1
|
Cavalleri E, Cabri A, Soto-Gomez M, Bonfitto S, Perlasca P, Gliozzo J, Callahan TJ, Reese J, Robinson PN, Casiraghi E, Valentini G, Mesiti M. An ontology-based knowledge graph for representing interactions involving RNA molecules. Sci Data 2024; 11:906. [PMID: 39174566 PMCID: PMC11341713 DOI: 10.1038/s41597-024-03673-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
The "RNA world" represents a novel frontier for the study of fundamental biological processes and human diseases and is paving the way for the development of new drugs tailored to each patient's biomolecular characteristics. Although scientific data about coding and non-coding RNA molecules are constantly produced and available from public repositories, they are scattered across different databases and a centralized, uniform, and semantically consistent representation of the "RNA world" is still lacking. We propose RNA-KG, a knowledge graph (KG) encompassing biological knowledge about RNAs gathered from more than 60 public databases, integrating functional relationships with genes, proteins, and chemicals and ontologically grounded biomedical concepts. To develop RNA-KG, we first identified, pre-processed, and characterized each data source; next, we built a meta-graph that provides an ontological description of the KG by representing all the bio-molecular entities and medical concepts of interest in this domain, as well as the types of interactions connecting them. Finally, we leveraged an instance-based semantically abstracted knowledge model to specify the ontological alignment according to which RNA-KG was generated. RNA-KG can be downloaded in different formats and also queried by a SPARQL endpoint. A thorough topological analysis of the resulting heterogeneous graph provides further insights into the characteristics of the "RNA world". RNA-KG can be both directly explored and visualized, and/or analyzed by applying computational methods to infer bio-medical knowledge from its heterogeneous nodes and edges. The resource can be easily updated with new experimental data, and specific views of the overall KG can be extracted according to the bio-medical problem to be studied.
Collapse
Affiliation(s)
- Emanuele Cavalleri
- AnacletoLab, Computer Science Department, University of Milan, Milan, 20133, Italy
| | - Alberto Cabri
- AnacletoLab, Computer Science Department, University of Milan, Milan, 20133, Italy
| | - Mauricio Soto-Gomez
- AnacletoLab, Computer Science Department, University of Milan, Milan, 20133, Italy
| | - Sara Bonfitto
- AnacletoLab, Computer Science Department, University of Milan, Milan, 20133, Italy
| | - Paolo Perlasca
- AnacletoLab, Computer Science Department, University of Milan, Milan, 20133, Italy
| | - Jessica Gliozzo
- AnacletoLab, Computer Science Department, University of Milan, Milan, 20133, Italy
| | - Tiffany J Callahan
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Justin Reese
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Peter N Robinson
- Berlin Institute of Health - Charité, Universitätsmedizin, Berlin, 13353, Germany
- ELLIS, European Laboratory for Learning and Intelligent Systems, Munich, Germany
| | - Elena Casiraghi
- AnacletoLab, Computer Science Department, University of Milan, Milan, 20133, Italy
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- ELLIS, European Laboratory for Learning and Intelligent Systems, Munich, Germany
| | - Giorgio Valentini
- AnacletoLab, Computer Science Department, University of Milan, Milan, 20133, Italy
- ELLIS, European Laboratory for Learning and Intelligent Systems, Munich, Germany
| | - Marco Mesiti
- AnacletoLab, Computer Science Department, University of Milan, Milan, 20133, Italy.
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
2
|
Jin Z, Huang Z, Wu C, Zhang F, Gao Y, Guo S, Tao X, Lu S, Zhang J, Huang J, Zhai Y, Shi R, Ye P, Wu J. Molecular insights into gastric cancer: The impact of TGFBR2 and hsa-mir-107 revealed by microarray sequencing and bioinformatics. Comput Biol Med 2024; 172:108221. [PMID: 38452473 DOI: 10.1016/j.compbiomed.2024.108221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/08/2024] [Accepted: 02/25/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Gastric carcinoma (GC) remains a significant therapeutic challenge, garnering widespread attention. Oxymatrine (OMT), an active component of the traditional Chinese medicine compound Kushen injection (CKI), has shown promising results in combination with chemotherapy for the treatment of GC. However, the molecular mechanisms underlying OMT's therapeutic effects in GC have yet to be elucidated. METHODS The transcriptomic expression data of HGC-27 post-OMT intervention were obtained through microarray sequencing, while the miRNA and mRNA sequencing data for GC patients were sourced from the TCGA database. The mechanism of OMT intervention in GC is analyzed in multiple aspects, including Protein-Protein Interactions (PPI), Competitive Endogenous RNA (ceRNA) networks, correlation and co-expression analyses, immune infiltration, and clinical implications. RESULTS By analyzing key modules, five critical mRNAs were identified, and their interacting miRNAs were predicted to construct a ceRNA network. Among these, TGFBR2 and hsa-miR-107 have correlations or co-expression relationships with other genes in the network. They are differentially expressed in most other cancers, associated with prognosis, and have diagnostic value. TGFBR2 also exhibits immune infiltration phenomena, and its high expression is linked to poor patient prognosis. Low expression of hsa-miR-107 is associated with poor patient prognosis. OMT may act on the TGFβ/Smad signaling pathway or negatively regulate the WNT signaling pathway through the hsa-miR-107/BTRC axis, thereby inhibiting the onset and progression of GC. CONCLUSION The mechanisms of OMT intervention in GC are diverse, TGFBR2 and hsa-miR-107 may serve as prognostic molecular biomarkers or potential therapeutic targets.
Collapse
Affiliation(s)
- Zhengsen Jin
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhihong Huang
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Chao Wu
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Fanqin Zhang
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yifei Gao
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Siyu Guo
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaoyu Tao
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Shan Lu
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jingyuan Zhang
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jiaqi Huang
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yiyan Zhai
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Rui Shi
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Peizhi Ye
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jiarui Wu
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
3
|
Bogaczyk A, Zawlik I, Zuzak T, Kluz M, Potocka N, Kluz T. The Role of miRNAs in the Development, Proliferation, and Progression of Endometrial Cancer. Int J Mol Sci 2023; 24:11489. [PMID: 37511248 PMCID: PMC10380838 DOI: 10.3390/ijms241411489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/30/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Endometrial cancer is one of the most common cancers in developing and developed countries. Although the detection of this cancer is high at the early stages, there is still a lack of markers to monitor the disease, its recurrence, and metastasis. MiRNAs are in charge of the post-transcriptional regulation of genes responsible for the most important biological processes, which is why they are increasingly used as biomarkers in many types of cancer. Many studies have demonstrated the influence of miRNAs on the processes related to carcinogenesis. The characteristics of miRNA expression profiles in endometrial cancer will allow their use as diagnostic and prognostic biomarkers. This paper focuses on the discussion of selected miRNAs based on the literature and their role in the development of endometrial cancer.
Collapse
Affiliation(s)
- Anna Bogaczyk
- Department of Gynecology, Gynecology Oncology and Obstetrics, Fryderyk Chopin University Hospital, F.Szopena 2, 35-055 Rzeszow, Poland; (A.B.); (T.Z.); (T.K.)
| | - Izabela Zawlik
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, Medical College of Rzeszow University, Warzywna 1a, 35-959 Rzeszow, Poland;
- Institute of Medical Sciences, Medical College of Rzeszow University, Kopisto 2a, 35-959 Rzeszow, Poland
| | - Tomasz Zuzak
- Department of Gynecology, Gynecology Oncology and Obstetrics, Fryderyk Chopin University Hospital, F.Szopena 2, 35-055 Rzeszow, Poland; (A.B.); (T.Z.); (T.K.)
| | - Marta Kluz
- Department of Pathology, Fryderyk Chopin University Hospital, F.Szopena 2, 35-055 Rzeszow, Poland;
| | - Natalia Potocka
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, Medical College of Rzeszow University, Warzywna 1a, 35-959 Rzeszow, Poland;
| | - Tomasz Kluz
- Department of Gynecology, Gynecology Oncology and Obstetrics, Fryderyk Chopin University Hospital, F.Szopena 2, 35-055 Rzeszow, Poland; (A.B.); (T.Z.); (T.K.)
- Institute of Medical Sciences, Medical College of Rzeszow University, Kopisto 2a, 35-959 Rzeszow, Poland
| |
Collapse
|
4
|
Mathur P, Rani V. Investigating microRNAs in diabetic cardiomyopathy as tools for early detection and therapeutics. Mol Cell Biochem 2023; 478:229-240. [PMID: 35779226 DOI: 10.1007/s11010-022-04473-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 05/04/2022] [Indexed: 02/02/2023]
Abstract
To profile microRNAs population of glucose-induced cardiomyoblast cell line and identify the differentially expressed microRNAs and their role under pre-diabetes and diabetes condition in vitro. Rat fetal ventricular cardiomyoblast cell line H9c2 was treated with D-glucose to mimic pre-diabetic, diabetic, and high-glucose conditions. Alteration in cellular, nuclear morphology, and change in ROS generation was analyzed through fluorescent staining. Small RNA sequencing was performed using Illumina NextSeq 550 sequencer and was validated using stem-loop qRT-PCR. A large number (~ 100) differential miRNAs were detected in each treated samples as compared to control; however, a similar expression pattern was observed between pre-diabetes and diabetes conditions with the exception for miR-429, miR-101b-5p, miR-503-3p, miR-384-5p, miR-412-5p, miR-672-5p, and miR-532-3p. Functional annotation of differential expressed target genes revealed their involvement in significantly enriched key pathways associated with diabetic cardiomyopathy. For the first time, we report the differential expression of miRNAs (miR-1249, miR-3596d, miR- 3586-3p, miR-7b-3p, miR-191, miR-330-3p, miR-328a, let7i-5p, miR-146-3p, miR-26a-3p) in diabetes-induced cardiac cells. Hyperglycemia threatens the cell homeostasis by dysregulation of miRNAs that begins at a glucose level 10 mM and remains undetected. Analysis of differential expressed miRNAs in pre-diabetes and diabetes conditions and their role in regulatory mechanisms of diabetic cardiomyopathy holds high potential in the direction of using miRNAs as minimally invasive diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Priyanka Mathur
- Transcriptome Laboratory, Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62, Noida, Uttar Pradesh, 210309, India
| | - Vibha Rani
- Transcriptome Laboratory, Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62, Noida, Uttar Pradesh, 210309, India.
| |
Collapse
|
5
|
Identification of let-7f and miR-338 as plasma-based biomarkers for sporadic amyotrophic lateral sclerosis using meta-analysis and empirical validation. Sci Rep 2022; 12:1373. [PMID: 35082326 PMCID: PMC8791978 DOI: 10.1038/s41598-022-05067-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 01/06/2022] [Indexed: 12/11/2022] Open
Abstract
AbstractAmyotrophic lateral sclerosis (ALS) is a lethal neurodegenerative disease that in most cases occurs sporadic (sALS). The disease is not curable, and its pathogenesis mechanisms are not well understood yet. Given the intricacy of underlying molecular interactions and heterogeneity of ALS, the discovery of molecules contributing to disease onset and progression will open a new avenue for advancement in early diagnosis and therapeutic intervention. Here we conducted a meta-analysis of 12 circulating miRNA profiling studies using the robust rank aggregation (RRA) method, followed by enrichment analysis and experimental verification. We identified miR-451a and let-7f-5p as meta-signature miRNAs whose targets are involved in critical pathogenic pathways underlying ALS, including ‘FoxO signaling pathway’, ‘MAPK signaling pathway’, and ‘apoptosis’. A systematic review of 7 circulating gene profiling studies elucidated that 241 genes up-regulated in sALS circulation with concomitant being targets of the meta-signature miRNAs. Protein–protein interaction (PPI) network analysis of the candidate targets using MCODE algorithm revealed the main subcluster is involved in multiple cascades eventually leads apoptosis, including ‘positive regulation of neuron apoptosis. Besides, we validated the meta-analysis results using RT-qPCR. Indeed, relative expression analysis verified let-7f-5p and miR-338-3p as significantly down-regulated and up-regulated biomarkers in the plasma of sALS patients, respectively. Receiver operating characteristic (ROC) analysis also highlighted the let-7f-5p and miR-338-3p potential as robustness plasma biomarkers for diagnosis and potential therapeutic targets of sALS disease.
Collapse
|
6
|
miRNA:miRNA Interactions: A Novel Mode of miRNA Regulation and Its Effect On Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1385:241-257. [DOI: 10.1007/978-3-031-08356-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
7
|
Pan T, Gao Y, Xu G, Li Y. Bioinformatics Methods for Modeling microRNA Regulatory Networks in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1385:161-186. [DOI: 10.1007/978-3-031-08356-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
8
|
Priya S, Kaur E, Kulshrestha S, Pandit A, Gross I, Kumar N, Agarwal H, Khan A, Shyam R, Bhagat P, Prabhu JS, Nagarajan P, Deo SVS, Bajaj A, Freund JN, Mukhopadhyay A, Sengupta S. CDX2 inducible microRNAs sustain colon cancer by targeting multiple DNA damage response pathway factors. J Cell Sci 2021; 134:jcs258601. [PMID: 34369561 DOI: 10.1242/jcs.258601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/05/2021] [Indexed: 12/15/2022] Open
Abstract
Meta-analysis of transcripts in colon adenocarcinoma patient tissues led to the identification of a DNA damage responsive miR signature called DNA damage sensitive miRs (DDSMs). DDSMs were experimentally validated in the cancerous colon tissues obtained from an independent cohort of colon cancer patients and in multiple cellular systems with high levels of endogenous DNA damage. All the tested DDSMs were transcriptionally upregulated by a common intestine-specific transcription factor, CDX2. Reciprocally, DDSMs were repressed via the recruitment of HDAC1/2-containing complexes onto the CDX2 promoter. These miRs downregulated multiple key targets in the DNA damage response (DDR) pathway, namely BRCA1, ATM, Chk1 (also known as CHEK1) and RNF8. CDX2 directly regulated the DDSMs, which led to increased tumor volume and metastasis in multiple preclinical models. In colon cancer patient tissues, the DDSMs negatively correlated with BRCA1 levels, were associated with decreased probability of survival and thereby could be used as a prognostic biomarker. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Swati Priya
- Signal Transduction Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Ekjot Kaur
- Signal Transduction Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Swati Kulshrestha
- Signal Transduction Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Awadhesh Pandit
- Signal Transduction Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Isabelle Gross
- Université de Strasbourg, Inserm, IRFAC UMR_S1113, FMTS, 67200 Strasbourg, France
| | - Nitin Kumar
- Signal Transduction Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Himanshi Agarwal
- Signal Transduction Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Aamir Khan
- Signal Transduction Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Radhey Shyam
- Signal Transduction Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Prakash Bhagat
- Department of Surgical Oncology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Jyothi S Prabhu
- Division of Molecular Medicine, St. John's Research Institute, Bengaluru, Karnataka 560034, India
| | - Perumal Nagarajan
- Signal Transduction Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - S V S Deo
- Department of Surgical Oncology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Jean-Noël Freund
- Université de Strasbourg, Inserm, IRFAC UMR_S1113, FMTS, 67200 Strasbourg, France
| | - Arnab Mukhopadhyay
- Signal Transduction Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Sagar Sengupta
- Signal Transduction Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
9
|
Abstract
Canonically, microRNAs (miRNAs) control mRNA expression. However, studies have shown that miRNAs are also capable of targeting non-coding RNAs, including long non-coding RNAs and miRNAs. The latter, termed a miRNA:miRNA interaction, is a form of self-regulation. In this Review, we discuss the three main modes of miRNA:miRNA regulation: direct, indirect and global interactions, and their implications in cancer biology. We also discuss the cell-type-specific nature of miRNA:miRNA interactions, current experimental approaches and bioinformatic techniques, and how these strategies are not sufficient for the identification of novel miRNA:miRNA interactions. The self-regulation of miRNAs and their impact on gene regulation has yet to be fully understood. Investigating this hidden world of miRNA self-regulation will assist in discovering novel regulatory mechanisms associated with disease pathways.
Collapse
Affiliation(s)
- Meredith Hill
- School of Biomedical Engineering, Centre for Health Technologies, Faculty of Engineering and IT, The University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Nham Tran
- School of Biomedical Engineering, Centre for Health Technologies, Faculty of Engineering and IT, The University of Technology Sydney, Sydney, NSW 2007, Australia.,The Sydney Head and Neck Cancer Institute, Sydney Cancer Centre, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| |
Collapse
|
10
|
Du J, Zhang W, Li XH, Li YJ. Bioinformatics analysis of small RNAs in Helicobacter pylori and the role of NAT‑67 under tinidazole treatment. Mol Med Rep 2020; 22:1227-1234. [PMID: 32626984 PMCID: PMC7339756 DOI: 10.3892/mmr.2020.11232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 04/30/2020] [Indexed: 11/27/2022] Open
Abstract
Helicobacter pylori (Hp) infection is a major cause of gastrointestinal disease. However, the pathogenesis of gastric mucosa injury by Hp has remained elusive. Small non-coding RNA (sRNA) is a type of widespread RNA in prokaryotic organisms and regulates bacterial growth, reproduction and virulence. In the present study, Hp sRNA profiles were generated to reveal the sequences and possible functions of sRNA by bioinformatics analysis. The role of sRNA in tinidazole (TNZ) treatment was also explored. Total sRNAs of HP26695 were sequenced using an Illumina HiSeq2000. Detected Tags were then compared with a known sRNA database to build an sRNA profile. Reverse transcription-quantitative (RT-q)PCR products were sequenced directly and agarose gel electrophoresis was used to identify NAT-67 and 5′ureB-sRNA in HP. Furthermore, HP was treated with TNZ for 6, 12 and 24 h. The bacterial concentration was measured, the expression of NAT-67, 5′ureB-sRNA and ceuE was determined by RT-qPCR and superoxide dismutase (SOD) activity and reactive oxygen species (ROS) production were detected. A total of 163 sRNA tags were predicted in Hp through bioinformatics analysis. Among them, 35 tags were evolutionarily aconserved in different Hp strains. By target prediction, it was indicated that certain candidate sRNAs were associated with bacterial oxidative stress, virulence and chemotaxis. It was also observed that NAT-67 and 5′ureB-sRNA were downregulated in TNZ-treated HP. TNZ treatment inhibited the growth of Hp, which was accompanied by downregulation of ceuE and SOD activity, as well as upregulation of ROS. RNA sequencing and bioinformatics are valuable in predicting the expression profile and function of sRNA in HP. sRNA-targeted genes may be associated with virulence, oxidative stress and chemokines. Downregulation of NAT-67 by TNZ may be involved in Hp oxidative stress regulation, which may comprise one of the mechanisms of the antibacterial effects of TNZ.
Collapse
Affiliation(s)
- Jie Du
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Wang Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, P.R. China
| | - Xiao-Hui Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, P.R. China
| | - Yuan-Jian Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, P.R. China
| |
Collapse
|
11
|
Kaneda-Ikeda E, Iwata T, Mizuno N, Nagahara T, Kajiya M, Takeda K, Hirata R, Ishida S, Yoshioka M, Fujita T, Kawaguchi H, Kurihara H. Periodontal ligament cells regulate osteogenesis via miR-299-5p in mesenchymal stem cells. Differentiation 2020; 112:47-57. [PMID: 31951879 DOI: 10.1016/j.diff.2020.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/29/2019] [Accepted: 01/06/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND The periodontal ligament contains periodontal ligament cells, which is a heterogeneous cell population, and includes progenitor cells that can differentiate into osteoblasts/cementoblasts. Mesenchymal stem cells (MSCs) can differentiate into various cells and can be used for periodontal regenerative therapy. Therefore, transplanted MSCs can be affected by humoral factors from periodontal ligament cells via the transcription factors or microRNAs (miRNAs) of MSCs. In addition, periostin (POSTN) is secreted from HPL cells and can regulate periodontal regeneration and homeostasis. To clarify the regulatory mechanism of humoral factors from periodontal ligament cells, we attempted to identify key genes, specifically microRNAs, involved in this process. METHODS Human MSCs (hMSCs) were indirectly co-cultured with human periodontal ligament cells (HPL cells) and then evaluated for osteogenesis, undifferentiated MSCs markers, and miRNA profiles. Furthermore, hMSCs were indirectly co-cultured with HPL cells in the presence of anti-POSTN monoclonal antibody (anti-POSTN Ab) to block the effect of POSTN from HPL cells, and then evaluated for osteogenesis or undifferentiated MSC markers. Moreover, hMSCs showed alterations in miRNA expression or cultured with HPL were challenged with POSTN during osteogenesis, and cells were evaluated for osteogenesis or undifferentiated MSC markers. RESULTS hMSCs co-cultured with HPL cells showed suppressed osteogenesis and characteristic expression of SOX11, an undifferentiated MSC marker, as well as miR-299-5p. Overexpression of miR-299-5p regulated osteogenesis and SOX11 expression as observed with indirect co-culture with HPL cells. Furthermore, MSCs co-cultured with HPL cells were recovered from the suppression of osteogenesis and SOX11 mRNA expression by anti-POSTN Ab. However, POSTN induced miR-299-5p and SOX11 expression, and enhanced osteogenesis. CONCLUSION Humoral factors from HPL cells suppressed osteogenesis in hMSCs. The suppressive effect was mediated by miR-299-5p and SOX11 in hMSCs.
Collapse
Affiliation(s)
- Eri Kaneda-Ikeda
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan
| | - Tomoyuki Iwata
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan.
| | - Noriyoshi Mizuno
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan
| | - Takayoshi Nagahara
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan
| | - Mikihito Kajiya
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan
| | - Katsuhiro Takeda
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan; Department of Biological Endodontics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan
| | - Reika Hirata
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan
| | - Shu Ishida
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan
| | - Minami Yoshioka
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan
| | - Tsuyoshi Fujita
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan
| | - Hiroyuki Kawaguchi
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan; Department of Department of General Dentistry, Hiroshima University Hospital, Hiroshima, 734-8553, Japan
| | - Hidemi Kurihara
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan
| |
Collapse
|
12
|
Altered microRNA and target gene expression related to Tetralogy of Fallot. Sci Rep 2019; 9:19063. [PMID: 31836860 PMCID: PMC6911057 DOI: 10.1038/s41598-019-55570-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/29/2019] [Indexed: 01/12/2023] Open
Abstract
MicroRNAs (miRNAs) play an important role in guiding development and maintaining function of the human heart. Dysregulation of miRNAs has been linked to various congenital heart diseases including Tetralogy of Fallot (TOF), which represents the most common cyanotic heart malformation in humans. Several studies have identified dysregulated miRNAs in right ventricular (RV) tissues of TOF patients. In this study, we profiled genome-wide the whole transcriptome and analyzed the relationship of miRNAs and mRNAs of RV tissues of a homogeneous group of 22 non-syndromic TOF patients. Observed profiles were compared to profiles obtained from right and left ventricular tissue of normal hearts. To reduce the commonly observed large list of predicted target genes of dysregulated miRNAs, we applied a stringent target prediction pipeline integrating probabilities for miRNA-mRNA interaction. The final list of disease-related miRNA-mRNA pairs comprises novel as well as known miRNAs including miR-1 and miR-133, which are essential to cardiac development and function by regulating KCNJ2, FBN2, SLC38A3 and TNNI1. Overall, our study provides additional insights into post-transcriptional gene regulation of malformed hearts of TOF patients.
Collapse
|
13
|
Shukla V, Varghese VK, Kabekkodu SP, Mallya S, Chakrabarty S, Jayaram P, Pandey D, Banerjee S, Sharan K, Satyamoorthy K. Enumeration of deregulated miRNAs in liquid and tissue biopsies of cervical cancer. Gynecol Oncol 2019; 155:135-143. [PMID: 31434614 DOI: 10.1016/j.ygyno.2019.08.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/18/2019] [Accepted: 08/11/2019] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The altered miRNAs expression in cervical cancer tissue can be a critical player during tumorigenesis, may contribute to tumor cell heterogeneity and may determine distinct phenotypes within the tumor. Recent studies have highlighted the role of circulating miRNAs as a minimally-invasive biomarker and its potential as biosignature to complement routine tissue-based procedures. METHODS In order to determine whether miRNAs in serum can indicate changes in cervical tissue specimens, we performed small RNA sequencing and selected miRNAs were validated using qRT-PCR in serum and tissue specimens (n = 115). Further, luciferase assay were performed to investigate the interactions between hsa-miR-409-3p and hsa-miR-454-3p binding sites on 3'UTR region of MTF2 and ST18 respectively. RESULTS We have identified a total of 14 differentially expressed miRNAs common in serum and tissue specimens. Among them, hsa-miR-17-5p, hsa-miR-32-5p and hsa-miR-454-3p were upregulated while, hsa-miR-409-3p was downregulated in serum and tissue of cervical cancer subjects. Our in-silico small RNA sequencing data analysis identified isomiRs and classified miRNA into clusters and subtypes (exonic, intronic and intergenic) with respect to the expression status in serum and tissue specimens. Expression level of hsa-miR-409-3p and hsa-miR-454-3p were inversely correlated with their target genes MTF2 and ST18 levels respectively in human cervical cancer specimens. Luciferase assay demonstrated that hsa-miR-409-3p and hsa-miR-454-3p functionally interacts with 3'-UTR of MTF2 and ST18 respectively to decrease their activity. CONCLUSION Our results support the significant role of circulating miRNAs in disease dissemination and their potential utility as biosignatures of clinical relevance.
Collapse
Affiliation(s)
- Vaibhav Shukla
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Vinay Koshy Varghese
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Sandeep Mallya
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Pradyumna Jayaram
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Deeksha Pandey
- Department of Obstetrics and Gynecology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Sourjya Banerjee
- Department of Radiotherapy and Oncology, Kasturba Medical College, Manipal Academy of Higher Education, Mangalore, India
| | - Krishna Sharan
- Department of Radiotherapy and Oncology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
14
|
Pan WL, Chopp M, Fan B, Zhang R, Wang X, Hu J, Zhang XM, Zhang ZG, Liu XS. Ablation of the microRNA-17-92 cluster in neural stem cells diminishes adult hippocampal neurogenesis and cognitive function. FASEB J 2019; 33:5257-5267. [PMID: 30668139 DOI: 10.1096/fj.201801019r] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Impairment of adult neurogenesis in the hippocampus causes cognitive deficits; however, the underlying molecular mechanisms have not been fully elucidated. microRNAs (miRNAs) regulate neural stem cell (NSC) function. With the use of a transgenic mouse line with conditional ablation of the miR-17-92 cluster in nestin lineage NSCs, we tested the hypothesis that the miR-17-92 cluster regulates adult neurogenesis and cognitive function in vivo. Compared with wild-type mice, ablation of the miR-17-92 cluster significantly reduced the number of proliferating NSCs and neuroblasts and neuronal differentiation in the dentate gyrus (DG) of the hippocampus and significantly impaired hippocampal-dependent learning and memory, as assayed by social recognition memory, novel object recognition, and Morris water-maze tests. Statistical analysis showed a highly significant correlation between newly generated neuroblasts in the DG and cognition deficits in miR-17-92 knockout (KO) mice. Western blot analysis showed that conditional KO of the miR-17-92 cluster significantly increased and reduced a cytoskeleton-associated protein, Enigma homolog 1 (ENH1), and its downstream transcription factor, inhibitor of differentiation 1 (ID1), respectively, as well as increased phosphatase and tensin homolog gene. These proteins are related to neuronal differentiation. Our study demonstrates that the miR-17-92 cluster in NSCs is critical for cognitive and behavioral function and regulates neurogenesis and that the miR-17-92 cluster may target ENH1/ID1 signaling.-Pan, W. L., Chopp, M., Fan, B., Zhang, R., Wang, X., Hu, J., Zhang, X. M., Zhang, Z. G., Liu, X. S. Ablation of the microRNA-17-92 cluster in neural stem cells diminishes adult hippocampal neurogenesis and cognitive function.
Collapse
Affiliation(s)
- Wan Long Pan
- Department of Microbiology and Immunology, Sichuan Key Laboratory of Medical Imaging, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.,Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA.,Department of Physics, Oakland University, Rochester, Michigan, USA
| | - Baoyan Fan
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Ruilan Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Xinli Wang
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Jiani Hu
- Department of Radiology, Wayne State University, Detroit, Michigan, USA
| | - Xiao Ming Zhang
- Department of Radiology, Sichuan Key Laboratory of Medical Imaging, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Zheng Gang Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Xian Shuang Liu
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
| |
Collapse
|
15
|
Moratin J, Hartmann S, Brands RC, Horn D, Fuchs A, Mutzbauer G, Seher A, Scholz C, Müller-Richter UDA, Linz C. MicroRNA expression correlates with disease recurrence and overall survival in oral squamous cell carcinoma. J Craniomaxillofac Surg 2019; 47:523-529. [PMID: 30709758 DOI: 10.1016/j.jcms.2019.01.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/18/2018] [Accepted: 01/08/2019] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVES Locoregional disease recurrence and metastatic events are the leading causes of death and the most important prognostic factors in patients with head and neck squamous cell carcinoma (HNSCC). A major goal of oncology is the identification of clinical and molecular parameters to evaluate the individual risk of recurrence. MicroRNAs (miRNAs) have been shown to correlate well with tumor size and differentiation. Therefore, they are candidate biomarkers for estimating clinical outcomes. MATERIALS AND METHODS In this study, the expression levels of distinct miRNAs extracted from formalin-fixed, paraffin-embedded (FFPE) samples of oral squamous cell carcinoma were compared. RESULTS Statistical analysis revealed significant correlations between distinct miRNAs and disease recurrence (miR-99*, miR-194*; p < 0.05) and overall survival (miR-99*; p < 0.05). The results were then validated via data from The Cancer Genome Atlas (TCGA). CONCLUSIONS Our data show that miR-99* and miR-194* can possibly serve as biomarkers for clinical outcome in HNSCC. These findings may help to identify high-risk patients, who could profit from a more individualized treatment and follow-up.
Collapse
Affiliation(s)
- Julius Moratin
- University of Heidelberg, Department of Oral and Cranio-Maxillofacial Surgery, Im Neuenheimer Feld 400, D-69120, Heidelberg, Germany.
| | - Stefan Hartmann
- University of Würzburg, Department of Oral and Maxillofacial Plastic Surgery, Pleicherwall 2, D-97070, Würzburg, Germany
| | - Roman C Brands
- University of Würzburg, Department of Oral and Maxillofacial Plastic Surgery, Pleicherwall 2, D-97070, Würzburg, Germany
| | - Dominik Horn
- University of Heidelberg, Department of Oral and Cranio-Maxillofacial Surgery, Im Neuenheimer Feld 400, D-69120, Heidelberg, Germany; University of Saarland, Department of Maxillofacial Surgery, Kirrberger Str. 100, D-66424, Homburg, Germany
| | - Andreas Fuchs
- University of Würzburg, Department of Oral and Maxillofacial Plastic Surgery, Pleicherwall 2, D-97070, Würzburg, Germany
| | - Grit Mutzbauer
- University of Würzburg, Institute of Pathology, Josef-Schneider-Str. 2, D-97080, Würzburg, Germany
| | - Axel Seher
- University of Würzburg, Department of Oral and Maxillofacial Plastic Surgery, Pleicherwall 2, D-97070, Würzburg, Germany
| | - Claus Scholz
- University of Würzburg, Core Unit Systems Medicine, Sanderring 2, D-97070, Würzburg, Germany
| | - Urs D A Müller-Richter
- University of Würzburg, Department of Oral and Maxillofacial Plastic Surgery, Pleicherwall 2, D-97070, Würzburg, Germany
| | - Christian Linz
- University of Würzburg, Department of Oral and Maxillofacial Plastic Surgery, Pleicherwall 2, D-97070, Würzburg, Germany
| |
Collapse
|
16
|
Kabekkodu SP, Shukla V, Varghese VK, D' Souza J, Chakrabarty S, Satyamoorthy K. Clustered miRNAs and their role in biological functions and diseases. Biol Rev Camb Philos Soc 2018; 93:1955-1986. [PMID: 29797774 DOI: 10.1111/brv.12428] [Citation(s) in RCA: 256] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 04/20/2018] [Accepted: 04/26/2018] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are endogenous, small non-coding RNAs known to regulate expression of protein-coding genes. A large proportion of miRNAs are highly conserved, localized as clusters in the genome, transcribed together from physically adjacent miRNAs and show similar expression profiles. Since a single miRNA can target multiple genes and miRNA clusters contain multiple miRNAs, it is important to understand their regulation, effects and various biological functions. Like protein-coding genes, miRNA clusters are also regulated by genetic and epigenetic events. These clusters can potentially regulate every aspect of cellular function including growth, proliferation, differentiation, development, metabolism, infection, immunity, cell death, organellar biogenesis, messenger signalling, DNA repair and self-renewal, among others. Dysregulation of miRNA clusters leading to altered biological functions is key to the pathogenesis of many diseases including carcinogenesis. Here, we review recent advances in miRNA cluster research and discuss their regulation and biological functions in pathological conditions.
Collapse
Affiliation(s)
- Shama P Kabekkodu
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Vaibhav Shukla
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Vinay K Varghese
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Jeevitha D' Souza
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| |
Collapse
|
17
|
Xu J, Shao T, Ding N, Li Y, Li X. miRNA-miRNA crosstalk: from genomics to phenomics. Brief Bioinform 2018; 18:1002-1011. [PMID: 27551063 DOI: 10.1093/bib/bbw073] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Indexed: 12/11/2022] Open
Abstract
The discovery of microRNA (miRNA)-miRNA crosstalk has greatly improved our understanding of complex gene regulatory networks in normal and disease-specific physiological conditions. Numerous approaches have been proposed for modeling miRNA-miRNA networks based on genomic sequences, miRNA-mRNA regulation, functional information and phenomics alone, or by integrating heterogeneous data. In addition, it is expected that miRNA-miRNA crosstalk can be reprogrammed in different tissues or specific diseases. Thus, transcriptome data have also been integrated to construct context-specific miRNA-miRNA networks. In this review, we summarize the state-of-the-art miRNA-miRNA network modeling methods, which range from genomics to phenomics, where we focus on the need to integrate heterogeneous types of omics data. Finally, we suggest future directions for studies of crosstalk of noncoding RNAs. This comprehensive summarization and discussion elucidated in this work provide constructive insights into miRNA-miRNA crosstalk.
Collapse
|
18
|
Gu W, Hong X, Le Bras A, Nowak WN, Issa Bhaloo S, Deng J, Xie Y, Hu Y, Ruan XZ, Xu Q. Smooth muscle cells differentiated from mesenchymal stem cells are regulated by microRNAs and suitable for vascular tissue grafts. J Biol Chem 2018; 293:8089-8102. [PMID: 29643181 PMCID: PMC5971462 DOI: 10.1074/jbc.ra118.001739] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/05/2018] [Indexed: 12/24/2022] Open
Abstract
Tissue-engineered vascular grafts with long-term patency are greatly needed in the clinical settings, and smooth muscle cells (SMCs) are a critical graft component. Human mesenchymal stem cells (MSCs) are used for generating SMCs, and understanding the underlying regulatory mechanisms of the MSC-to-SMC differentiation process could improve SMC generation in the clinic. Here, we found that in response to stimulation of transforming growth factor-β1 (TGFβ1), human umbilical cord-derived MSCs abundantly express the SMC markers α-smooth muscle actin (αSMA), smooth muscle protein 22 (SM22), calponin, and smooth muscle myosin heavy chain (SMMHC) at both gene and protein levels. Functionally, MSC-derived SMCs displayed contracting capacity in vitro and supported vascular structure formation in the Matrigel plug assay in vivo More importantly, SMCs differentiated from human MSCs could migrate into decellularized mouse aorta and give rise to the smooth muscle layer of vascular grafts, indicating the potential of utilizing human MSC-derived SMCs to generate vascular grafts. Of note, microRNA (miR) array analysis and TaqMan microRNA assays identified miR-503 and miR-222-5p as potential regulators of MSC differentiation into SMCs at early time points. Mechanistically, miR-503 promoted SMC differentiation by directly targeting SMAD7, a suppressor of SMAD-related, TGFβ1-mediated signaling pathways. Moreover, miR-503 expression was SMAD4-dependent. SMAD4 was enriched at the miR-503 promoter. Furthermore, miR-222-5p inhibited SMC differentiation by targeting and down-regulating ROCK2 and αSMA. In conclusion, MSC differentiation into SMCs is regulated by miR-503 and miR-222-5p and yields functional SMCs for use in vascular grafts.
Collapse
Affiliation(s)
- Wenduo Gu
- School of Cardiovascular Medicine & Science, King's College London, British Heart Foundation Centre, London SE5 9NU, United Kingdom
| | - Xuechong Hong
- School of Cardiovascular Medicine & Science, King's College London, British Heart Foundation Centre, London SE5 9NU, United Kingdom
| | - Alexandra Le Bras
- School of Cardiovascular Medicine & Science, King's College London, British Heart Foundation Centre, London SE5 9NU, United Kingdom
| | - Witold N Nowak
- School of Cardiovascular Medicine & Science, King's College London, British Heart Foundation Centre, London SE5 9NU, United Kingdom
| | - Shirin Issa Bhaloo
- School of Cardiovascular Medicine & Science, King's College London, British Heart Foundation Centre, London SE5 9NU, United Kingdom
| | - Jiacheng Deng
- School of Cardiovascular Medicine & Science, King's College London, British Heart Foundation Centre, London SE5 9NU, United Kingdom
| | - Yao Xie
- School of Cardiovascular Medicine & Science, King's College London, British Heart Foundation Centre, London SE5 9NU, United Kingdom
| | - Yanhua Hu
- School of Cardiovascular Medicine & Science, King's College London, British Heart Foundation Centre, London SE5 9NU, United Kingdom
| | - Xiong Z Ruan
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Centre for Nephrology, University College London, Rowland Hill Street, London NW3 2PF, United Kingdom.
| | - Qingbo Xu
- School of Cardiovascular Medicine & Science, King's College London, British Heart Foundation Centre, London SE5 9NU, United Kingdom.
| |
Collapse
|
19
|
Swapna M, Kumar S. MicroRNAs and Their Regulatory Role in Sugarcane. FRONTIERS IN PLANT SCIENCE 2017; 8:997. [PMID: 28659947 PMCID: PMC5468422 DOI: 10.3389/fpls.2017.00997] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 05/26/2017] [Indexed: 05/31/2023]
Abstract
Sugarcane, one of the most photosynthetically efficient crops, is an important source of sugar and feedstock for green energy and co-generation. The high level of polyploidy and genomic peculiarities in this crop point towards a complex mechanism of regulation for the economically important traits like sugar content, cane yield related traits, resistance to biotic and abiotic stresses etc. The regulatory pathways for these traits comprise of a number of genes, transcription factors and different categories of RNAs like small interference RNAs (siRNAs), and Micro RNAs (miRNAs). MicroRNAs (miRNAs) are found to play an important regulatory role in many crops. As in other crops, several miRNAs have been identified in sugarcane too and these are speculated to have a role in regulating the various metabolic processes. Role of miRNAs in relation to drought tolerance has been studied to a great extent in this crop. miRNAs have been predicted to be linked to expression of other traits like disease resistance, salinity tolerance, waterlogging and axillary bud growth in sugarcane. miRNAs can have a significant role in biomass production in sugarcane, as reported in several biofuel crops. Till now, miRNAs linked to sugar accumulation have not been identified in sugarcane, but studies suggest an important role for miRNAs in sugar metabolic pathway in crops like Sorghum and switch grass. It is presumed that in sugarcane too, sugar accumulation as well as the other important metabolic pathways might be regulated to some extent by the miRNAs. The review examines the progress made in understanding the miRNA regulation in sugarcane and the extent to which miRNA mediated regulation can be utilized in sugarcane improvement.
Collapse
|
20
|
Nalluri JJ, Barh D, Azevedo V, Ghosh P. miRsig: a consensus-based network inference methodology to identify pan-cancer miRNA-miRNA interaction signatures. Sci Rep 2017; 7:39684. [PMID: 28045122 PMCID: PMC5206712 DOI: 10.1038/srep39684] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 11/25/2016] [Indexed: 01/17/2023] Open
Abstract
Decoding the patterns of miRNA regulation in diseases are important to properly realize its potential in diagnostic, prog- nostic, and therapeutic applications. Only a handful of studies computationally predict possible miRNA-miRNA interactions; hence, such interactions require a thorough investigation to understand their role in disease progression. In this paper, we design a novel computational pipeline to predict the common signature/core sets of miRNA-miRNA interactions for different diseases using network inference algorithms on the miRNA-disease expression profiles; the individual predictions of these algorithms were then merged using a consensus-based approach to predict miRNA-miRNA associations. We next selected the miRNA-miRNA associations across particular diseases to generate the corresponding disease-specific miRNA-interaction networks. Next, graph intersection analysis was performed on these networks for multiple diseases to identify the common signature/core sets of miRNA interactions. We applied this pipeline to identify the common signature of miRNA-miRNA inter- actions for cancers. The identified signatures when validated using a manual literature search from PubMed Central and the PhenomiR database, show strong relevance with the respective cancers, providing an indirect proof of the high accuracy of our methodology. We developed miRsig, an online tool for analysis and visualization of the disease-specific signature/core miRNA-miRNA interactions, available at: http://bnet.egr.vcu.edu/miRsig.
Collapse
Affiliation(s)
- Joseph J Nalluri
- Department of Computer Science, School of Engineering, Virginia Commonwealth University, Richmond, Virginia,USA
| | - Debmalya Barh
- Center for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, Purba Medinipur, West Bengal, India.,Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, Minas Gerais, Brazil.,Xcode Life Sciences, 3D Eldorado, 112 Nungambakkam High Road, Nungambakkam, Chennai, Tamil Nadu-600034, India
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Preetam Ghosh
- Department of Computer Science, School of Engineering, Virginia Commonwealth University, Richmond, Virginia,USA
| |
Collapse
|
21
|
Guo L, Liang T. MicroRNAs and their variants in an RNA world: implications for complex interactions and diverse roles in an RNA regulatory network. Brief Bioinform 2016; 19:245-253. [DOI: 10.1093/bib/bbw124] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Indexed: 01/09/2023] Open
|
22
|
Li H, Zhao X, Shan H, Liang H. MicroRNAs in idiopathic pulmonary fibrosis: involvement in pathogenesis and potential use in diagnosis and therapeutics. Acta Pharm Sin B 2016; 6:531-539. [PMID: 27818919 PMCID: PMC5071633 DOI: 10.1016/j.apsb.2016.06.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/23/2016] [Accepted: 05/06/2016] [Indexed: 01/03/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of phylogenetically conserved, non-coding short RNAs, 19-22 nt in length which suppress protein expression through base-pairing with the 3'-untranslated region of target mRNAs. miRNAs have been found to participate in cell proliferation, differentiation and apoptosis. Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and high lethality fibrotic lung disease for which currently there is no effective treatment. Some miRNAs have been reported to be involved in the pathogenesis of pulmonary fibrosis. In this review, we discuss the role of miRNAs in the pathogenesis, diagnosis and treatment of IPF.
Collapse
|
23
|
Hansen EP, Kringel H, Thamsborg SM, Jex A, Nejsum P. Profiling circulating miRNAs in serum from pigs infected with the porcine whipworm, Trichuris suis. Vet Parasitol 2016; 223:30-3. [PMID: 27198773 DOI: 10.1016/j.vetpar.2016.03.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/09/2016] [Accepted: 03/29/2016] [Indexed: 12/26/2022]
Abstract
microRNAs (miRNAs) are recently discovered as key regulators of gene translation and are becoming increasingly recognized for their involvement in various diseases. This study investigates the miRNA profile in pig serum during the course of an infection with the gastrointestinal parasite, Trichuris suis. Of this panel, the expression of selected miRNAs in serum from T. suis infected and uninfected pigs were determined by quantitative real time PCR using Exiqon Human Panel assays at 0, 2, 4, 6, 8 and 10 weeks post first infection (wpi). One miRNA, ssc-let-7d-3p, was significantly up-regulated in infected pigs 8 wpi. Interestingly, ssc-let-7d-3p shows high complementary to tsu-let-7a, which is the most highly transcribed miRNA in T. suis. The let-7 family miRNAs have been shown to post-transcriptionally regulate the translation of the helminth-controlling cytokine, IL-13, in a murine model for asthma and we hypothesize possible interactions between these host- and parasite-derived miRNAs and their immunomodulating roles.
Collapse
Affiliation(s)
- Eline Palm Hansen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlægevej 100, DK-1870 Frederiksberg C, Copenhagen, Denmark.
| | - Helene Kringel
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlægevej 100, DK-1870 Frederiksberg C, Copenhagen, Denmark
| | - Stig Milan Thamsborg
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlægevej 100, DK-1870 Frederiksberg C, Copenhagen, Denmark
| | - Aaron Jex
- Population Health and Immunity Division, The Walter and Eliza Hall Institute, Parkville, Victoria 3010, Australia; Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Peter Nejsum
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlægevej 100, DK-1870 Frederiksberg C, Copenhagen, Denmark
| |
Collapse
|
24
|
Guo L, Yu J, Liang T, Zou Q. miR-isomiRExp: a web-server for the analysis of expression of miRNA at the miRNA/isomiR levels. Sci Rep 2016; 6:23700. [PMID: 27009551 PMCID: PMC4806314 DOI: 10.1038/srep23700] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/09/2016] [Indexed: 12/22/2022] Open
Abstract
MicroRNA (miRNA) locus has been found that can generate a series of varied isomiR sequences. Most studies always focus on determining miRNA level, however, the canonical miRNA sequence is only a specific member in the multiple isomiRs. Some studies have shown that isomiR sequences play versatile roles in biological progress, and the analysis and research should be simultaneously performed at the miRNA/isomiR levels. Based on the biological characteristics of miRNA and isomiR, we developed miR-isomiRExp to analyze expression pattern of miRNA at the miRNA/isomiR levels, provide insights into tracking miRNA/isomiR maturation and processing mechanisms, and reveal functional characteristics of miRNA/isomiR. Simultaneously, we also performed expression analysis of specific human diseases using public small RNA sequencing datasets based on the analysis platform, which may help in surveying the potential deregulated miRNA/isomiR expression profiles, especially sequence and function-related isomiRs for further interaction analysis and study. The miR-isomiRExp platform provides miRNA/isomiR expression patterns and more information to study deregulated miRNA loci and detailed isomiR sequences. This comprehensive analysis will enrich experimental miRNA studies. miR-isomiRExp is available at http://server.malab.cn/miRisomiRExp/.
Collapse
Affiliation(s)
- Li Guo
- Department of Bioinformatics, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Jiafeng Yu
- Shandong Provincial Key Laboratory of Functional Macromolecular Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, China
| | - Tingming Liang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210023, China
| | - Quan Zou
- School of Computer Science and Technology, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
25
|
miR-26a suppresses EMT by disrupting the Lin28B/let-7d axis: potential cross-talks among miRNAs in IPF. J Mol Med (Berl) 2016; 94:655-65. [PMID: 26787543 DOI: 10.1007/s00109-016-1381-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 12/20/2015] [Accepted: 01/11/2016] [Indexed: 12/31/2022]
Abstract
UNLABELLED Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and highly lethal fibrotic lung disease with unknown cause or cure. Although some microRNAs (miRNAs), such as miR-26a and let-7d, have been confirmed, the contribution to the pathophysiological processes of IPF, the roles of miRNAs and intrinsic links between them in fibrotic lung diseases are not yet well understood. In this study, we found that Lin28B could induce the process of epithelial-mesenchymal transition (EMT) by inhibiting let-7d, whereas inhibition of Lin28B mitigated TGF-β1-induced fibrogenesis and attenuated EMT in both cultured A549 cells and MLE-12 cells. More importantly, over-expression of miR-26a could simultaneously enhance the expression of let-7d in A549 cells, and further study confirmed that Lin28B was one of the direct targets of miR-26a, which mediates, at least in part, the regulatory effects of miR-26a on the biogenesis of let-7d. Finally, we constructed a regulatory network among miRNAs involved in the progression of IPF. Taken together, our study deciphered the essential role of Lin28B in the pathogenesis of EMT, and unraveled a novel mechanism that miR-26a is a modulator of let-7d. This study also defines the miRNAs network involved in IPF, which may have implications for developing new strategies for pulmonary fibrosis. KEY MESSAGE Upregulation of Lin28B contributes to idiopathic pulmonary fibrosis. Lin28B causes epithelial-mesenchymal transition (EMT) by inhibition of let-7d. Lin28B is one of the targets of microRNA-26a. miR-26a enhances the expression of let-7d via targeting regulation of Lin28B. A regulatory network among miRNAs involved in the progression of IPF.
Collapse
|
26
|
Diaz G, Zamboni F, Tice A, Farci P. Integrated ordination of miRNA and mRNA expression profiles. BMC Genomics 2015; 16:767. [PMID: 26459852 PMCID: PMC4603994 DOI: 10.1186/s12864-015-1971-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 10/02/2015] [Indexed: 11/27/2022] Open
Abstract
Background Several studies have investigated miRNA and mRNA co-expression to identify regulatory networks at the transcriptional level. A typical finding of these studies is the presence of both negative and positive miRNA-mRNA correlations. Negative correlations are consistent with the expected, faster degradation of target mRNAs, whereas positive correlations denote the existence of feed-forward regulations mediated by transcription factors. Both mechanisms have been characterized at the molecular level, although comprehensive methods to represent miRNA-mRNA correlations are lacking. At present, genome-wide studies are able to assess the expression of more than 1000 mature miRNAs and more than 35,000 well-characterized human genes. Even if studies are generally restricted to a small subset of genes differentially expressed in specific diseases or experimental conditions, the number of potential correlations remains very high, and needs robust multivariate methods to be conveniently summarized by a small set of data. Results Nonparametric Kendall correlations were calculated between miRNAs and mRNAs differentially expressed in livers of patients with acute liver failure (ALF) using normal livers as controls. Spurious correlations due to the histopathological composition of samples were removed by partial correlations. Correlations were then transformed into distances and processed by multidimensional scaling (MDS) to map the miRNA and mRNA relationships. These showed: (a) a prominent displacement of miRNA and mRNA clusters in ALF livers, as compared to control livers, indicative of gene expression dysregulation; (b) a clustering of mRNAs consistent with their functional annotations [CYP450, transcription factors, complement, proliferation, HLA class II, monocytes/macrophages, T cells, T-NK cells and B cells], as well as a clustering of miRNAs with the same seed sequence; and (c) a tendency of miRNAs and mRNAs to populate distinct regions of the MDS plot. MDS also allowed to visualize the network of miRNA-mRNA target pairs. Conclusions Different features of miRNA and mRNA relationships can be represented as thematic maps within the framework of MDS obtained from pairwise correlations. The symmetric distribution of positive and negative correlations between miRNA and mRNA expression suggests that miRNAs are involved in a complex bidirectional molecular network, including, but not limited to, the inhibitory regulation of miRNA targets. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1971-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Giacomo Diaz
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.
| | - Fausto Zamboni
- Liver Transplantation Center, Brotzu Hospital, Cagliari, Italy.
| | - Ashley Tice
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Patrizia Farci
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
27
|
Expression of the long non-coding RNAs MEG3, HOTAIR, and MALAT-1 in non-functioning pituitary adenomas and their relationship to tumor behavior. Pituitary 2015. [PMID: 24469926 DOI: 10.1007/s11033-013-2852-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
PURPOSE It is becoming evident that long non-coding RNAs (lncRNAs) participate in diverse biological processes via distinct mechanisms. Many lncRNAs have altered expression and likely to have functional roles in tumorigenesis. Although loss of maternally-expressed gene 3 (MEG3) expression has been detected in non-functioning pituitary adenomas (NFPAs), there are no published reports regarding the association between MEG3 expression and the invasive ability of NFPAs. Moreover, the roles of Hox transcript antisense intergenic RNA (HOTAIR) and metastasis-associated lung adenocarcinoma transcript 1 (MALAT-1) in NFPAs have not been examined. To investigate the role of MEG3, HOTAIR, and MALAT-1 in NFPA development and invasion. METHODS MEG3, HOTAIR, MALAT-1 and proliferating cell nuclear antigen (PCNA) were detected in 52 NFPA samples and seven normal human anterior pituitaries using real-time quantitative reverse transcription polymerase chain reaction. RESULTS MEG3 lncRNA levels gradually decreased whereas HOTAIR lncRNA levels gradually increased from normal anterior pituitaries to non-invasive NFPAs to invasive NFPAs. There was a significant association between MEG3 (P < 0.01) and HOTAIR (P < 0.05) expression and the biological behavior of the tumor. Furthermore, PCNA mRNA levels markedly increased in invasive NFPAs compared to non-invasive ones (P < 0.01). In addition, PCNA mRNA negatively correlated with MEG3 lncRNA levels (P < 0.05). CONCLUSIONS MEG3 and HOTAIR expression may correlate with NFPA development and invasion.
Collapse
|
28
|
Trumbo JL, Zhang B, Stewart CN. Manipulating microRNAs for improved biomass and biofuels from plant feedstocks. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:337-54. [PMID: 25707745 DOI: 10.1111/pbi.12319] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 11/25/2014] [Accepted: 11/29/2014] [Indexed: 05/22/2023]
Abstract
Petroleum-based fuels are nonrenewable and unsustainable. Renewable sources of energy, such as lignocellulosic biofuels and plant metabolite-based drop-in fuels, can offset fossil fuel use and reverse environmental degradation through carbon sequestration. Despite these benefits, the lignocellulosic biofuels industry still faces many challenges, including the availability of economically viable crop plants. Cell wall recalcitrance is a major economic barrier for lignocellulosic biofuels production from biomass crops. Sustainability and biomass yield are two additional, yet interrelated, foci for biomass crop improvement. Many scientists are searching for solutions to these problems within biomass crop genomes. MicroRNAs (miRNAs) are involved in almost all biological and metabolic process in plants including plant development, cell wall biosynthesis and plant stress responses. Because of the broad functions of their targets (e.g. auxin response factors), the alteration of plant miRNA expression often results in pleiotropic effects. A specific miRNA usually regulates a biologically relevant bioenergy trait. For example, relatively low miR156 overexpression leads to a transgenic feedstock with enhanced biomass and decreased recalcitrance. miRNAs have been overexpressed in dedicated bioenergy feedstocks such as poplar and switchgrass yielding promising results for lignin reduction, increased plant biomass, the timing of flowering and response to harsh environments. In this review, we present the status of miRNA-related research in several major biofuel crops and relevant model plants. We critically assess published research and suggest next steps for miRNA manipulation in feedstocks for increased biomass and sustainability for biofuels and bioproducts.
Collapse
Affiliation(s)
- Jennifer Lynn Trumbo
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN, USA; Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | | | | |
Collapse
|
29
|
Belter A, Gudanis D, Rolle K, Piwecka M, Gdaniec Z, Naskręt-Barciszewska MZ, Barciszewski J. Mature miRNAs form secondary structure, which suggests their function beyond RISC. PLoS One 2014; 9:e113848. [PMID: 25423301 PMCID: PMC4244182 DOI: 10.1371/journal.pone.0113848] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 10/30/2014] [Indexed: 12/11/2022] Open
Abstract
The generally accepted model of the miRNA-guided RNA down-regulation suggests that mature miRNA targets mRNA in a nucleotide sequence-specific manner. However, we have shown that the nucleotide sequence of miRNA is not the only determinant of miRNA specificity. Using specific nucleases, T1, V1 and S1 as well as NMR, UV/Vis and CD spectroscopies, we found that miR-21, miR-93 and miR-296 can adopt hairpin and/or homoduplex structures. The secondary structure of those miRNAs in solution is a function of RNA concentration and ionic conditions. Additionally, we have shown that a formation of miRNA hairpin is facilitated by cellular environment.Looking for functional consequences of this observation, we have perceived that structure of these miRNAs resemble RNA aptamers, short oligonucleotides forming a stable 3D structures with a high affinity and specificity for their targets. We compared structures of anti-tenascin C (anti-Tn-C) aptamers, which inhibit brain tumor glioblastoma multiforme (GBM, WHO IV) and selected miRNA. A strong overexpression of miR-21, miR-93 as well Tn-C in GBM may imply some connections between them. The structural similarity of these miRNA hairpins and anti-Tn-C aptamers indicates that miRNAs may function also beyond RISC and are even more sophisticated regulators, that it was previously expected. We think that the knowledge of the miRNA structure may give a new insight into miRNA-dependent gene regulation mechanism and be a step forward in the understanding their function and involvement in cancerogenesis. This may improve design process of anti-miRNA therapeutics.
Collapse
Affiliation(s)
- Agnieszka Belter
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, ul. Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Dorota Gudanis
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, ul. Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Katarzyna Rolle
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, ul. Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Monika Piwecka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, ul. Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Zofia Gdaniec
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, ul. Noskowskiego 12/14, 61-704, Poznan, Poland
| | | | - Jan Barciszewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, ul. Noskowskiego 12/14, 61-704, Poznan, Poland
| |
Collapse
|
30
|
Tang PMK, Lan HY. MicroRNAs in TGF-β/Smad-mediated Tissue Fibrosis. CURRENT PATHOBIOLOGY REPORTS 2014. [DOI: 10.1007/s40139-014-0060-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
31
|
Reconstructing the coding and non-coding RNA regulatory networks of miRNAs and mRNAs in breast cancer. Gene 2014; 548:6-13. [PMID: 24979338 DOI: 10.1016/j.gene.2014.06.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/27/2014] [Accepted: 06/05/2014] [Indexed: 12/21/2022]
Abstract
microRNAs (miRNAs) are a class of small non-coding RNAs that deregulate and/or decrease the expression of target messenger RNAs (mRNAs), which specifically contribute to complex diseases. In our study, we reanalyzed an integrated data to promote classification performance by rebuilding miRNA-mRNA modules, in which a group of deregulated miRNAs cooperatively regulated a group of significant mRNAs. In five-fold cross validation, the multiple processes flow considered the biological and statistical significant correlations. First, of statistical significant miRNAs, 6 were identified as core miRNAs. Second, in the 13 significant pathways enriched by gene set enrichment analysis (GSEA), 705 deregulated mRNAs were found. Based on the union of predicted sets and correlation sets, 6 modules were built. Finally, after verified by test sets, three indexes, including area under the ROC curve (AUC), Accuracy and Matthews correlation coefficients (MCCs), indicated only 4 modules (miR-106b-CIT-KPNA2-miR-93, miR-106b-POLQ-miR-93, miR-107-BTRC-UBR3-miR-16 and miR-200c-miR-16-EIF2B5-miR-15b) had discriminated ability and their classification performance were prior to that of the single molecules. By applying this flow to different subtypes, Module 1 was the consistent module across subtypes, but some different modules were still specific to each subtype. Taken together, this method gives new insight to building modules related to complex diseases and simultaneously can give a supplement to explain the mechanism of breast cancer (BC).
Collapse
|
32
|
Global analysis of miRNA gene clusters and gene families reveals dynamic and coordinated expression. BIOMED RESEARCH INTERNATIONAL 2014; 2014:782490. [PMID: 24791000 PMCID: PMC3984827 DOI: 10.1155/2014/782490] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 02/26/2014] [Indexed: 11/18/2022]
Abstract
To further understand the potential expression relationships of miRNAs in miRNA gene clusters and gene families, a global analysis was performed in 4 paired tumor (breast cancer) and adjacent normal tissue samples using deep sequencing datasets. The compositions of miRNA gene clusters and families are not random, and clustered and homologous miRNAs may have close relationships with overlapped miRNA species. Members in the miRNA group always had various expression levels, and even some showed larger expression divergence. Despite the dynamic expression as well as individual difference, these miRNAs always indicated consistent or similar deregulation patterns. The consistent deregulation expression may contribute to dynamic and coordinated interaction between different miRNAs in regulatory network. Further, we found that those clustered or homologous miRNAs that were also identified as sense and antisense miRNAs showed larger expression divergence. miRNA gene clusters and families indicated important biological roles, and the specific distribution and expression further enrich and ensure the flexible and robust regulatory network.
Collapse
|
33
|
Integrative analysis of miRNA-mRNA and miRNA-miRNA interactions. BIOMED RESEARCH INTERNATIONAL 2014; 2014:907420. [PMID: 24689063 PMCID: PMC3945032 DOI: 10.1155/2014/907420] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 11/24/2013] [Accepted: 12/16/2013] [Indexed: 11/18/2022]
Abstract
MicroRNAs (miRNAs) are small, noncoding regulatory molecules. They are involved in many essential biological processes and act by suppressing gene expression. The present work reports an integrative analysis of miRNA-mRNA and miRNA-miRNA interactions and their regulatory patterns using high-throughput miRNA and mRNA datasets. Aberrantly expressed miRNA and mRNA profiles were obtained based on fold change analysis, and qRT-PCR was used for further validation of deregulated miRNAs. miRNAs and target mRNAs were found to show various expression patterns. miRNA-miRNA interactions and clustered/homologous miRNAs were also found to contribute to the flexible and selective regulatory network. Interacting miRNAs (e.g., miRNA-103a and miR-103b) showed more pronounced differences in expression, which suggests the potential “restricted interaction” in the miRNA world. miRNAs from the same gene clusters (e.g., miR-23b gene cluster) or gene families (e.g., miR-10 gene family) always showed the same types of deregulation patterns, although they sometimes differed in expression levels. These clustered and homologous miRNAs may have close functional relationships, which may indicate collaborative interactions between miRNAs. The integrative analysis of miRNA-mRNA based on biological characteristics of miRNA will further enrich miRNA study.
Collapse
|
34
|
Guo L, Zhao Y, Zhang H, Yang S, Chen F. Integrated evolutionary analysis of human miRNA gene clusters and families implicates evolutionary relationships. Gene 2014; 534:24-32. [DOI: 10.1016/j.gene.2013.10.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 10/10/2013] [Accepted: 10/15/2013] [Indexed: 12/01/2022]
|
35
|
Xu Y, Li W, Liu X, Chen H, Tan K, Chen Y, Tu Z, Dai Y. Identification of dysregulated microRNAs in lymphocytes from children with Down syndrome. Gene 2013; 530:278-86. [DOI: 10.1016/j.gene.2013.07.055] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 07/10/2013] [Accepted: 07/12/2013] [Indexed: 01/05/2023]
|
36
|
Guo L, Yang S, Zhao Y, Wu Q, Chen F. Dynamic evolution of mir-17-92 gene cluster and related miRNA gene families in vertebrates. Mol Biol Rep 2012; 40:3147-53. [PMID: 23271119 DOI: 10.1007/s11033-012-2388-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 12/17/2012] [Indexed: 02/06/2023]
Abstract
mir-17-92 gene cluster is widely distributed in vertebrates and plays an important role in regulating multiple biological processes. Its dysregulation may be associated with risk of some human cancers. The microRNA (miRNA) members are identified in the three gene families: mir-17, mir-19 and mir-25. Herein we attempted to understand the evolutionary processes and patterns in vertebrates. The three miRNA gene families showed difference in distribution, number of miRNA genes and clustered miRNA genes in the five animal species. Compared to other related gene clusters, mir-17-92 cluster was well-conserved and had more abundant roles in multiple biological processes. These clustered miRNAs showed inconsistent nucleotide divergence patterns across different animal species, even between homologous miRNA genes. Simultaneously, they also indicated inconsistent expression patterns although they were co-transcribed as a polycistronic transcript. Phylogenetic tree based on human pre-miRNA sequences showed that mir-19 gene family was an older miRNA species, while tree based on miRNA gene cluster indicated evolutionary positions of different animal species. The study shows dynamic evolution of the mir-17-92 gene cluster and related miRNA gene families across vertebrates, which may be derived from potential functional implication. miRNA gene cluster should be a better phylogenetic marker than a single miRNA gene to reveal functional and evolutionary relationships.
Collapse
Affiliation(s)
- Li Guo
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, 210029 Nanjing, China.
| | | | | | | | | |
Collapse
|