1
|
Dong X, Xiang H, Li J, Hao A, Wang H, Gou Y, Li A, Rahaman S, Qiu Y, Li J, Mei O, Zhong J, You W, Shen G, Wu X, Li J, Shu Y, Shi LL, Zhu Y, Reid RR, He TC, Fan J. Dermal fibroblast-derived extracellular matrix (ECM) synergizes with keratinocytes in promoting re-epithelization and scarless healing of skin wounds: Towards optimized skin tissue engineering. Bioact Mater 2025; 47:1-17. [PMID: 39872210 PMCID: PMC11762682 DOI: 10.1016/j.bioactmat.2024.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/24/2024] [Accepted: 12/27/2024] [Indexed: 01/30/2025] Open
Abstract
Skin serves as the first-order protective barrier against the environment and any significant disruptions in skin integrity must be promptly restored. Despite significant advances in therapeutic strategies, effective management of large chronic skin wounds remains a clinical challenge. Dermal fibroblasts are the primary cell type responsible for remodeling the extracellular matrix (ECM) in wound healing. Here, we investigated whether ECM derived from exogenous fibroblasts, in combination with keratinocytes, promoted scarless cutaneous wound healing. To overcome the limited lifespan of primary dermal fibroblasts, we established reversibly immortalized mouse dermal fibroblasts (imDFs), which were non-tumorigenic, expressed dermal fibroblast markers, and were responsive to TGF-β1 stimulation. The decellularized ECM prepared from both imDFs and primary dermal fibroblasts shared similar expression profiles of extracellular matrix proteins and promoted the proliferation of keratinocyte (iKera) cells. The imDFs-derived ECM solicited no local immune response. While the ECM and to a lesser extent imDFs enhanced skin wound healing with excessive fibrosis, a combination of imDFs-derived ECM and iKera cells effectively promoted the re-epithelization and scarless healing of full-thickness skin wounds. These findings strongly suggest that dermal fibroblast-derived ECM, not fibroblasts themselves, may synergize with keratinocytes in regulating scarless healing and re-epithelialization of skin wounds. Given its low immunogenic nature, imDFs-derived ECM should be a valuable resource of skin-specific biomaterial for wound healing and skin tissue engineering.
Collapse
Affiliation(s)
- Xiangyu Dong
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Clinical Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Han Xiang
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Clinical Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Jiajia Li
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Clinical Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Ailing Hao
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Clinical Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Hao Wang
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Clinical Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Yannian Gou
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Clinical Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Aohua Li
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Clinical Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Saidur Rahaman
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Clinical Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yiheng Qiu
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Clinical Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Jiahao Li
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Clinical Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Ou Mei
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of Orthopedic Surgery, Jiangxi Hospital of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, China
| | - Jiamin Zhong
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Clinical Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Wulin You
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of Orthopaedic Surgery, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, 214071, China
| | - Guowei Shen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of Orthopaedic Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210019, China
| | - Xingye Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jingjing Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of Oncology, The Affiliated Hospital of Shandong Second Medical University, Weifang, 261053, China
| | - Yi Shu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Stem Cell Biology and Therapy Laboratory of the Pediatric Research Institute, the National Clinical Research Center for Child Health and Disorders, and Ministry of Education Key Laboratory of Child Development and Disorders, the Children's Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Lewis L. Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Yi Zhu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Laboratory of Craniofacial Biology and Development, Section of Plastic and Reconstructive Surgery, Department of Surgery, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Laboratory of Craniofacial Biology and Development, Section of Plastic and Reconstructive Surgery, Department of Surgery, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Jiaming Fan
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Clinical Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- Western Institute of Digital-Intelligent Medicine, Chongqing, 401329, China
| |
Collapse
|
2
|
Zhu Y, Liu Q, Yu C, Zhang H, Zhong J, Wang Y, Mei O, Gerhard E, You W, Shen G, Luo C, Wu X, Li J, Shu Y, Wen Y, Zeb U, Luu HH, Lee MJ, Shi LL, Bi Y, Yang J, Fan J, Reid RR, He T, Wen L. An Intervertebral Disc (IVD) Regeneration Model Using Human Nucleus Pulposus Cells (iHNPCs) and Annulus Fibrosus Cells (iHAFCs). Adv Healthc Mater 2025; 14:e2403742. [PMID: 40052622 PMCID: PMC12004445 DOI: 10.1002/adhm.202403742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/26/2025] [Indexed: 04/18/2025]
Abstract
Intervertebral disc (IVD) degeneration (IVDD), primarily caused by nucleus pulposus (NP) dehydration, leads to low back pain. While current treatments focus on symptom management or surgical intervention, tissue engineering using IVD-derived cells, biofactors, and scaffolds offers a promising regenerative approach. Here, human NP cells (NPCs) and annulus fibrosus cells (AFCs) are immortalized with human telomerase reverse transcriptase (hTERT), generating immortalized NPCs (iHNPCs) and AFCs (iHAFCs). These cells express NP and AF-specific markers, are reversible via FLP recombinase, and are non-tumorigenic. iHAFCs exhibit osteogenic potential, while iHNPCs show chondrogenic differentiation. A 3D-printed citrate-based scaffold was employed to develop an IVD regeneration model, with BMP9-stimulated iHAFCs in the peripheral region and BMP2-stimulated iHNPCs in the central region. Histological analysis revealed bone formation in the iHAFC region and cartilage formation in the iHNPC region, mimicking the natural IVD structure. Additionally, an ex vivo spine fusion model demonstrated robust bone formation in iHAFC-treated segments. These findings highlight the potential of iHAFCs and iHNPCs as valuable tools for IVD tissue engineering and regeneration.
Collapse
|
3
|
Zhao P, Zhu Y, Kim M, Zhao G, Wang Y, Collins CP, Mei O, Zhang Y, Duan C, Zhong J, Zhang H, You W, Shen G, Luo C, Wu X, Li J, Shu Y, Luu HH, Haydon RC, Lee MJ, Shi LL, Huang W, Fan J, Sun C, Wen L, Ameer GA, He TC, Reid RR. Effective Bone Tissue Fabrication Using 3D-Printed Citrate-Based Nanocomposite Scaffolds Laden with BMP9-Stimulated Human Urine Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2025; 17:197-210. [PMID: 39718997 PMCID: PMC11783527 DOI: 10.1021/acsami.4c13246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 12/26/2024]
Abstract
Effective repair of large bone defects through bone tissue engineering (BTE) remains an unmet clinical challenge. Successful BTE requires optimal and synergistic interactions among biocompatible scaffolds, osteogenic factors, and osteoprogenitors to form a highly vascularized microenvironment for bone regeneration and osseointegration. We sought to develop a highly effective BTE system by using 3D printed citrate-based mPOC/hydroxyapatite (HA) composites laden with BMP9-stimulated human urine stem cells (USCs). Specifically, we synthesized and characterized methacrylate poly(1,8 octamethylene citrate) (mPOC), mixed it with 0%, 40% or 60% HA (i.e., mPOC-0HA, mPOC-40HA, or mPOC-60HA), and fabricated composite scaffold via micro-continuous liquid interface production (μCLIP). The 3D-printed mPOC-HA composite scaffolds were compatible with human USCs that exhibited high osteogenic activity in vitro upon BMP9 stimulation. Subcutaneous implantation of mPOC-HA scaffolds laden with BMP9-stimulated USCs revealed effective bone formation in all three types of mPOC-HA composite scaffolds. Histologic evaluation revealed that the mPOC-60HA composite scaffold yielded the most mature bone, resembling native bone tissue with extensive scaffold-osteointegration. Collectively, these findings demonstrate that the citrate-based mPOC-60HA composite, human urine stem cells, and the potent osteogenic factor BMP9 constitute a desirable triad for effective bone tissue engineering.
Collapse
Affiliation(s)
- Piao Zhao
- Departments
of Orthopaedic Surgery, Urology, and Gastrointestinal Surgery, the First Affiliated Hospital of Chongqing Medical
University, Chongqing 400016, China
- Molecular
Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation
Medicine, The University of Chicago Medical
Center; Chicago, Illinois 60637, United States
| | - Yi Zhu
- Molecular
Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation
Medicine, The University of Chicago Medical
Center; Chicago, Illinois 60637, United States
- Department
of Orthopaedic Surgery, Beijing Hospital,
National Center of Gerontology, Chinese Academy of Medical Sciences
& Peking Union Medical College, Beijing, 100005, China
| | - Mirae Kim
- Department
of Biomedical Engineering, Northwestern
University; Evanston, Illinois 60208, United States
- Center
for Advanced Regenerative Engineering, Northwestern
University, Evanston, Illinois 60208, United States
| | - Guozhi Zhao
- Departments
of Orthopaedic Surgery, Urology, and Gastrointestinal Surgery, the First Affiliated Hospital of Chongqing Medical
University, Chongqing 400016, China
- Molecular
Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation
Medicine, The University of Chicago Medical
Center; Chicago, Illinois 60637, United States
| | - Yonghui Wang
- Molecular
Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation
Medicine, The University of Chicago Medical
Center; Chicago, Illinois 60637, United States
- Department
of Geriatrics, Xinhua Hospital, Shanghai
Jiao-Tong University School of Medicine, Shanghai 200000, China
| | - Caralyn P. Collins
- Department
of Mechanical Engineering, Northwestern
University; Evanston, Illinois 60208, United States
| | - Ou Mei
- Molecular
Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation
Medicine, The University of Chicago Medical
Center; Chicago, Illinois 60637, United States
- Department
of Orthopedic Surgery, Jiangxi Hospital of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China
| | - Yuanyuan Zhang
- Wake Forest
Institute for Regenerative Medicine, Wake
Forest University School of Medicine, Winston-Salem, North Carolina 27101, United States
| | - Chongwen Duan
- Department
of Biomedical Engineering, Northwestern
University; Evanston, Illinois 60208, United States
| | - Jiamin Zhong
- Molecular
Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation
Medicine, The University of Chicago Medical
Center; Chicago, Illinois 60637, United States
- Ministry
of Education Key Laboratory of Diagnostic Medicine, and Department
of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Hui Zhang
- Molecular
Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation
Medicine, The University of Chicago Medical
Center; Chicago, Illinois 60637, United States
- The Breast
Cancer Center, Chongqing University Cancer
Hospital, Chongqing 4000430, China
| | - Wulin You
- Molecular
Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation
Medicine, The University of Chicago Medical
Center; Chicago, Illinois 60637, United States
- Department
of Orthopaedic Surgery, Wuxi Hospital Affiliated
to Nanjing University of Chinese Medicine, Wuxi 214071, China
| | - Guowei Shen
- Molecular
Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation
Medicine, The University of Chicago Medical
Center; Chicago, Illinois 60637, United States
- Department
of Orthopaedic Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing 210019, China
| | - Changqi Luo
- Molecular
Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation
Medicine, The University of Chicago Medical
Center; Chicago, Illinois 60637, United States
- Department
of Orthopaedic Surgery, Yibin Second People’s
Hospital, Affiliated with West China School of Medicine, Yibin 644000, China
| | - Xingye Wu
- Departments
of Orthopaedic Surgery, Urology, and Gastrointestinal Surgery, the First Affiliated Hospital of Chongqing Medical
University, Chongqing 400016, China
- Molecular
Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation
Medicine, The University of Chicago Medical
Center; Chicago, Illinois 60637, United States
| | - Jingjing Li
- Molecular
Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation
Medicine, The University of Chicago Medical
Center; Chicago, Illinois 60637, United States
- Department
of Oncology, The Affiliated Hospital of
Shandong Second Medical University, Weifang 261053, China
| | - Yi Shu
- Molecular
Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation
Medicine, The University of Chicago Medical
Center; Chicago, Illinois 60637, United States
- Stem Cell
Biology and Therapy Laboratory of the Pediatric Research Institute,
the National Clinical Research Center for Child Health and Disorders,
and Ministry of Education Key Laboratory of Child Development and
Disorders, the Children’s Hospital
of Chongqing Medical University, Chongqing 400016, China
| | - Hue H. Luu
- Molecular
Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation
Medicine, The University of Chicago Medical
Center; Chicago, Illinois 60637, United States
| | - Rex C. Haydon
- Molecular
Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation
Medicine, The University of Chicago Medical
Center; Chicago, Illinois 60637, United States
| | - Michael J. Lee
- Molecular
Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation
Medicine, The University of Chicago Medical
Center; Chicago, Illinois 60637, United States
| | - Lewis L. Shi
- Molecular
Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation
Medicine, The University of Chicago Medical
Center; Chicago, Illinois 60637, United States
| | - Wei Huang
- Departments
of Orthopaedic Surgery, Urology, and Gastrointestinal Surgery, the First Affiliated Hospital of Chongqing Medical
University, Chongqing 400016, China
| | - Jiaming Fan
- Molecular
Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation
Medicine, The University of Chicago Medical
Center; Chicago, Illinois 60637, United States
- Ministry
of Education Key Laboratory of Diagnostic Medicine, and Department
of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Cheng Sun
- Department
of Mechanical Engineering, Northwestern
University; Evanston, Illinois 60208, United States
- Center
for Advanced Regenerative Engineering, Northwestern
University, Evanston, Illinois 60208, United States
| | - Liangyuan Wen
- Department
of Orthopaedic Surgery, Beijing Hospital,
National Center of Gerontology, Chinese Academy of Medical Sciences
& Peking Union Medical College, Beijing, 100005, China
| | - Guillermo A. Ameer
- Department
of Biomedical Engineering, Northwestern
University; Evanston, Illinois 60208, United States
- Center
for Advanced Regenerative Engineering, Northwestern
University, Evanston, Illinois 60208, United States
- Department
of Surgery, Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Tong-Chuan He
- Molecular
Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation
Medicine, The University of Chicago Medical
Center; Chicago, Illinois 60637, United States
- Center
for Advanced Regenerative Engineering, Northwestern
University, Evanston, Illinois 60208, United States
- Laboratory
of Craniofacial Biology and Development, Section of Plastic and Reconstructive
Surgery, Department of Surgery, The University
of Chicago Medical Center, Chicago, Illinois 60637, United States
| | - Russell R. Reid
- Molecular
Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation
Medicine, The University of Chicago Medical
Center; Chicago, Illinois 60637, United States
- Center
for Advanced Regenerative Engineering, Northwestern
University, Evanston, Illinois 60208, United States
- Laboratory
of Craniofacial Biology and Development, Section of Plastic and Reconstructive
Surgery, Department of Surgery, The University
of Chicago Medical Center, Chicago, Illinois 60637, United States
| |
Collapse
|
4
|
Zhu Y, Mei O, Zhang H, You W, Zhong J, Collins CP, Shen G, Luo C, Wu X, Li J, Shu Y, Wen Y, Luu HH, Shi LL, Fan J, He TC, Ameer GA, Sun C, Wen L, Reid RR. Establishment and characterization of a rat model of scalp-cranial composite defect for multilayered tissue engineering. RESEARCH SQUARE 2024:rs.3.rs-4643966. [PMID: 39108474 PMCID: PMC11302684 DOI: 10.21203/rs.3.rs-4643966/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Composite cranial defects have individual functional and aesthetic ramifications, as well as societal burden, while posing significant challenges for reconstructive surgeons. Single-stage composite reconstruction of these deformities entail complex surgeries that bear many short- and long-term risks and complications. Current research on composite scalp-cranial defects is sparse and one-dimensional, often focusing solely on bone or skin. Thus, there is an unmet need for a simple, clinically relevant composite defect model in rodents, where there is a challenge in averting healing of the skin component via secondary intention. By utilizing a customizable (3D-printed) wound obturator, the scalp wound can be rendered non-healing for a long period (more than 6 weeks), with the cranial defect patent. The wound obturator shows minimal biotoxicity and will not cause severe endocranium-granulation adhesion. This composite defect model effectively slowed the scalp healing process and preserved the cranial defect, embodying the characteristics of a "chronic composite defect". In parallel, an autologous reconstruction model was established as the positive control. This positive control exhibited reproducible healing of the skin within 3 weeks with variable degrees of osseointegration, consistent with clinical practice. Both models provide a stable platform for subsequent research not only for composite tissue engineering and scaffold design but also for mechanistic studies of composite tissue healing.
Collapse
Affiliation(s)
- Yi Zhu
- The University of Chicago Medical Center
| | - Ou Mei
- The University of Chicago Medical Center
| | - Hui Zhang
- The University of Chicago Medical Center
| | - Wulin You
- The University of Chicago Medical Center
| | | | | | | | | | - Xingye Wu
- The University of Chicago Medical Center
| | | | - Yi Shu
- The University of Chicago Medical Center
| | - Ya Wen
- Capital Medical University
| | - Hue H Luu
- The University of Chicago Medical Center
| | | | | | | | | | | | - Liangyuan Wen
- Chinese Academy of Medical Sciences & Peking Union Medical College
| | | |
Collapse
|