fulvestrant sensitivity through the early combination with a PFKFB3 inhibitor.
Collapse
Affiliation(s)
- Wenzhi Jia
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianyun Wu
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengqin Shen
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaofeng Yu
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuxian An
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Zhao
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gang Huang
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Clinical Nuclear Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Molecular Imaging, Shanghai, China.
| |
Collapse
|
10
|
Shao M, Qi K, Wang L, Yu X, Zhang Q, Yu L, Wang L, Yang C, Fan L. E3 ubiquitin ligase CHIP interacts with transferrin receptor 1 for degradation and promotes cell proliferation through inhibiting ferroptosis in hepatocellular carcinoma. Cell Signal 2024; 118:111148. [PMID: 38521179 DOI: 10.1016/j.cellsig.2024.111148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/02/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Hepatocellular carcinoma (HCC) is the major form of liver malignancy with high incidence and mortality. Identifying novel biomarkers and understanding regulatory mechanisms underlying the development and progression of HCC are critical for improving diagnosis, treatment and patient outcomes. Carboxyl terminus of Hsc-70-interacting protein (CHIP) is a well-described U-box-type E3 ubiquitin ligase which promotes the ubiquitination and degradation of numerous tumor-associated proteins. Recent studies have shown that CHIP can play as a tumor-suppressor gene or an oncogene in different kinds of malignancies. To date, the function and mechanism of CHIP in hepatocellular carcinoma remains largely unknown. Based on TCGA data, we found that compared with high CHIP expression, the overall survival of HCC patients with low expression of CHIP was better. In addition, CHIP overexpression markedly enhanced HCC cell proliferation and colony formation. Conversely, knockdown of CHIP restrained the proliferation and colony formation of HCC cells. Meanwhile, knockdown of CHIP decreased mitochondrial cristae or ruptured outer mitochondrial membrane, promoted the accumulation of Fe2+ and ferroptosis of HCC cells. Further research for the first time confirmed that CHIP interacts and degrades transferrin receptor 1 (TfR1) by ubiquitin-proteasome pathway, which leads to the inhibition of ferroptosis and promotes the proliferation of HCC cells. The analysis of proteomics data from CPTAC revealed a negative correlation between CHIP and TfR1 protein expression levels in HCC. These findings indicate that CHIP acts as a negative modulator of ferroptosis and functions as an oncogene in HCC.
Collapse
Affiliation(s)
- Miaomiao Shao
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Kangwei Qi
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China
| | - Lanxin Wang
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China
| | - Xiaoxuan Yu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Qingyu Zhang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Long Yu
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China
| | - Lan Wang
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China
| | - Caiting Yang
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, PR China; Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, Taiyuan 030006, PR China.
| | - Lu Fan
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| |
Collapse
|
11
|
Kasturirangan S, Nancarrow DJ, Shah A, Lagisetty KH, Lawrence TS, Beer DG, Ray D. Isoform alterations in the ubiquitination machinery impacting gastrointestinal malignancies. Cell Death Dis 2024; 15:194. [PMID: 38453895 PMCID: PMC10920915 DOI: 10.1038/s41419-024-06575-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
The advancement of RNAseq and isoform-specific expression platforms has led to the understanding that isoform changes can alter molecular signaling to promote tumorigenesis. An active area in cancer research is uncovering the roles of ubiquitination on spliceosome assembly contributing to transcript diversity and expression of alternative isoforms. However, the effects of isoform changes on functionality of ubiquitination machineries (E1, E2, E3, E4, and deubiquitinating (DUB) enzymes) influencing onco- and tumor suppressor protein stabilities is currently understudied. Characterizing these changes could be instrumental in improving cancer outcomes via the identification of novel biomarkers and targetable signaling pathways. In this review, we focus on highlighting reported examples of direct, protein-coded isoform variation of ubiquitination enzymes influencing cancer development and progression in gastrointestinal (GI) malignancies. We have used a semi-automated system for identifying relevant literature and applied established systems for isoform categorization and functional classification to help structure literature findings. The results are a comprehensive snapshot of known isoform changes that are significant to GI cancers, and a framework for readers to use to address isoform variation in their own research. One of the key findings is the potential influence that isoforms of the ubiquitination machinery have on oncoprotein stability.
Collapse
Affiliation(s)
| | - Derek J Nancarrow
- Surgery - Section of Thoracic Surgery, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ayush Shah
- Departments of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Kiran H Lagisetty
- Surgery - Section of Thoracic Surgery, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Theodore S Lawrence
- Departments of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - David G Beer
- Surgery - Section of Thoracic Surgery, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Dipankar Ray
- Departments of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
12
|
Liu Y, Zhou H, Tang X. STUB1/CHIP: New insights in cancer and immunity. Biomed Pharmacother 2023; 165:115190. [PMID: 37506582 DOI: 10.1016/j.biopha.2023.115190] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
The STUB1 gene (STIP1 homology and U-box-containing protein 1), located at 16q13.3, encodes the CHIP (carboxyl terminus of Hsc70-interacting protein), an essential E3 ligase involved in protein quality control. CHIP comprises three domains: an N-terminal tetratricopeptide repeat (TPR) domain, a middle coiled-coil domain, and a C-terminal U-box domain. It functions as a co-chaperone for heat shock protein (HSP) via the TPR domain and as an E3 ligase, ubiquitinating substrates through its U-box domain. Numerous studies suggest that STUB1 plays a crucial role in various physiological process, such as aging, autophagy, and bone remodeling. Moreover, emerging evidence has shown that STUB1 can degrade oncoproteins to exert tumor-suppressive functions, and it has recently emerged as a novel player in tumor immunity. This review provides a comprehensive overview of STUB1's role in cancer, including its clinical significance, impact on tumor progression, dual roles, tumor stem cell-like properties, angiogenesis, drug resistance, and DNA repair. In addition, we explore STUB1's functions in immune cell differentiation and maturation, inflammation, autoimmunity, antiviral immune response, and tumor immunity. Collectively, STUB1 represents a promising and valuable therapeutic target in cancer and immunology.
Collapse
Affiliation(s)
- Yongshuo Liu
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.
| | - Honghong Zhou
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaolong Tang
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
13
|
Pan B, Kong F, Ju X, Song J, Wang L, Niu Q, Lu X. Molecular mechanism of the carboxyl terminus of Hsc70-interacting protein in TAU hyperphosphorylation induced by AlCl 3 in N2a cells. Toxicology 2023; 495:153610. [PMID: 37541565 DOI: 10.1016/j.tox.2023.153610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Aluminum (Al) is recognized as a neurotoxin. Studies have confirmed that the neurotoxicity induced by Al may be related to tau hyperphosphorylation. Phosphorylated tau is degraded through the ubiquitin-proteasome pathway (UPP), in which the carboxyl terminus of Hsc70-interacting protein (CHIP) plays an important role. However, whether the CHIP plays a role in regulating tau hyperphosphorylation induced by Al is yet to be determined. The purpose of this study was to explore the molecular mechanism of the CHIP in tau hyperphosphorylation induced by AlCl3 in N2a cells. Mouse neuroblastoma cells (N2a) were exposed to different concentrations of AlCl3 (0, 0.5, 1, and 2 mM) and treated with CHIP/CHIP shRNA/CHIP (ΔU-box)/CHIP (ΔTPR) plasmid transfection. The cell viability was determined by the CCK-8 kit. Protein expression was detected by Western blot. The interaction between CHIP and AlCl3 exposure on the proteins was analyzed by factorial design ANOVA. The results showed that Al can cause tau hyperphosphorylation, mainly affecting the pThr231, pSer262, and pSer396 sites of tau in N2a cells. UPP is involved in the degradation of tau hyperphosphorylation induced by Al in N2a cells, of which CHIP may be the main regulatory target. Both the U-box and TPR domains of CHIP are indispensable and play an important role in the regulation of tau hyperphosphorylation induced by AlCl3 in N2a cells.
Collapse
Affiliation(s)
- Baolong Pan
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China; NHC Key Laboratory of Pneumoconiosis, Ministryof Education, Shanxi medical university, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education, Shanxi medical university, China; Sixth Hospital of Shanxi Medical University (General Hospital of Tisco), Taiyuan 030001, China
| | - Fanpeng Kong
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China; NHC Key Laboratory of Pneumoconiosis, Ministryof Education, Shanxi medical university, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education, Shanxi medical university, China
| | - Xiaofen Ju
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China; NHC Key Laboratory of Pneumoconiosis, Ministryof Education, Shanxi medical university, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education, Shanxi medical university, China
| | - Jing Song
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China; NHC Key Laboratory of Pneumoconiosis, Ministryof Education, Shanxi medical university, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education, Shanxi medical university, China
| | - Linping Wang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China; NHC Key Laboratory of Pneumoconiosis, Ministryof Education, Shanxi medical university, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education, Shanxi medical university, China
| | - Qiao Niu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China; NHC Key Laboratory of Pneumoconiosis, Ministryof Education, Shanxi medical university, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education, Shanxi medical university, China
| | - Xiaoting Lu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China; NHC Key Laboratory of Pneumoconiosis, Ministryof Education, Shanxi medical university, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education, Shanxi medical university, China
| |
Collapse
|
14
|
Kim HJ, Moon SJ, Kim JH. Mechanistic insights into the dual role of CCAR2/DBC1 in cancer. Exp Mol Med 2023; 55:1691-1701. [PMID: 37524873 PMCID: PMC10474295 DOI: 10.1038/s12276-023-01058-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/21/2023] [Accepted: 05/17/2023] [Indexed: 08/02/2023] Open
Abstract
Cell cycle and apoptosis regulator 2 (CCAR2), also known as deleted in breast cancer 1 (DBC1), has been recently identified as a master regulator of transcriptional processes and plays diverse roles in physiology and pathophysiology, including as a regulator of apoptosis, DNA repair, metabolism, and tumorigenesis. CCAR2 functions as a coregulator of various transcription factors and a critical regulator of numerous epigenetic modifiers. Based on its ability to stimulate apoptosis by activating and stabilizing p53, CCAR2 was initially considered to be a tumor suppressor. However, an increasing number of studies have shown that CCAR2 also functions as a tumor-promoting coregulator by activating oncogenic transcription factors and regulating the enzymatic activity of epigenetic modifiers, indicating that CCAR2 may play a dual role in cancer progression by acting as a tumor suppressor and tumor promoter. Here, we review recent progress in understanding the dual tumor-suppressing and oncogenic roles of CCAR2 in cancer. We discuss CCAR2 domain structures, its interaction partners, and the molecular mechanisms by which it regulates the activities of transcription factors and epigenetic modifiers.
Collapse
Affiliation(s)
- Hwa Jin Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, 06351, South Korea
- Research Institute for Future Medicine, Samsung Medical Center, Seoul, 06351, South Korea
| | - Sue Jin Moon
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, 06351, South Korea
- Research Institute for Future Medicine, Samsung Medical Center, Seoul, 06351, South Korea
| | - Jeong Hoon Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, 06351, South Korea.
- Research Institute for Future Medicine, Samsung Medical Center, Seoul, 06351, South Korea.
| |
Collapse
|
15
|
Kang L, Zhang H, Wang Y, Chu M, He J, Xue M, Pan L, Zhang Y, Wang Z, Chen Z, Huang Y, Chen Z, Li E, Li J, Xu L, Zhang R, Wong J. Control of SOX2 protein stability and tumorigenic activity by E3 ligase CHIP in esophageal cancer cells. Oncogene 2023; 42:2315-2328. [PMID: 37353616 DOI: 10.1038/s41388-023-02745-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/05/2023] [Accepted: 06/05/2023] [Indexed: 06/25/2023]
Abstract
SOX2 is highly expressed and controls tumor initiation and cancer stem cell function in various squamous cell carcinomas including esophageal squamous cancer. However, the molecular mechanism leading to SOX2 overexpression in cancer is incompletely understood. Here, we identified CHIP, a chaperone-associated ubiquitin E3 ligase, as a novel negative regulator of SOX2 protein stability and tumorigenic activity in esophageal squamous carcinoma cells. We showed that CHIP interacted with SOX2 primarily via chaperone HSP70, together they catalyzed SOX2 ubiquitination and degradation via proteasome. In contrast, HSP90 promoted SOX2 stability and inhibition of HSP90 activity induced SOX2 ubiquitination and degradation. Notably, unlike the case in normal esophageal tissues where CHIP was detected in both the cytoplasm and nucleus, CHIP in clinical esophageal tumor specimens was predominantly localized in the cytoplasm. Consistent with this observation, we observed increased expression of exportin-1/CRM-1 in clinical esophageal tumor specimens. We further demonstrated that CHIP catalyzed SOX2 ubiquitination and degradation primarily in the nuclear compartment. Taken together, our study has identified CHIP as a key suppressor of SOX2 protein stability and tumorigenic activity and revealed CHIP nuclear exclusion as a potential mechanism for aberrant SOX2 overexpression in esophageal cancer. Our study also suggests HSP90 inhibitors as potential therapeutic agents for SOX2-positive cancers.
Collapse
Affiliation(s)
- Li Kang
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Huifang Zhang
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yaling Wang
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Manyu Chu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Basic Medical Science, Cancer Research Center, Shantou University Medical College, Shantou, Guangdong, China
| | - Jianzhong He
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Basic Medical Science, Cancer Research Center, Shantou University Medical College, Shantou, Guangdong, China
| | - Mengyang Xue
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Obstetrics and Gynecology, ECNU Joint Center of Translational Medicine, Fengxian Central Hospital affiliated to the Southern Medical University, Shanghai, China
| | - Liu Pan
- Department of Obstetrics and Gynecology, ECNU Joint Center of Translational Medicine, Fengxian Central Hospital affiliated to the Southern Medical University, Shanghai, China
- Department of Obstetrics and Gynecology, Jinzhou Medical University, Liaoning, China
| | - Yunfeng Zhang
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Zhen Wang
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhaosu Chen
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yuanyong Huang
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Zitai Chen
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Enmin Li
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, China
| | - Jiwen Li
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Liyan Xu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Basic Medical Science, Cancer Research Center, Shantou University Medical College, Shantou, Guangdong, China
| | - Rong Zhang
- Department of Obstetrics and Gynecology, ECNU Joint Center of Translational Medicine, Fengxian Central Hospital affiliated to the Southern Medical University, Shanghai, China.
| | - Jiemin Wong
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
16
|
Kumar S, Basu M, Ghosh P, Pal U, Ghosh MK. COVID-19 therapeutics: Clinical application of repurposed drugs and futuristic strategies for target-based drug discovery. Genes Dis 2023; 10:1402-1428. [PMID: 37334160 PMCID: PMC10079314 DOI: 10.1016/j.gendis.2022.12.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes the complicated disease COVID-19. Clinicians are continuously facing huge problems in the treatment of patients, as COVID-19-specific drugs are not available, hence the principle of drug repurposing serves as a one-and-only hope. Globally, the repurposing of many drugs is underway; few of them are already approved by the regulatory bodies for their clinical use and most of them are in different phases of clinical trials. Here in this review, our main aim is to discuss in detail the up-to-date information on the target-based pharmacological classification of repurposed drugs, the potential mechanism of actions, and the current clinical trial status of various drugs which are under repurposing since early 2020. At last, we briefly proposed the probable pharmacological and therapeutic drug targets that may be preferred as a futuristic drug discovery approach in the development of effective medicines.
Collapse
Affiliation(s)
- Sunny Kumar
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector–V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, West Bengal 743372, India
| | - Pratyasha Ghosh
- Department of Economics, Bethune College, University of Calcutta, Kolkata 700006, India
| | - Uttam Pal
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector–V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Mrinal K. Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector–V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
17
|
Eléouët M, Lu C, Zhou Y, Yang P, Ma J, Xu G. Insights on the biological functions and diverse regulation of RNA-binding protein 39 and their implication in human diseases. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194902. [PMID: 36535628 DOI: 10.1016/j.bbagrm.2022.194902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/24/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
RNA-binding protein 39 (RBM39) involves in pre-mRNA splicing and transcriptional regulation. RBM39 is dysregulated in many cancers and its upregulation enhances cancer cell proliferation. Recently, it has been discovered that aryl sulfonamides act as molecular glues to recruit RBM39 to the CRL4DCAF15 E3 ubiquitin ligase complex for its ubiquitination and proteasomal degradation. Therefore, various studies have focused on the degradation of RBM39 by aryl sulfonamides in the aim of finding new cancer therapeutics. These discoveries also attracted focus for thorough study on the biological functions of RBM39. RBM39 was found to regulate the splicing and transcription of genes mainly involved in pre-mRNA splicing, cell cycle regulation, DNA damage response, and metabolism, but the understanding of these regulations is still in its infancy. This article reviews the advances of the current literature and discusses the remaining key issues on the biological function and dynamic regulation of RBM39 at the post-translational level.
Collapse
Affiliation(s)
- Morgane Eléouët
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China; Synbio Technologies Company, BioBay C20, 218 Xinghu Street, Suzhou, Jiangsu 215123, China
| | - Chengpiao Lu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Yijia Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Ping Yang
- Synbio Technologies Company, BioBay C20, 218 Xinghu Street, Suzhou, Jiangsu 215123, China
| | - Jingjing Ma
- Department of Pharmacy, Medical Center of Soochow University, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu 215123, China.
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
18
|
Targeting CSC-related transcription factors by E3 ubiquitin ligases for cancer therapy. Semin Cancer Biol 2022; 87:84-97. [PMID: 36371028 DOI: 10.1016/j.semcancer.2022.11.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/07/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022]
Abstract
Evidence has revealed that transcription factors play essential roles in regulation of multiple cellular processes, including cell proliferation, metastasis, EMT, cancer stem cells and chemoresistance. Dysregulated expression levels of transcription factors contribute to tumorigenesis and malignant progression. The expression of transcription factors is tightly governed by several signaling pathways, noncoding RNAs and E3 ubiquitin ligases. Cancer stem cells (CSCs) have been validated in regulation of tumor metastasis, reoccurrence and chemoresistance in human cancer. Transcription factors have been verified to participate in regulation of CSC formation, including Oct4, SOX2, KLF4, c-Myc, Nanog, GATA, SALL4, Bmi-1, OLIG2, POU3F2 and FOX proteins. In this review article, we will describe the critical role of CSC-related transcription factors. We will further discuss which E3 ligases regulate the degradation of these CSC-related transcription factors and their underlying mechanisms. We also mentioned the functions and mechanisms of EMT-associated transcription factors such as ZEB1, ZEB2, Snail, Slug, Twist1 and Twist2. Furthermore, we highlight the therapeutic potential via targeting E3 ubiquitin ligases for modulation of these transcription factors.
Collapse
|
19
|
Kumar S, Basu M, Ghosh P, Ansari A, Ghosh MK. COVID-19: Clinical status of vaccine development to date. Br J Clin Pharmacol 2022; 89:114-149. [PMID: 36184710 PMCID: PMC9538545 DOI: 10.1111/bcp.15552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/08/2022] [Accepted: 09/19/2022] [Indexed: 11/30/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-induced COVID-19 is a complicated disease. Clinicians are continuously facing difficulties to treat infected patients using the principle of repurposing of drugs as no specific drugs are available to treat COVID-19. To minimize the severity and mortality, global vaccination is the only hope as a potential preventive measure. After a year-long global research and clinical struggle, 165 vaccine candidates have been developed and some are currently still in the pipeline. A total of 28 candidate vaccines have been approved for use and the remainder are in different phases of clinical trials. In this comprehensive report, the authors aim to demonstrate, classify and provide up-to-date clinical trial status of all the vaccines discovered to date and specifically focus on the approved candidates. Finally, the authors specifically focused on the vaccination of different types of medically distinct populations.
Collapse
Affiliation(s)
- Sunny Kumar
- Cancer Biology and Inflammatory Disorder DivisionCouncil of Scientific and Industrial Research‐Indian Institute of Chemical Biology (CSIR‐IICB), TRUE CampusKolkataIndia
| | - Malini Basu
- Department of MicrobiologyDhruba Chand Halder CollegeIndia
| | - Pratyasha Ghosh
- Department of Economics, Bethune CollegeUniversity of CalcuttaKolkataIndia
| | - Aafreen Ansari
- Cancer Biology and Inflammatory Disorder DivisionCouncil of Scientific and Industrial Research‐Indian Institute of Chemical Biology (CSIR‐IICB), TRUE CampusKolkataIndia
| | - Mrinal K. Ghosh
- Cancer Biology and Inflammatory Disorder DivisionCouncil of Scientific and Industrial Research‐Indian Institute of Chemical Biology (CSIR‐IICB), TRUE CampusKolkataIndia
| |
Collapse
|
20
|
Kumar S, Chatterjee M, Ghosh P, Ganguly KK, Basu M, Ghosh MK. Targeting PD-1/PD-L1 in cancer immunotherapy: an effective strategy for treatment of triple-negative breast cancer (TNBC) patients. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.07.024] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
|
21
|
Ng S, Brueckner AC, Bahmanjah S, Deng Q, Johnston JM, Ge L, Duggal R, Habulihaz B, Barlock B, Ha S, Sadruddin A, Yeo C, Strickland C, Peier A, Henry B, Sherer EC, Partridge AW. Discovery and Structure-Based Design of Macrocyclic Peptides Targeting STUB1. J Med Chem 2022; 65:9789-9801. [PMID: 35853179 DOI: 10.1021/acs.jmedchem.2c00406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent evidence suggests that deletion of STUB1─a pivotal negative regulator of interferon-γ sensing─may potentially clear malignant cells. However, current studies rely primarily on genetic approaches, as pharmacological inhibitors of STUB1 are lacking. Identifying a tool compound will be a step toward validating the target in a broader therapeutic sense. Herein, screening more than a billion macrocyclic peptides resulted in STUB1 binders, which were further optimized by a structure-enabled in silico design. The strategy to replace the macrocyclic peptides' hydrophilic and solvent-exposed region with a hydrophobic scaffold improved cellular permeability while maintaining the binding conformation. Further substitution of the permeability-limiting terminal aspartic acid with a tetrazole bioisostere retained the binding to a certain extent while improving permeability, suggesting a path forward. Although not optimal for cellular study, the current lead provides a valuable template for further development into selective tool compounds for STUB1 to enable target validation.
Collapse
Affiliation(s)
- Simon Ng
- Quantitative Biosciences, MSD, 8 Biomedical Grove, Singapore 138665
| | - Alexander C Brueckner
- Computational & Structural Chemistry, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Soheila Bahmanjah
- Computational & Structural Chemistry, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Qiaolin Deng
- Computational & Structural Chemistry, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Jennifer M Johnston
- Computational & Structural Chemistry, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Lan Ge
- Cell Sciences Innovation, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Ruchia Duggal
- ADME Group 2, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Bahanu Habulihaz
- PPDM ADME Transporters & In Vitro Technology, Merck & Co., Inc., 126 East Lincoln Ave, Rahway, New Jersey 07065, United States
| | - Benjamin Barlock
- ADME Group 2, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Sookhee Ha
- Computational & Structural Chemistry, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Ahmad Sadruddin
- Quantitative Biosciences, MSD, 8 Biomedical Grove, Singapore 138665
| | - Constance Yeo
- Quantitative Biosciences, MSD, 8 Biomedical Grove, Singapore 138665
| | - Corey Strickland
- Computational & Structural Chemistry, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Andrea Peier
- Screening & Compound Profiling, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Brian Henry
- Quantitative Biosciences, MSD, 8 Biomedical Grove, Singapore 138665
| | - Edward C Sherer
- Computational & Structural Chemistry, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | | |
Collapse
|