1
|
Park EG, Lee DH, Kim WR, Lee YJ, Bae WH, Kim JM, Shin HJ, Ha H, Yi JM, Cho SG, Choi YH, Leem SH, Cha HJ, Kim SW, Kim HS. Human Endogenous Retrovirus-H-Derived miR-4454 Inhibits the Expression of DNAJB4 and SASH1 in Non-Muscle-Invasive Bladder Cancer. Genes (Basel) 2023; 14:1410. [PMID: 37510314 PMCID: PMC10379226 DOI: 10.3390/genes14071410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Although most human endogenous retroviruses (HERVs) have been silenced and lost their ability to translocate because of accumulated mutations during evolution, they still play important roles in human biology. Several studies have demonstrated that HERVs play pathological roles in numerous human diseases, especially cancer. A few studies have revealed that long non-coding RNAs that are transcribed from HERV sequences affect cancer progression. However, there is no study on microRNAs derived from HERVs related to cancer. In this study, we identified 29 microRNAs (miRNAs) derived from HERV sequences in the human genome. In particular, we discovered that miR-4454, which is HERV-H-derived miRNA, was upregulated in non-muscle-invasive bladder cancer (NMIBC) cells. To figure out the effects of upregulated miR-4454 in NMIBC, genes whose expression was downregulated in NMIBC, as well as tumor suppressor genes, were selected as putative target genes of miR-4454. The dual-luciferase assay was used to determine the negative relationship between miR-4454 and its target genes, DNAJB4 and SASH1, and they were confirmed to be promising target genes of miR-4454. Taken together, this study suggests that the upregulation of miR-4454 derived from HERV-H in NMIBC reduces the expression of the tumor suppressor genes, DNAJB4 and SASH1, to promote NMIBC progression.
Collapse
Affiliation(s)
- Eun Gyung Park
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (E.G.P.); (D.H.L.); (W.R.K.); (Y.J.L.); (W.H.B.); (J.-m.K.); (H.J.S.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Du Hyeong Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (E.G.P.); (D.H.L.); (W.R.K.); (Y.J.L.); (W.H.B.); (J.-m.K.); (H.J.S.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Woo Ryung Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (E.G.P.); (D.H.L.); (W.R.K.); (Y.J.L.); (W.H.B.); (J.-m.K.); (H.J.S.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Yun Ju Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (E.G.P.); (D.H.L.); (W.R.K.); (Y.J.L.); (W.H.B.); (J.-m.K.); (H.J.S.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Woo Hyeon Bae
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (E.G.P.); (D.H.L.); (W.R.K.); (Y.J.L.); (W.H.B.); (J.-m.K.); (H.J.S.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Jung-min Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (E.G.P.); (D.H.L.); (W.R.K.); (Y.J.L.); (W.H.B.); (J.-m.K.); (H.J.S.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Hae Jin Shin
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (E.G.P.); (D.H.L.); (W.R.K.); (Y.J.L.); (W.H.B.); (J.-m.K.); (H.J.S.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Hongseok Ha
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea;
| | - Joo Mi Yi
- Department of Microbiology and Immunology, Inje University College of Medicine, Busan 47392, Republic of Korea;
| | - Ssang Goo Cho
- Department of Stem Cell & Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029, Republic of Korea;
| | - Yung Hyun Choi
- Department of Biochemistry, College of Korean Medicine, Dong-Eui University, Busan 47227, Republic of Korea;
| | - Sun Hee Leem
- Department of Biological Science, Dong-A University, Busan 49315, Republic of Korea;
| | - Hee Jae Cha
- Department of Parasitology and Genetics, College of Medicine, Kosin University, Busan 49104, Republic of Korea;
| | - Sang Woo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea;
| | - Heui Soo Kim
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea;
| |
Collapse
|
2
|
Senft AD, Macfarlan TS. Transposable elements shape the evolution of mammalian development. Nat Rev Genet 2021; 22:691-711. [PMID: 34354263 DOI: 10.1038/s41576-021-00385-1] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2021] [Indexed: 02/06/2023]
Abstract
Transposable elements (TEs) promote genetic innovation but also threaten genome stability. Despite multiple layers of host defence, TEs actively shape mammalian-specific developmental processes, particularly during pre-implantation and extra-embryonic development and at the maternal-fetal interface. Here, we review how TEs influence mammalian genomes both directly by providing the raw material for genetic change and indirectly via co-evolving TE-binding Krüppel-associated box zinc finger proteins (KRAB-ZFPs). Throughout mammalian evolution, individual activities of ancient TEs were co-opted to enable invasive placentation that characterizes live-born mammals. By contrast, the widespread activity of evolutionarily young TEs may reflect an ongoing co-evolution that continues to impact mammalian development.
Collapse
Affiliation(s)
- Anna D Senft
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, MD, USA.
| | - Todd S Macfarlan
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
van der Kuyl AC. Contemporary Distribution, Estimated Age, and Prehistoric Migrations of Old World Monkey Retroviruses. EPIDEMIOLGIA (BASEL, SWITZERLAND) 2021; 2:46-67. [PMID: 36417189 PMCID: PMC9620922 DOI: 10.3390/epidemiologia2010005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/18/2021] [Accepted: 01/29/2021] [Indexed: 12/14/2022]
Abstract
Old World monkeys (OWM), simians inhabiting Africa and Asia, are currently affected by at least four infectious retroviruses, namely, simian foamy virus (SFV), simian immunodeficiency virus (SIV), simian T-lymphotropic virus (STLV), and simian type D retrovirus (SRV). OWM also show chromosomal evidence of having been infected in the past with four more retroviral species, baboon endogenous virus (BaEV), Papio cynocephalus endogenous virus (PcEV), simian endogenous retrovirus (SERV), and Rhesus endogenous retrovirus-K (RhERV-K/SERV-K1). For some of the viruses, transmission to other primates still occurs, resulting, for instance, in the HIV pandemic. Retroviruses are intimately connected with their host as they are normally spread by close contact. In this review, an attempt to reconstruct the distribution and history of OWM retroviruses will be made. A literature overview of the species infected by any of the eight retroviruses as well as an age estimation of the pathogens will be given. In addition, primate genomes from databases have been re-analyzed for the presence of endogenous retrovirus integrations. Results suggest that some of the oldest retroviruses, SERV and PcEV, have travelled with their hosts to Asia during the Miocene, when a higher global temperature allowed simian expansions. In contrast, younger viruses, such as SIV and SRV, probably due to the lack of a primate continuum between the continents in later times, have been restricted to Africa and Asia, respectively.
Collapse
Affiliation(s)
- Antoinette C van der Kuyl
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
4
|
Salavatiha Z, Soleimani-Jelodar R, Jalilvand S. The role of endogenous retroviruses-K in human cancer. Rev Med Virol 2020; 30:1-13. [PMID: 32734655 DOI: 10.1002/rmv.2142] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/15/2022]
Abstract
It is known that human endogenous retroviruses (HERVs) constitute almost 8% of the human genome. Although the expression of HERVs from the human genome is tightly regulated, different exogenous and endogenous factors could trigger HERV activation. Aberrant expression of different HERVs may potentially cause a variety of diseases such as neurological and autoimmune diseases as well as cancer. It is suggested that HERV-K can induce cancer through different mechanisms that are discussed. The interplay between some tumor viruses and HERV-K seems to be a key player in progression of viral-associated cancers because elevated levels of Rec and Np9 proteins are observed in several cancers. The frequent over expression of HERV proteins and some specific antibodies in cancer cells could be considered as suitable prognostic and therapeutic biomarkers in diagnosis and treatment of cancers. The expression of HERV proteins in cancers and development of immune responses against them may also be used as targets for cancer immunotherapy. Further studies are warranted to evaluate the role of HERVs in cancer formation and use of different HERV proteins in developing new diagnostic and therapeutic approaches for cancer treatments.
Collapse
Affiliation(s)
- Zahra Salavatiha
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Rahim Soleimani-Jelodar
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Jalilvand
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Ryan F. Viral Symbiosis in the Origins and Evolution of Life with a Particular Focus on the Placental Mammals. Results Probl Cell Differ 2020; 69:3-24. [PMID: 33263867 DOI: 10.1007/978-3-030-51849-3_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Advances in understanding over the last decade or so highlight the need for a reappraisal of the role of viruses in relation to the origins and evolution of cellular life, as well as in the homeostasis of the biosphere on which all of life depends. The relevant advances have, in particular, revealed an important contribution of viruses to the evolution of the placental mammals, while also contributing key roles to mammalian embryogenesis, genomic evolution, and physiology. Part of this reappraisal will include the origins of viruses, a redefinition of their quintessential nature, and a suggestion as to how we might view viruses in relation to the tree of life.
Collapse
Affiliation(s)
- Frank Ryan
- The Academic Unit of Medical Education, Faculty of Medicine, Dentistry and Health, The University of Sheffield, Sheffield, UK.
| |
Collapse
|
6
|
Zhang M, Liang JQ, Zheng S. Expressional activation and functional roles of human endogenous retroviruses in cancers. Rev Med Virol 2019; 29:e2025. [PMID: 30614117 PMCID: PMC6590502 DOI: 10.1002/rmv.2025] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 10/26/2018] [Accepted: 11/05/2018] [Indexed: 12/26/2022]
Abstract
Human endogenous retroviruses (HERVs) are widely believed to be remnants of ancestral germ line infections by exogenous retroviruses. Although HERVs are deemed as “nonfunctional DNAs” due to loss of most of their viral protein coding capacity during evolution as part of the human genome, cumulative evidences are showing the expressional activation and potential roles of HERVs in diseases especially cancers. Work by other researchers and us has observed the dysregulation of HERVs in cancers, identified new HERV‐related genes, and revealed their potential importance in cancer development. Here, we summarized the current knowledge on the mechanisms of the expressional activation and functional roles of HERVs, with a focus on the H family HERV (HERV‐H), in carcinogenesis. HERV expression is regulated by external chemical or physical substances and exogenous virus infection, as well as host factors such as epigenetic DNA methylation, transcription factors, cytokines, and small RNAs. Diverse roles of HERVs have been proposed by acting in the forms of noncoding RNAs, proteins, and transcriptional regulators during carcinogenesis. However, much remains to be learnt about the contributions of HERVs to human cancers. More investigation is warranted to elucidate the functions of these “fossil remnants” yet important viral DNAs in the human genome.
Collapse
Affiliation(s)
- Mengwen Zhang
- The Department of Plastic and Reconstructive Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Cancer Institute, Second Affiliated Hospital, and Ministry of Education Key Laboratory of Cancer Prevention and Intervention, Zhejiang University School of Medicine, Hangzhou, China
| | - Jessie Qiaoyi Liang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Shu Zheng
- Cancer Institute, Second Affiliated Hospital, and Ministry of Education Key Laboratory of Cancer Prevention and Intervention, Zhejiang University School of Medicine, Hangzhou, China.,The Department of surgical oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
7
|
Zare M, Mostafaei S, Ahmadi A, Azimzadeh Jamalkandi S, Abedini A, Esfahani-Monfared Z, Dorostkar R, Saadati M. Human endogenous retrovirus env genes: Potential blood biomarkers in lung cancer. Microb Pathog 2018; 115:189-193. [DOI: 10.1016/j.micpath.2017.12.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 02/07/2023]
|
8
|
Bustamante Rivera YY, Brütting C, Schmidt C, Volkmer I, Staege MS. Endogenous Retrovirus 3 - History, Physiology, and Pathology. Front Microbiol 2018; 8:2691. [PMID: 29379485 PMCID: PMC5775217 DOI: 10.3389/fmicb.2017.02691] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/26/2017] [Indexed: 01/05/2023] Open
Abstract
Endogenous viral elements (EVE) seem to be present in all eukaryotic genomes. The composition of EVE varies between different species. The endogenous retrovirus 3 (ERV3) is one of these elements that is present only in humans and other Catarrhini. Conservation of ERV3 in most of the investigated Catarrhini and the expression pattern in normal tissues suggest a putative physiological role of ERV3. On the other hand, ERV3 has been implicated in the pathogenesis of auto-immunity and cancer. In the present review we summarize knowledge about this interesting EVE. We propose the model that expression of ERV3 (and probably other EVE loci) under pathological conditions might be part of a metazoan SOS response.
Collapse
Affiliation(s)
| | - Christine Brütting
- Department of Paediatrics I, Martin Luther University Halle-Wittenberg, Halle, Germany.,Department of Neurology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Caroline Schmidt
- Department of Paediatrics I, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Ines Volkmer
- Department of Paediatrics I, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Martin S Staege
- Department of Paediatrics I, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
9
|
Gim JA, Han K, Kim HS. Identification and expression analysis of human endogenous retrovirus Y (HERV-Y) in various human tissues. Arch Virol 2015; 160:2161-8. [PMID: 26088444 DOI: 10.1007/s00705-015-2486-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 06/07/2015] [Indexed: 11/29/2022]
Abstract
Human endogenous retroviruses (HERVs) account for approximately 8% of the human genome. To date, several HERV families have been identified in the human genome, with some being valid biomarkers for specific disease states. In this study, we have identified three HERV-Y elements in the human genome and characterized their structure and expression in various human tissues. New HERV-Y elements (HERV-Y101, HERV-Y102, and HERV-Y103) were detected on human chromosomes 8 and 13. In a pol-based phylogenetic tree, HERV-Y elements were closely grouped with HERV-I, -T, -E, and -R. The HERV-Y pol gene was expressed ubiquitously in all examined tissues, and it was dominantly expressed in the pons among the 12 different brain regions investigated. These results will allow future studies to elucidate the potential functional roles of HERVs in the brain and other tissues.
Collapse
Affiliation(s)
- Jeong-An Gim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, 609-735, Republic of Korea
| | | | | |
Collapse
|
10
|
Park SY, Jeong MS, Kim HS, Jang SB. Biochemical and Structural Characterization of Recombinant Human Endogenous Retrovirus-R. B KOREAN CHEM SOC 2015. [DOI: 10.1002/bkcs.10318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- So Young Park
- Department of Molecular Biology; College of Natural Sciences, Pusan National University; Busan 609-735 Korea
| | - Mi Suk Jeong
- Department of Molecular Biology; College of Natural Sciences, Pusan National University; Busan 609-735 Korea
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences; Pusan National University; Busan 609-735 Korea
| | - Se Bok Jang
- Department of Molecular Biology; College of Natural Sciences, Pusan National University; Busan 609-735 Korea
| |
Collapse
|
11
|
Eo J, Cha HJ, Imai H, Hirai H, Kim HS. Short communication: expression profiles of endogenous retroviral envelopes in Macaca mulatta (rhesus monkey). AIDS Res Hum Retroviruses 2014; 30:996-1000. [PMID: 24961963 DOI: 10.1089/aid.2014.0010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Endogenous retroviruses (ERVs), which are footprints of ancient germline infections, were inserted into the genome during the early stages of primate evolution. Human endogenous retroviruses (HERVs) occupy approximately 8% of the human genome. Although most ERV genes are defective, with large deletions, stop codons, and frameshifts in their open reading frames (ORFs), some full-length sequences containing long ORFs are expressed in several tissues and cancers. Several envelope glycoproteins that are encoded by env genes have retained some characteristics of their ancestral infectious viruses. These glycoproteins play essential physiological roles in the organs in which they are expressed. Previous studies have demonstrated the expression of ERV env at the mRNA level in cells and tissues rather than at the protein level, which is more difficult to detect. However, it is not known whether Env is functionally conserved in primates. To understand the possible role of Env in primates, we examined the expression of the env genes of four ERVs (ERV-R, -K, -W, and -FRD) at the protein as well as mRNA levels in various tissues of the rhesus monkey. The ERV env gene products were observed at moderate to high levels in each tissue that was examined and showed tissue-specific expression patterns. Our data suggest a biologically important role for retroviral proteins in healthy tissues of the rhesus monkey.
Collapse
Affiliation(s)
- Jungwoo Eo
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, Republic of Korea
| | - Hee-Jae Cha
- Department of Parasitology and Genetics, College of Medicine, Kosin University, Busan, Republic of Korea
| | - Hiroo Imai
- Molecular Biology Section, Department of Cellular and Molecular Biology, Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
| | - Hirohisa Hirai
- Molecular Biology Section, Department of Cellular and Molecular Biology, Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
12
|
Macaulay EC, Roberts HE, Cheng X, Jeffs AR, Baguley BC, Morison IM. Retrotransposon hypomethylation in melanoma and expression of a placenta-specific gene. PLoS One 2014; 9:e95840. [PMID: 24759919 PMCID: PMC3997481 DOI: 10.1371/journal.pone.0095840] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 03/31/2014] [Indexed: 11/18/2022] Open
Abstract
In the human placenta, DNA hypomethylation permits the expression of retrotransposon-derived genes that are normally silenced by methylation in somatic tissues. We previously identified hypomethylation of a retrotransposon-derived transcript of the voltage-gated potassium channel gene KCNH5 that is expressed only in human placenta. However, an RNA sequence from this placental-specific transcript has been reported in melanoma. This study examined the promoter methylation and expression of the retrotransposon-derived KCNH5 transcript in 25 melanoma cell lines to determine whether the acquisition of 'placental' epigenetic marks is a feature of melanoma. Methylation and gene expression analysis revealed hypomethylation of this retrotransposon in melanoma cell lines, particularly in those samples that express the placental KCNH5 transcript. Therefore we propose that hypomethylation of the placental-specific KCNH5 promoter is frequently associated with KCNH5 expression in melanoma cells. Our findings show that melanoma can develop hypomethylation of a retrotransposon-derived gene; a characteristic notably shared with the normal placenta.
Collapse
Affiliation(s)
- Erin C. Macaulay
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- Gravida: National Centre for Growth and Development, Auckland, New Zealand
- * E-mail:
| | - Hester E. Roberts
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- Gravida: National Centre for Growth and Development, Auckland, New Zealand
| | - Xi Cheng
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Aaron R. Jeffs
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Bruce C. Baguley
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Ian M. Morison
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- Gravida: National Centre for Growth and Development, Auckland, New Zealand
| |
Collapse
|
13
|
Fei C, Atterby C, Edqvist PH, Pontén F, Zhang WW, Larsson E, Ryan FP. Detection of the human endogenous retrovirus ERV3-encoded Env-protein in human tissues using antibody-based proteomics. J R Soc Med 2013; 107:22-9. [PMID: 24262892 DOI: 10.1177/0141076813509981] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES There is growing evidence to suggest that human endogenous retroviruses (HERVs) have contributed to human evolution, being expressed in development, normal physiology and disease. A key difficulty in the scientific evaluation of this potential viral contribution is the accurate demonstration of virally expressed protein in specific human cells and tissues. In this study, we have adopted the endogenous retrovirus, ERV3, as our test model in developing a reliable high-capacity methodology for the expression of such endogenous retrovirus-coded protein. DESIGN Two affinity-purified polyclonal antibodies to ERV3 Env-encoded protein were generated to detect the corresponding protein expression pattern in specific human cells, tissues and organs. PARTICIPANTS Sampling included normal tissues from 144 individuals ranging from childhood to old age. This included more than forty different tissues and organs and some 216 different cancer tissues representing the twenty commonest forms of human cancer. SETTING The Rudbeck Laboratory, Uppsala University and Uppsala University Hospital, Uppsala, Sweden. MAIN OUTCOME MEASURES The potential expression at likely physiological level of the ERV3Env encoded protein in a wide range of human cells, tissues and organs. RESULTS We found that ERV3 encoded Env protein is expressed at substantive levels in placenta, testis, adrenal gland, corpus luteum, Fallopian tubes, sebaceous glands, astrocytes, bronchial epithelium and the ducts of the salivary glands. Substantive expression was also seen in a variety of epithelial cells as well as cells known to undergo fusion in inflammation and in normal physiology, including fused macrophages, myocardium and striated muscle. This contrasted strongly with the low levels expressed in other tissues types. These findings suggest that this virus plays a significant role in human physiology and may also play a possible role in disease. CONCLUSION This technique can now be extended to the study of other HERV genomes within the human chromosomes that may have contributed to human evolution, physiology and disease.
Collapse
Affiliation(s)
- Chen Fei
- Third Military Medical University, Chongqing 400300, China
| | | | | | | | | | | | | |
Collapse
|
14
|
Giron LB, Ramos da Silva S, Barbosa AN, Monteiro de Barros Almeida RA, Rosário de Souza LD, Elgui de Oliveira D. Impact of Epstein-Barr virus load, virus genotype, and frequency of the 30 bp deletion in the viral BNLF-1 gene in patients harboring the human immunodeficiency virus. J Med Virol 2013; 85:2110-8. [PMID: 24014234 DOI: 10.1002/jmv.23722] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2013] [Indexed: 12/13/2022]
Abstract
Patients infected with the human immunodeficiency virus (HIV) are at higher risk of developing Epstein-Barr Virus (EBV)-associated lymphomas. The usefulness of monitoring EBV in peripheral blood mononuclear cells (PBMCs) of patients infected with HIV has not been established. The aim of this study was to evaluate the EBV viral load in PBMCs, the frequency of viral genotypes, and the presence of the 30-bp deletion in the BNLF-1 gene. DNA samples from 156 patients attending the HIV/AIDS Day Clinic at Botucatu School of Medicine, Sao Paulo State University were evaluated. The EBV viral load was detectable by real time PCR in 123/156 (78.8%) cases and was higher in patients not receiving antiretroviral treatment or under therapeutic failure than in patients under successful highly active antiretroviral therapy (HAART) (P = 0.0076). Overall, the profile of patients with high EBV viral load included elevated HIV viremia (P = 0.0005), longer time of HIV diagnosis (P = 0.0026), and increased levels of T CD8 (+) lymphocytes (P = 0.0159). The successful amplification of the EBNA-2 gene by nested-PCR was achieved in 95 of 123 (77.2%) cases, of which 75.8% were EBV-1, 9.5% EBV-2, and 14.7% were co-infected with both EBV-1 and -2. The analysis of the BNLF-1 gene was possible in 99 of 123 (80.5%) cases, of which 50.5% had the 30-bp deletion. EBV-1 was more common than EBV-2, which may reflect the fact that the cohort was predominantly Caucasian and heterosexual.
Collapse
Affiliation(s)
- Leila Bertoni Giron
- Department of Pathology, Botucatu School of Medicine, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | | | | | | | | | | |
Collapse
|
15
|
Lee JR, Ahn K, Kim YJ, Jung YD, Kim HS. Radiation-induced human endogenous retrovirus (HERV)-R env gene expression by epigenetic control. Radiat Res 2012; 178:379-84. [PMID: 23004920 DOI: 10.1667/rr2888.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
It is commonly accepted that ionizing radiation induces genomic instability by changes in genomic structure, epigenetic regulation and gene expression. Human endogenous retroviruses (HERV)-R also are often differentially expressed between normal and disease tissues under unstable genomic conditions and are implicated in the pathogenesis of several human diseases. To understand the influence of ionizing radiation on HERV-R expression, we performed quantitative reverse transcription-polymerase chain reaction (RT-PCR) analyses using γ-irradiated normal human cells. Compared to nonirradiated cells, HERV-R expression was up-regulated in γ-irradiated cells. The regulatory mechanism of HERV-R expression in irradiated cells was investigated by methylation analyses of HERV-R 5'LTRs and treatment with garcinol. These data indicated that the up-regulated transcription of HERV-R may be regulated by radiation-induced epigenetic changes induced by histone modification, and thus could be of great importance for understanding the relationship between radiation-induced biological effects and transposable elements.
Collapse
Affiliation(s)
- Ja-Rang Lee
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea
| | | | | | | | | |
Collapse
|
16
|
Goering W, Ribarska T, Schulz WA. Selective changes of retroelement expression in human prostate cancer. Carcinogenesis 2011; 32:1484-92. [PMID: 21828060 DOI: 10.1093/carcin/bgr181] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Retroelements constitute a large part of the human genome. These sequences are mostly silenced in normal cells, but genome-wide DNA hypomethylation in cancers might lead to their re-expression. Whether this re-expression really occurs in human cancers is largely unkown. We therefore investigated expression and DNA methylation of several classes of retroelements in human prostate cancer tissues and cell lines by quantitative reverse transcription-polymerase chain reaction and pyrosequencing, respectively. The most striking finding was strong and generalized increased expression of the HERV-K_22q11.23 provirus in cancers, including de novo expression of a spliced accessory Np9 transcript in some tumors. In parallel, DNA methylation in the long terminal repeat (LTR) decreased. Conversely, HERVK17 expression was significantly diminished in cancer tissues, but this decrease was unrelated to LTR methylation. Expression of both proviruses was restricted to androgen-responsive prostate cancer cell lines and LTRs sequences containing steroid hormone-responsive elements bound the androgen receptor and conferred androgen responsiveness to reporter constructs. Expression of LINE-1 5'-untranslated region (UTR) and 3'-UTR sequences in prostate cancers rather decreased, despite significant hypomethylation of the internal LINE-1 promoter. Increased expression of the young AluYa5 and AluYb8 families was restricted to individual tumors. Our findings demonstrate a surprising specificity of changes in expression and DNA methylation of retroelements in prostate cancer. In particular, LINE-1 hypomethylation does not lead to generalized overexpression, but specific human endogenous retrovirus-K proviruses display conspicuous changes in their expression hinting at significant functions during prostate carcinogenesis.
Collapse
Affiliation(s)
- Wolfgang Goering
- Department of Urology, Heinrich Heine University, Düsseldorf, Germany
| | | | | |
Collapse
|
17
|
Ryan FP. An alternative approach to medical genetics based on modern evolutionary biology. Part 2: retroviral symbiosis. J R Soc Med 2009; 102:324-31. [PMID: 19679734 DOI: 10.1258/jrsm.2009.090183] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Frank P Ryan
- Sheffield Primary Care Trust and Department of Animal and Plant Sciences, Sheffield University, Sheffield, UK.
| |
Collapse
|
18
|
Ahn K, Kim HS. Structural and quantitative expression analyses of HERV gene family in human tissues. Mol Cells 2009; 28:99-103. [PMID: 19669627 DOI: 10.1007/s10059-009-0107-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 06/11/2009] [Accepted: 06/24/2009] [Indexed: 10/20/2022] Open
Abstract
Human endogenous retroviruses (HERVs) have been implicated in the pathogenesis of several human diseases as multi-copy members in the human genome. Their gene expression profiling could provide us with important insights into the pathogenic relationship between HERVs and cancer. In this study, we have evaluated the genomic structure and quantitatively determined the expression patterns in the env gene of a variety of HERV family members located on six specific loci by the RetroTector 10 program, as well as real-time RT-PCR amplification. The env gene transcripts evidenced significant differences in the human tumor/normal adjacent tissues (colon, liver, uterus, lung and testis). As compared to the adjacent normal tissues, high levels of expression were noted in testis tumor tissues for HERV-K, in liver and lung tumor tissues for HERV-R, in liver, lung, and testis tumor tissues for HERV-H, and in colon and liver tumor tissues for HERV-P. These data warrant further studies with larger groups of patients to develop biomarkers for specific human cancers.
Collapse
MESH Headings
- Chromosome Mapping
- Chromosomes, Human, Pair 12/genetics
- Chromosomes, Human, Pair 14/genetics
- Chromosomes, Human, Pair 2/genetics
- Chromosomes, Human, Pair 7/genetics
- Colon/virology
- Endogenous Retroviruses/classification
- Endogenous Retroviruses/genetics
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Viral
- Genome, Human/genetics
- Genome, Viral/genetics
- Humans
- Liver/virology
- Lung/virology
- Male
- Neoplasms/genetics
- Neoplasms/pathology
- Neoplasms/virology
- Reverse Transcriptase Polymerase Chain Reaction
- Species Specificity
- Testis/virology
- Uterus/virology
- Viral Envelope Proteins/genetics
Collapse
Affiliation(s)
- Kung Ahn
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, 609-735, Korea
| | | |
Collapse
|
19
|
Abstract
We are in the midst of a revolution in the genomic sciences that will forever change the way we view biology and medicine, particularly with respect to brain form, function, development, evolution, plasticity, neurological disease pathogenesis and neural regenerative potential. The application of epigenetic principles has already begun to identify and characterize previously unrecognized molecular signatures of disease latency, onset and progression, mechanisms underlying disease pathogenesis, and responses to new and evolving therapeutic modalities. Moreover, epigenomic medicine promises to usher in a new era of neurological therapeutics designed to promote disease prevention and recovery of seemingly lost neurological function via reprogramming of stem cells, redirecting cell fate decisions and dynamically modulating neural network plasticity and connectivity.
Collapse
Affiliation(s)
- Mark F Mehler
- Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
20
|
Reiss D, Zhang Y, Mager DL. Widely variable endogenous retroviral methylation levels in human placenta. Nucleic Acids Res 2007; 35:4743-54. [PMID: 17617638 PMCID: PMC1950553 DOI: 10.1093/nar/gkm455] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
It is generally assumed that transposable elements, including endogenous retroviruses (ERVs), are silenced by DNA methylation/chromatin structure in mammalian cells. However, there have been very few experimental studies to examine the methylation status of human ERVs. In this study, we determined and compared the methylation status of the 5′ long terminal repeats (LTRs) of different copies of the human endogenous retrovirus (HERV) family HERV-E, which are inserted in various genomic contexts. We found that three HERV-E LTRs which function as alternative gene promoters in placenta are unmethylated in that tissue but heavily methylated in blood cells, where these LTRs are not active promoters. This difference is not solely due to global hypomethylation in placenta, since two general measures of methylation levels of HERV-E and HERV-K LTRs suggest only 10–15% lower overall HERV methylation in placenta compared to blood. Comparisons between methylation levels of the LTR-derived gene promoters and six random HERV-E LTRs in placenta showed that the former display significantly lower methylation levels than random LTRs. Moreover, the differences in methylation between LTRs cannot always be explained by their genomic environment, since methylation of flanking sequences can be very different from methylation of the LTR itself.
Collapse
Affiliation(s)
- Daphne Reiss
- Terry Fox Laboratory, British Columbia Cancer Research Centre, Vancouver, BC and Department of Medical Genetics, University of British Columbia, Canada
| | - Ying Zhang
- Terry Fox Laboratory, British Columbia Cancer Research Centre, Vancouver, BC and Department of Medical Genetics, University of British Columbia, Canada
| | - Dixie L. Mager
- Terry Fox Laboratory, British Columbia Cancer Research Centre, Vancouver, BC and Department of Medical Genetics, University of British Columbia, Canada
- *To whom correspondence should be addressed.+1-604-675-8139+1-604-877-0712
| |
Collapse
|