1
|
Sarkar R, Sardar SK, Ghosal A, Haldar T, Das K, Ghosh A, Prasad A, Saito-Nakano Y, Dutta S, Nozaki T, Ganguly S. Metronidazole induces prostaglandin E2 formation via arachidonic acid production in protozoan parasite Giardia lamblia. Mol Biochem Parasitol 2025; 262:111676. [PMID: 40101805 DOI: 10.1016/j.molbiopara.2025.111676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 02/14/2025] [Accepted: 03/03/2025] [Indexed: 03/20/2025]
Abstract
The causative agent of giardiasis in human and animals is the amitochondriate Giardia lamblia. We observed that exposing Giardia trophozoites to MTZ led to an increase in lipid peroxidation compared to the control group, which was expressed in terms of menadione production as it is the marker for lipo-peroxidation. Oxidative stress generated by reactive nitrogen species and peroxidation of membrane phospholipids are positively correlated with the enhanced PLA2 activity in several organisms to produce arachidonic acid (AA). Our data suggested Giardia produces a unique 56 kDa dimeric enzyme called Phospholipase B (gPLB) in contrast to higher eukaryotes which was responsible for the production of intracellular free AA. This free AA either reacylates to the cell membrane or deacylates to further produce prostaglandins. In normal un-induced controlled trophozoites the membrane reacylation process was dominant due the higher level of acyle CoA synthase (ACS) expression over the time. However, under the oxidative stressed condition the intracellular ACS expression was down regulated. This led to the increase in deacylation process. When AA deacylation becomes dominant over AA reacylation in cells, the free AA accumulates intracellularly. One of the lipid autacoids, derived from AA is prostaglandin2 (PGE2). Oxidative stress generated by reactive nitrogen species in trophozoites increased the PGE2 production via prostaglandin synthase over the time with respect to the controlled one.
Collapse
Affiliation(s)
- Rituparna Sarkar
- Division of Parasitology, ICMR-National Institute for Research in Bacterial Infections, Kolkata, India
| | - Sanjib Kumar Sardar
- Division of Parasitology, ICMR-National Institute for Research in Bacterial Infections, Kolkata, India
| | - Ajanta Ghosal
- Division of Parasitology, ICMR-National Institute for Research in Bacterial Infections, Kolkata, India
| | - Tapas Haldar
- Division of Parasitology, ICMR-National Institute for Research in Bacterial Infections, Kolkata, India
| | - Koushik Das
- Faculty of Science, Assam down town University, Panikhaiti, Guwahati, Assam 781026, India
| | - Arjun Ghosh
- Department of Biotechnology, Brainware University Barasat, Kolkata, West Bengal, India
| | - Akash Prasad
- Division of Parasitology, ICMR-National Institute for Research in Bacterial Infections, Kolkata, India
| | - Yumiko Saito-Nakano
- Department of Parasitology, National Institute of Infectious Diseases (NIID), Tokyo, Japan
| | - Shanta Dutta
- Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections, Kolkata, India
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, School of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Sandipan Ganguly
- Division of Parasitology, ICMR-National Institute for Research in Bacterial Infections, Kolkata, India.
| |
Collapse
|
2
|
Ting KKY, Floro E, Dow R, Jongstra-Bilen J, Cybulsky MI, Rocheleau JV. Measuring the rate of NADPH consumption by glutathione reductase in the cytosol and mitochondria. PLoS One 2024; 19:e0309886. [PMID: 39637235 PMCID: PMC11620681 DOI: 10.1371/journal.pone.0309886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/21/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND NADPH is an essential co-factor supporting the function of enzymes that participate in both inflammatory and anti-inflammatory pathways in myeloid cells, particularly macrophages. Although individual NADPH-dependent pathways are well characterized, how these opposing pathways are co-regulated to orchestrate an optimized inflammatory response is not well understood. To investigate this, techniques to track the consumption of NADPH need to be applied. Deuterium tracing of NADPH remains the gold standard in the field, yet this setup of mass-spectrometry is technically challenging and not readily available to most research groups. Furthermore, NADPH pools are compartmentalized in various organelles with no known membrane transporters, suggesting that NADPH-dependent pathways are regulated in an organelle-specific manner. Conventional methods such as commercial kits are limited to quantifying NADPH in whole cells and not at the resolution of specific organelles. These limitations reflect the need for a novel assay that can readily measure the consumption rate of NADPH in different organelles. METHODS We devised an assay that measures the consumption rate of NADPH by glutathione-disulfide reductase (GSR) in the mitochondria and the cytosol of RAW264.7 macrophage cell lines. RAW264.7 cells were transfected with Apollo-NADP+ sensors targeted to the mitochondria or the cytosol, followed by the treatment of 2-deoxyglucose and diamide. Intravital imaging over time then determined GSR-dependent NADPH consumption in an organelle-specific manner. DISCUSSION In lipopolysaccharide (LPS)-stimulated RAW264.7 cells, cytosolic and mitochondrial NADPH was consumed by GSR in a time-dependent manner. This finding was cross validated with a commercially available NADPH kit that detects NADPH in whole cells. Loading of RAW264.7 cells with oxidized low-density lipoprotein followed by LPS stimulation elevated GSR expression, and this correlated with a more rapid drop in cytosolic and mitochondrial NADPH in our assay. The current limitation of our assay is applicability to transfectable cell lines, and higher expression of plasmid-encoded sensors relative to endogenous glucose-6-phosphate dehydrogenase.
Collapse
Affiliation(s)
- Kenneth K. Y. Ting
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Eric Floro
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Riley Dow
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Jenny Jongstra-Bilen
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Myron I. Cybulsky
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
| | - Jonathan V. Rocheleau
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Haldar T, Sardar SK, Ghosal A, Prasad A, Nakano YS, Dutta S, Nozaki T, Ganguly S. Andrographolide induced cytotoxicity and cell cycle arrest in Giardia trophozoites. Exp Parasitol 2024; 262:108773. [PMID: 38723845 DOI: 10.1016/j.exppara.2024.108773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024]
Abstract
Giardiasis is a prevalent parasitic diarrheal disease caused by Giardia lamblia, affecting people worldwide. Recently, the availability of several drugs for its treatment has highlighted issues such as multidrug resistance, limited effectiveness and undesirable side effects. Therefore, it is necessary to develop alternative new drugs and treatment strategies that can enhance therapeutic outcomes and effectively treat giardiasis. Natural compounds show promise in the search for more potent anti-giardial agents. Our investigation focused on the effect of Andrographolide (ADG), an active compound of the Andrographis paniculata plant, on Giardia lamblia, assessing trophozoite growth, morphological changes, cell cycle arrest, DNA damage and inhibition of gene expression associated with pathogenic factors. ADG demonstrated anti-Giardia activity almost equivalent to the reference drug metronidazole, with an IC50 value of 4.99 μM after 24 h of incubation. In cytotoxicity assessments and morphological examinations, it showed significant alterations in trophozoite shape and size and effectively hindered the adhesion of trophozoites. It also caused excessive ROS generation, DNA damage, cell cycle arrest and inhibited the gene expression related to pathogenesis. Our findings have revealed the anti-giardial efficacy of ADG, suggesting its potential as an agent against Giardia infections. This could offer a natural and low-risk treatment option for giardiasis, reducing the risk of side effects and drug resistance.
Collapse
Affiliation(s)
- Tapas Haldar
- Division of Parasitology, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), India
| | - Sanjib K Sardar
- Division of Parasitology, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), India
| | - Ajanta Ghosal
- Division of Parasitology, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), India
| | - Akash Prasad
- Division of Parasitology, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), India
| | - Yumiko Saito Nakano
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Shanta Dutta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), Kolkata, India
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, School of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Sandipan Ganguly
- Division of Parasitology, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), India.
| |
Collapse
|
4
|
Sarkar R, Sardar SK, Ghosal A, Das K, Saito-Nakano Y, Dutta S, Nozaki T, Ganguly S. Functional characterization of phospholipase B enzyme from Giardia lamblia. Exp Parasitol 2023; 253:108602. [PMID: 37619808 DOI: 10.1016/j.exppara.2023.108602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/14/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
The microaerotolarent amitochondriate protozoan Giardia lamblia causes Giardiasis and produces a unique enzyme called Phospholipase B (PLB) in contrast to higher eukaryotes. The enzyme is produced upon induction with oxidative (H2O2) stress, thus leading to prostaglandin E2 (PGE2) production. It exists in dimeric form, and its molecular weight is 56 kDa. This PLB was extracellularly cloned in the pET21d vector. The ORF is 1620 bp (Genbank accession no. -OM939681) long and codes for a protein 539 amino acid long, with a 15 amino acid long amino-terminal signal peptide. The highest enzyme activity of PLB was identified at pH 7.5 and 35 °C. This specific enzyme was also active at 50 °C pH 10, but activity was low. We also analyzed the expression of PLB protein in G. lamblia, which was significantly induced under increased oxidative stress.
Collapse
Affiliation(s)
- Rituparna Sarkar
- Division of Parasitology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Sanjib Kumar Sardar
- Division of Parasitology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Ajanta Ghosal
- Division of Parasitology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Koushik Das
- Division of Parasitology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India; Department of Allied Health Sciences, School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun, India
| | - Yumiko Saito-Nakano
- Department of Parasitology, National Institute of Infectious Diseases (NIID), Tokyo, Japan
| | - Shanta Dutta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), Kolkata, India
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, School of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Sandipan Ganguly
- Division of Parasitology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India.
| |
Collapse
|
5
|
Benzaldehyde Attenuates the Fifth Stage Larval Excretory–Secretory Product of Angiostrongylus cantonensis-Induced Injury in Mouse Astrocytes via Regulation of Endoplasmic Reticulum Stress and Oxidative Stress. Biomolecules 2022; 12:biom12020177. [PMID: 35204678 PMCID: PMC8961544 DOI: 10.3390/biom12020177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/24/2021] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
Excretory–secretory products (ESPs) are the main research targets for investigating the hosts and helminths interaction. Parasitic worms can migrate to parasitic sites and avoid the host immune response by secreting this product. Angiostrongylus cantonensis is an important food-borne zoonotic parasite that causes severe neuropathological damage and symptoms, including eosinophilic meningitis or meningoencephalitis in humans. Benzaldehydes are organic compounds composed of a benzene ring and formyl substituents. This compound has anti-inflammatory and antioxidation properties. Previous studies showed that 3-hydroxybenzaldehyde (3-HBA) and 4-hydroxybenzaldehyde (4-HBA) can reduce apoptosis in A. cantonensis ESP-treated astrocytes. These results on the protective effect underlying benzaldehyde have primarily focused on cell survival. The study was designed to investigate the molecular mechanisms of endoplasmic reticulum stress (ER stress) and oxidative stress in astrocytes in A. cantonensis ESP-treated astrocytes and to evaluate the therapeutic consequent of 3-HBA and 4-HBA. First, we initially established the RNA-seq dataset in each group, including normal, ESPs, ESPs + 3-HBA, and ESPs + 4-HBA. We also found that benzaldehyde (3-HBA and 4-HBA) can stimulate astrocytes to express ER stress-related molecules after ESP treatment. The level of oxidative stress could also be decreased in astrocytes by elevating antioxidant activity and reducing ROS generation. These results suggested that benzaldehyde may be a potential therapeutic compound for human angiostrongyliasis to support brain cell survival by inducing the expression levels of ER stress- and oxidative stress-related pathways.
Collapse
|
6
|
de Obeso Fernandez del Valle A, Scheckhuber CQ. Superoxide Dismutases in Eukaryotic Microorganisms: Four Case Studies. Antioxidants (Basel) 2022; 11:antiox11020188. [PMID: 35204070 PMCID: PMC8868140 DOI: 10.3390/antiox11020188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/12/2022] [Accepted: 01/16/2022] [Indexed: 01/08/2023] Open
Abstract
Various components in the cell are responsible for maintaining physiological levels of reactive oxygen species (ROS). Several different enzymes exist that can convert or degrade ROS; among them are the superoxide dismutases (SODs). If left unchecked, ROS can cause damage that leads to pathology, can contribute to aging, and may, ultimately, cause death. SODs are responsible for converting superoxide anions to hydrogen peroxide by dismutation. Here we review the role of different SODs on the development and pathogenicity of various eukaryotic microorganisms relevant to human health. These include the fungal aging model, Podospora anserina; various members of the genus Aspergillus that can potentially cause aspergillosis; the agents of diseases such as Chagas and sleeping disease, Trypanosoma cruzi and Trypanosoma brucei, respectively; and, finally, pathogenic amoebae, such as Acanthamoeba spp. In these organisms, SODs fulfill essential and often regulatory functions that come into play during processes such as the development, host infection, propagation, and control of gene expression. We explore the contribution of SODs and their related factors in these microorganisms, which have an established role in health and disease.
Collapse
|
7
|
Oxygen levels are key to understanding "Anaerobic" protozoan pathogens with micro-aerophilic lifestyles. Adv Microb Physiol 2021; 79:163-240. [PMID: 34836611 DOI: 10.1016/bs.ampbs.2021.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Publications abound on the physiology, biochemistry and molecular biology of "anaerobic" protozoal parasites as usually grown under "anaerobic" culture conditions. The media routinely used are poised at low redox potentials using techniques that remove O2 to "undetectable" levels in sealed containers. However there is growing understanding that these culture conditions do not faithfully resemble the O2 environments these organisms inhabit. Here we review for protists lacking oxidative energy metabolism, the oxygen cascade from atmospheric to intracellular concentrations and relevant methods of measurements of O2, some well-studied parasitic or symbiotic protozoan lifestyles, their homeodynamic metabolic and redox balances, organism-drug-oxygen interactions, and the present and future prospects for improved drugs and treatment regimes.
Collapse
|
8
|
Szentmihályi K, Süle K, Egresi A, Blázovics A, May Z. Metronidazole does not show direct antioxidant activity in in vitro global systems. Heliyon 2021; 7:e06902. [PMID: 33997416 PMCID: PMC8100078 DOI: 10.1016/j.heliyon.2021.e06902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/09/2021] [Accepted: 04/20/2021] [Indexed: 11/15/2022] Open
Abstract
Metronidazole has been widely used topically and systemically for more than 50 years but data on its antioxidant properties are still incomplete, unclear and contradictory. Its antioxidant properties are primarily hypothesized based on in vivo results, therefore, studies have been performed to determine whether metronidazole has antioxidant activity in vitro. We used so-called global spectrophotometric and luminometric methods. Fe3+/Fe2+-reducing ability, hydrogen donor activity, hydroxyl radical scavenging property and lipid peroxidation inhibitory activity were investigated. Under the condition used, metronidazole has negligible iron-reducing ability and hydrogen donor activity. The hydroxyl radical scavenging capacity cannot be demonstrated. It acts as a pro-oxidant in the H2O2/.OH-microperoxidase-luminol system, but it can inhibit the induced lipid peroxidation. According to our results, metronidazole has not shown antioxidant activity in vitro but can affect redox homeostasis by a ROS-independent mechanism due to its non-direct antioxidant properties.
Collapse
Affiliation(s)
- Klára Szentmihályi
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, H-1117 Budapest, Magyar tudósok körútja 2, Hungary
- Corresponding author.
| | - Krisztina Süle
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, H-1117 Budapest, Magyar tudósok körútja 2, Hungary
- Semmelweis University Institute of Pharmacognosy, H-1026 Budapest, Üllői út 26, Hungary
| | - Anna Egresi
- Semmelweis University Institute of Pharmacognosy, H-1026 Budapest, Üllői út 26, Hungary
- 2nd. Department of Internal Medicine Semmelweis University, H-1088 Budapest, Szentkirályi utca 46, Hungary
| | - Anna Blázovics
- Semmelweis University Department of Surgical Research and Techniques, The Heart and Vascular Center, 1089 Budapest, Nagyvárad tér 4, Hungary
| | - Zoltán May
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, H-1117 Budapest, Magyar tudósok körútja 2, Hungary
| |
Collapse
|
9
|
Jiménez-González A, Xu F, Andersson JO. Lateral Acquisitions Repeatedly Remodel the Oxygen Detoxification Pathway in Diplomonads and Relatives. Genome Biol Evol 2020; 11:2542-2556. [PMID: 31504492 PMCID: PMC6934886 DOI: 10.1093/gbe/evz188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2019] [Indexed: 12/13/2022] Open
Abstract
Oxygen and reactive oxygen species (ROS) are important stress factors for cells because they can oxidize many large molecules. Fornicata, a group of flagellated protists that includes diplomonads, have anaerobic metabolism but are still able to tolerate fluctuating levels of oxygen. We identified 25 protein families putatively involved in detoxification of oxygen and ROS in this group using a bioinformatics approach and propose how these interact in an oxygen detoxification pathway. These protein families were divided into a central oxygen detoxification pathway and accessory pathways for the synthesis of nonprotein thiols. We then used a phylogenetic approach to investigate the evolutionary origin of the components of this putative pathway in Diplomonadida and other Fornicata species. Our analyses suggested that the diplomonad ancestor was adapted to low-oxygen levels, was able to reduce O2 to H2O in a manner similar to extant diplomonads, and was able to synthesize glutathione and l-cysteine. Several genes involved in the pathway have complex evolutionary histories and have apparently been repeatedly acquired through lateral gene transfer and subsequently lost. At least seven genes were acquired independently in different Fornicata lineages, leading to evolutionary convergences. It is likely that acquiring these oxygen detoxification proteins helped anaerobic organisms (like the parasitic Giardia intestinalis) adapt to low-oxygen environments (such as the digestive tract of aerobic hosts).
Collapse
Affiliation(s)
- Alejandro Jiménez-González
- Uppsala Biomedicine Centre, Department of Cell and Molecular Biology, Molecular Evolution Program, Uppsala University, Sweden
| | - Feifei Xu
- Uppsala Biomedicine Centre, Department of Cell and Molecular Biology, Microbiology Program, Uppsala University, Sweden
| | - Jan O Andersson
- Uppsala Biomedicine Centre, Department of Cell and Molecular Biology, Molecular Evolution Program, Uppsala University, Sweden
| |
Collapse
|
10
|
Saghaug CS, Klotz C, Kallio JP, Brattbakk HR, Stokowy T, Aebischer T, Kursula I, Langeland N, Hanevik K. Genetic variation in metronidazole metabolism and oxidative stress pathways in clinical Giardia lamblia assemblage A and B isolates. Infect Drug Resist 2019; 12:1221-1235. [PMID: 31190910 PMCID: PMC6519707 DOI: 10.2147/idr.s177997] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/16/2019] [Indexed: 12/12/2022] Open
Abstract
Purpose: Treatment-refractory Giardia cases have increased rapidly within the last decade. No markers of resistance nor a standardized susceptibility test have been established yet, but several enzymes and their pathways have been associated with metronidazole (MTZ) resistant Giardia. Very limited data are available regarding genetic variation in these pathways. We aimed to investigate genetic variation in metabolic pathway genes proposed to be involved in MTZ resistance in recently acquired, cultured clinical isolates. Methods: Whole genome sequencing of 12 assemblage A2 and 8 assemblage B isolates was done, to decipher genomic variation in Giardia. Twenty-nine genes were identified in a literature search and investigated for their single nucleotide variants (SNVs) in the coding/non-coding regions of the genes, either as amino acid changing (non-synonymous SNVs) or non-changing SNVs (synonymous). Results: In Giardia assemblage B, several genes involved in MTZ activation or oxidative stress management were found to have higher numbers of non-synonymous SNVs (thioredoxin peroxidase, nitroreductase 1, ferredoxin 2, NADH oxidase, nitroreductase 2, alcohol dehydrogenase, ferredoxin 4 and ferredoxin 1) than the average variation. For Giardia assemblage A2, the highest genetic variability was found in the ferredoxin 2, ferredoxin 6 and in nicotinamide adenine dinucleotide phosphate (NADPH) oxidoreductase putative genes. SNVs found in the ferredoxins and nitroreductases were analyzed further by alignment and homology modeling. SNVs close to the iron-sulfur cluster binding sites in nitroreductase-1 and 2 and ferredoxin 2 and 4 could potentially affect protein function. Flavohemoprotein seems to be a variable-copy gene, due to higher, but variable coverage compared to other genes investigated. Conclusion: In clinical Giardia isolates, genetic variability is common in important genes in the MTZ metabolizing pathway and in the management of oxidative and nitrosative stress and includes high numbers of non-synonymous SNVs. Some of the identified amino acid changes could potentially affect the respective proteins important in the MTZ metabolism.
Collapse
Affiliation(s)
- Christina S Saghaug
- Department of Clinical Science, University of Bergen, Bergen, Hordaland, Norway.,Norwegian National Advisory Unit on Tropical Infectious Diseases, Department of Medicine, Haukeland University Hospital, Bergen, Hordaland, Norway
| | - Christian Klotz
- Department of Infectious Diseases, Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, Berlin, Germany
| | - Juha P Kallio
- Department of Biomedicine, University of Bergen, Bergen, Hordaland, Norway
| | - Hans-Richard Brattbakk
- Department of Clinical Science, University of Bergen, Bergen, Hordaland, Norway.,Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Hordaland, Norway
| | - Tomasz Stokowy
- Department of Clinical Science, University of Bergen, Bergen, Hordaland, Norway.,Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Hordaland, Norway
| | - Toni Aebischer
- Department of Infectious Diseases, Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, Berlin, Germany
| | - Inari Kursula
- Department of Biomedicine, University of Bergen, Bergen, Hordaland, Norway.,Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Nina Langeland
- Department of Clinical Science, University of Bergen, Bergen, Hordaland, Norway.,Norwegian National Advisory Unit on Tropical Infectious Diseases, Department of Medicine, Haukeland University Hospital, Bergen, Hordaland, Norway.,Department of Medicine, Haraldsplass Deaconess Hospital, Bergen, Hordaland, Norway
| | - Kurt Hanevik
- Department of Clinical Science, University of Bergen, Bergen, Hordaland, Norway.,Norwegian National Advisory Unit on Tropical Infectious Diseases, Department of Medicine, Haukeland University Hospital, Bergen, Hordaland, Norway
| |
Collapse
|
11
|
Stairs CW, Kokla A, Ástvaldsson Á, Jerlström-Hultqvist J, Svärd S, Ettema TJG. Oxygen induces the expression of invasion and stress response genes in the anaerobic salmon parasite Spironucleus salmonicida. BMC Biol 2019; 17:19. [PMID: 30823887 PMCID: PMC6397501 DOI: 10.1186/s12915-019-0634-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/06/2019] [Indexed: 01/01/2023] Open
Abstract
Background Spironucleus salmonicida is an anaerobic parasite that can cause systemic infections in Atlantic salmon. Unlike other diplomonad parasites, such as the human pathogen Giardia intestinalis, Spironucleus species can infiltrate the blood stream of their hosts eventually colonizing organs, skin and gills. How this presumed anaerobe can persist and invade oxygenated tissues, despite having a strictly anaerobic metabolism, remains elusive. Results To investigate how S. salmonicida response to oxygen stress, we performed RNAseq transcriptomic analyses of cells grown in the presence of oxygen or antioxidant-free medium. We found that over 20% of the transcriptome is differentially regulated in oxygen (1705 genes) and antioxidant-depleted (2280 genes) conditions. These differentially regulated transcripts encode proteins related to anaerobic metabolism, cysteine and Fe-S cluster biosynthesis, as well as a large number of proteins of unknown function. S. salmonicida does not encode genes involved in the classical elements of oxygen metabolism (e.g., catalases, superoxide dismutase, glutathione biosynthesis, oxidative phosphorylation). Instead, we found that genes encoding bacterial-like oxidoreductases were upregulated in response to oxygen stress. Phylogenetic analysis revealed some of these oxygen-responsive genes (e.g., nadh oxidase, rubrerythrin, superoxide reductase) are rare in eukaryotes and likely derived from lateral gene transfer (LGT) events into diplomonads from prokaryotes. Unexpectedly, we observed that many host evasion- and invasion-related genes were also upregulated under oxidative stress suggesting that oxygen might be an important signal for pathogenesis. Conclusion While oxygen is toxic for related organisms, such as G. intestinalis, we find that oxygen is likely a gene induction signal for host invasion- and evasion-related pathways in S. salmonicida. These data provide the first molecular evidence for how S. salmonicida could tolerate oxic host environments and demonstrate how LGT can have a profound impact on the biology of anaerobic parasites. Electronic supplementary material The online version of this article (10.1186/s12915-019-0634-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Courtney W Stairs
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
| | - Anna Kokla
- Present Address: Department of Plant Biology, Swedish University of Agricultural Sciences (SLU), Almas Allé 5, BioCentrum, room D-444, Uppsala, Sweden
| | - Ásgeir Ástvaldsson
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Jon Jerlström-Hultqvist
- Present Address: Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Staffan Svärd
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Thijs J G Ettema
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.,Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| |
Collapse
|
12
|
Datta SP, Jana K, Mondal A, Ganguly S, Sarkar S. Multiple paralogues of α-SNAP in Giardia lamblia exhibit independent subcellular localization and redistribution during encystation and stress. Parasit Vectors 2018; 11:539. [PMID: 30286802 PMCID: PMC6172762 DOI: 10.1186/s13071-018-3112-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/13/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The differently-diverged parasitic protist Giardia lamblia is known to have minimal machinery for vesicular transport. Yet, it has three paralogues of SNAP, a crucial component that together with NSF brings about disassembly of the cis-SNARE complex formed following vesicle fusion to target membranes. Given that most opisthokont hosts of this gut parasite express only one α-SNAP, this study was undertaken to determine whether these giardial SNAP proteins have undergone functional divergence. RESULTS All three SNAP paralogues are expressed in trophozoites, encysting trophozoites and cysts. Even though one of them clusters with γ-SNAP sequences in a phylogenetic tree, functional complementation analysis in yeast indicates that all the three proteins are functionally orthologous to α-SNAP. Localization studies showed a mostly non-overlapping distribution of these α-SNAPs in trophozoites, encysting cells and cysts. In addition, two of the paralogues exhibit substantial subcellular redistribution during encystation, which was also seen following exposure to oxidative stress. However, the expression of the three genes remained unchanged during this redistribution process. There is also a difference in the affinity of each of these α-SNAP paralogues for GlNSF. CONCLUSIONS None of the genes encoding the three α-SNAPs are pseudogenes and the encoded proteins are likely to discharge non-redundant functions in the different morphological states of G. lamblia. Based on the difference in the interaction of individual α-SNAPs with GlNSF and their non-overlapping pattern of subcellular redistribution during encystation and under stress conditions, it may be concluded that the three giardial α-SNAP paralogues have undergone functional divergence. Presence of one of the giardial α-SNAPs at the PDRs of flagella, where neither GlNSF nor any of the SNAREs localize, indicates that this α-SNAP discharges a SNARE-independent role in this gut pathogen.
Collapse
Affiliation(s)
- Shankari Prasad Datta
- Department of Biochemistry, Bose Institute, P 1/12 CIT Road Scheme VII M, Kolkata, West Bengal, 700054, India
| | - Kuladip Jana
- Division of Molecular Medicine, Bose Institute, P 1/12 CIT Road Scheme VII M, Kolkata, West Bengal, 700054, India
| | - Avisek Mondal
- Department of Biochemistry, Bose Institute, P 1/12 CIT Road Scheme VII M, Kolkata, West Bengal, 700054, India.,Present Address: Section on Developmental Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Sandipan Ganguly
- Division of Parasitology, National Institute of Cholera and Enteric Diseases, P-33, CIT Road, Scheme XM, Beliaghata, Kolkata, West Bengal, 700010, India
| | - Srimonti Sarkar
- Department of Biochemistry, Bose Institute, P 1/12 CIT Road Scheme VII M, Kolkata, West Bengal, 700054, India.
| |
Collapse
|
13
|
Ordoñez-Quiroz A, Ortega-Pierres MG, Bazán-Tejeda ML, Bermúdez-Cruz RM. DNA damage induced by metronidazole in Giardia duodenalis triggers a DNA homologous recombination response. Exp Parasitol 2018; 194:24-31. [PMID: 30237050 DOI: 10.1016/j.exppara.2018.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/14/2018] [Accepted: 09/15/2018] [Indexed: 01/29/2023]
Abstract
The mechanisms underlying metronidazole (MTZ) resistance in Giardia duodenalis have been associated with decreased activity of the enzymes implicated in its activation including nitroductase-1, thioredoxin reductase and pyruvate-ferredoxin oxidoreductase (PFOR). MTZ activation generates radicals that can form adducts with proteins such as thioredoxin reductase and α- and -β giardins as well as DNA damage resulting in trophozoite's death. The damage induced in DNA requires a straight forward response that may allow parasite survival. Here, we studied changes in histone H2A phosphorylation to evaluate the DNA repair response pathway after induction of double strand break (DSB) by MTZ in Giardia DNA. Our results showed that the DNA repair mechanisms after exposure of Giardia trophozoites to MTZ, involved a homologous recombination pathway. We observed a significant increase in the expression level of proteins GdDMC1B, which carries out Rad51 role in G. duodenalis, and GdMre11, after 12 h of exposure to 3.2 μM MTZ. This increase was concomitant with the generation of DSB in the DNA of trophozoites treated MTZ. Altogether, these results suggest that MTZ-induced DNA damage in Giardia triggers the DNA homologous recombination repair (DHRR) pathway, which may contribute to the parasite survival in the presence of MTZ.
Collapse
Affiliation(s)
- Angel Ordoñez-Quiroz
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional No. 2508, C.P.07360, México D.F, Mexico
| | - M Guadalupe Ortega-Pierres
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional No. 2508, C.P.07360, México D.F, Mexico
| | - María Luisa Bazán-Tejeda
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional No. 2508, C.P.07360, México D.F, Mexico
| | - Rosa M Bermúdez-Cruz
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional No. 2508, C.P.07360, México D.F, Mexico.
| |
Collapse
|
14
|
Raj D, Chowdhury P, Sarkar R, Saito-Nakano Y, Okamoto K, Dutta S, Nozaki T, Ganguly S. Pyruvate Protects Giardia Trophozoites from Cysteine-Ascorbate Deprived Medium Induced Cytotoxicity. THE KOREAN JOURNAL OF PARASITOLOGY 2018. [PMID: 29529844 PMCID: PMC5858663 DOI: 10.3347/kjp.2018.56.1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Giardia lamblia, an anaerobic, amitochondriate protozoan parasite causes parasitic infection giardiasis in children and young adults. It produces pyruvate, a major metabolic product for its fermentative metabolism. The current study was undertaken to explore the effects of pyruvate as a physiological antioxidant during oxidative stress in Giardia by cysteine-ascorbate deprivation and further investigation upon the hypothesis that oxidative stress due to metabolism was the reason behind the cytotoxicity. We have estimated intracellular reactive oxygen species generation due to cysteine-ascorbate deprivation in Giardia. In the present study, we have examined the effects of extracellular addition of pyruvate, during oxidative stress generated from cysteine-ascorbate deprivation in culture media on DNA damage in Giardia. The intracellular pyruvate concentrations at several time points were measured in the trophozoites during stress. Trophozoites viability under cysteine-ascorbate deprived (CAD) medium in presence and absence of extracellular pyruvate has also been measured. The exogenous addition of a physiologically relevant concentration of pyruvate to trophozoites suspension was shown to attenuate the rate of ROS generation. We have demonstrated that Giardia protects itself from destructive consequences of ROS by maintaining the intracellular pyruvate concentration. Pyruvate recovers Giardia trophozoites from oxidative stress by decreasing the number of DNA breaks that might favor DNA repair.
Collapse
Affiliation(s)
- Dibyendu Raj
- Vivekananda College, Thakurpukur, Kolkata-700063, India.,Division of Parasitology, National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata-700010, India
| | - Punam Chowdhury
- Division of Parasitology, National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata-700010, India
| | - Rituparna Sarkar
- Division of Parasitology, National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata-700010, India
| | - Yumiko Saito-Nakano
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Keinosuke Okamoto
- Collaborative Research Center of Okayama University for Infectious Diseases in India, Kolkata-700010, India
| | - Shanta Dutta
- Division of Parasitology, National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata-700010, India
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, School of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Sandipan Ganguly
- Division of Parasitology, National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata-700010, India
| |
Collapse
|
15
|
RNAi-Mediated Specific Gene Silencing as a Tool for the Discovery of New Drug Targets in Giardia lamblia; Evaluation Using the NADH Oxidase Gene. Genes (Basel) 2017; 8:genes8110303. [PMID: 29099754 PMCID: PMC5704216 DOI: 10.3390/genes8110303] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/12/2017] [Accepted: 10/31/2017] [Indexed: 11/17/2022] Open
Abstract
The microaerophilic protozoan Giardia lamblia is the agent causing giardiasis, an intestinal parasitosis of worldwide distribution. Different pharmacotherapies have been employed against giardiasis; however, side effects in the host and reports of drug resistant strains generate the need to develop new strategies that identify novel biological targets for drug design. To support this requirement, we have designed and evaluated a vector containing a cassette for the synthesis of double-stranded RNA (dsRNA), which can silence expression of a target gene through the RNA interference (RNAi) pathway. Small silencing RNAs were detected and quantified in transformants expressing dsRNA by a stem-loop RT-qPCR approach. The results showed that, in transformants expressing dsRNA of 100-200 base pairs, the level of NADHox mRNA was reduced by around 30%, concomitant with a decrease in enzyme activity and a reduction in the number of trophozoites with respect to the wild type strain, indicating that NADHox is indeed an important enzyme for Giardia viability. These results suggest that it is possible to induce the G. lamblia RNAi machinery for attenuating the expression of genes encoding proteins of interest. We propose that our silencing strategy can be used to identify new potential drug targets, knocking down genes encoding different structural proteins and enzymes from a wide variety of metabolic pathways.
Collapse
|
16
|
Abstract
BACKGROUND Giardia intestinalis is microaerophilic diarrhoea-causing protozoan common in countries with suboptimal sanitation. Standard treatment is with nitroimidazoles, but a growing number of refractory cases is being reported. Treatment failure has become increasingly prevalent in travellers who contract giardiasis in Asia. Clinicians are increasingly falling back on second-line and less well-known drugs to treat giardiasis. AIMS To review nitroimidazole-refractory G. intestinalis infection, examine the current efficacy of standard therapeutic agents, consider potential resistance mechanisms which could cause treatment failure and describe the practical aspects of managing this emerging clinical problem. SOURCES A PubMed search was conducted using combinations of the following terms: refractory, Giardia, giardiasis, resistance and treatment. Articles on the pharmacotherapy, drug resistance mechanisms and use of alternative agents in nitroimidazole-refractory giardiasis were reviewed. CONTENT We review the standard drugs for giardiasis, including their efficacy in initial treatment, mode of action and documented in vitro and in vivo drug resistance. We assess the efficacy of alternative drugs in nitroimidazole-refractory disease. Existing data suggest a potential advantage of combination treatment. IMPLICATIONS An optimal treatment strategy for refractory giardiasis has still to be determined, so there is no standard treatment regimen for nitroimidazole-refractory giardiasis. Further work on drug resistance mechanisms and the use of drug combinations in this condition is a priority.
Collapse
|
17
|
Abstract
The NADH oxidase family of enzymes catalyzes the oxidation of NADH by reducing molecular O2 to H2O2, H2O or both. In the protozoan parasite Giardia lamblia, the NADH oxidase enzyme (GlNOX) produces H2O as end product without production of H2O2. GlNOX has been implicated in the parasite metabolism, the intracellular redox regulation and the resistance to drugs currently used against giardiasis; therefore, it is an interesting protein from diverse perspectives. In this work, the GlNOX gene was amplified from genomic G. lamblia DNA and expressed in Escherichia coli as a His-Tagged protein; then, the enzyme was purified by immobilized metal affinity chromatography, characterized, and its properties compared with those of the endogenous enzyme previously isolated from trophozoites (Brown et al. in Eur J Biochem 241(1):155-161, 1996). In comparison with the trophozoite-extracted enzyme, which was scarce and unstable, the recombinant heterologous expression system and one-step purification method produce a stable protein preparation with high yield and purity. The recombinant enzyme mostly resembles the endogenous protein; where differences were found, these were attributable to methodological discrepancies or artifacts. This homogenous, pure and functional protein preparation can be used for detailed structural or functional studies of GlNOX, which will provide a deeper understanding of the biology and pathogeny of G. lamblia.
Collapse
|
18
|
Couto N, Wood J, Barber J. The role of glutathione reductase and related enzymes on cellular redox homoeostasis network. Free Radic Biol Med 2016; 95:27-42. [PMID: 26923386 DOI: 10.1016/j.freeradbiomed.2016.02.028] [Citation(s) in RCA: 554] [Impact Index Per Article: 61.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 02/19/2016] [Accepted: 02/24/2016] [Indexed: 02/07/2023]
Abstract
In this review article we examine the role of glutathione reductase in the regulation, modulation and maintenance of cellular redox homoeostasis. Glutathione reductase is responsible for maintaining the supply of reduced glutathione; one of the most abundant reducing thiols in the majority of cells. In its reduced form, glutathione plays key roles in the cellular control of reactive oxygen species. Reactive oxygen species act as intracellular and extracellular signalling molecules and complex cross talk between levels of reactive oxygen species, levels of oxidised and reduced glutathione and other thiols, and antioxidant enzymes such as glutathione reductase determine the most suitable conditions for redox control within a cell or for activation of programmed cell death. Additionally, we discuss the translation and expression of glutathione reductase in a number of organisms including yeast and humans. In yeast and human cells, a single gene expresses more than one form of glutathione reductase, destined for residence in the cytoplasm or for translocation to different organelles; in plants, however, two genes encoding this protein have been described. In general, insects and kinetoplastids (a group of protozoa, including Plasmodia and Trypanosoma) do not express glutathione reductase or glutathione biosynthetic enzymes. Instead, they express either the thioredoxin system or the trypanothione system. The thioredoxin system is also present in organisms that have the glutathione system and there may be overlapping functions with cross-talk between the two systems. Finally we evaluate therapeutic targets to overcome oxidative stress associated cellular disorders.
Collapse
Affiliation(s)
- Narciso Couto
- Michael Barber Centre for Mass Spectrometry, Manchester Institute of Biotechnology, University of Manchester, Princess Road, Manchester M1 7DN, UK; ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK.
| | - Jennifer Wood
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Jill Barber
- Michael Barber Centre for Mass Spectrometry, Manchester Institute of Biotechnology, University of Manchester, Princess Road, Manchester M1 7DN, UK; Manchester Pharmacy School, University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
19
|
Antioxidant defence systems in the protozoan pathogen Giardia intestinalis. Mol Biochem Parasitol 2016; 206:56-66. [DOI: 10.1016/j.molbiopara.2015.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/26/2015] [Accepted: 12/01/2015] [Indexed: 01/03/2023]
|
20
|
Emery SJ, Mirzaei M, Vuong D, Pascovici D, Chick JM, Lacey E, Haynes PA. Induction of virulence factors in Giardia duodenalis independent of host attachment. Sci Rep 2016; 6:20765. [PMID: 26867958 PMCID: PMC4751611 DOI: 10.1038/srep20765] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 01/04/2016] [Indexed: 02/06/2023] Open
Abstract
Giardia duodenalis is responsible for the majority of parasitic gastroenteritis in humans worldwide. Host-parasite interaction models in vitro provide insights into disease and virulence and help us to understand pathogenesis. Using HT-29 intestinal epithelial cells (IEC) as a model we have demonstrated that initial sensitisation by host secretions reduces proclivity for trophozoite attachment, while inducing virulence factors. Host soluble factors triggered up-regulation of membrane and secreted proteins, including Tenascins, Cathepsin-B precursor, cystatin, and numerous Variant-specific Surface Proteins (VSPs). By comparison, host-cell attached trophozoites up-regulated intracellular pathways for ubiquitination, reactive oxygen species (ROS) detoxification and production of pyridoxal phosphate (PLP). We reason that these results demonstrate early pathogenesis in Giardia involves two independent host-parasite interactions. Motile trophozoites respond to soluble secreted signals, which deter attachment and induce expression of virulence factors. Trophozoites attached to host cells, in contrast, respond by up-regulating intracellular pathways involved in clearance of ROS, thus anticipating the host defence response.
Collapse
Affiliation(s)
- Samantha J Emery
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Mehdi Mirzaei
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Daniel Vuong
- Microbial Screening Technologies, Pty, Ltd, Smithfield, NSW 2165, Australia
| | - Dana Pascovici
- Australian Proteome Analysis Facility (APAF), Macquarie University, North Ryde, NSW, 2109, Australia
| | - Joel M Chick
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Ernest Lacey
- Microbial Screening Technologies, Pty, Ltd, Smithfield, NSW 2165, Australia
| | - Paul A Haynes
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| |
Collapse
|
21
|
Validation of housekeeping genes as an internal control for gene expression studies in Giardia lamblia using quantitative real-time PCR. Gene 2016; 581:21-30. [PMID: 26778241 DOI: 10.1016/j.gene.2016.01.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 01/12/2016] [Accepted: 01/13/2016] [Indexed: 02/06/2023]
Abstract
The analysis of transcript levels of specific genes is important for understanding transcriptional regulation and for the characterization of gene function. Real-time quantitative reverse transcriptase PCR (RT-qPCR) has become a powerful tool to quantify gene expression. The objective of this study was to identify reliable housekeeping genes in Giardia lamblia. Twelve genes were selected for this purpose, and their expression was analyzed in the wild type WB strain and in two strains with resistance to nitazoxanide (NTZ) and metronidazole (MTZ), respectively. RefFinder software analysis showed that the expression of the genes is different in the three strains. The integrated data from the four analyses showed that the NADH oxidase (NADH) and aldolase (ALD) genes were the most steadily expressed genes, whereas the glyceraldehyde-3-phosphate dehydrogenase gene was the most unstable. Additionally, the relative expression of seven genes were quantified in the NTZ- and MTZ-resistant strains by RT-qPCR, using the aldolase gene as the internal control, and the results showed a consistent differential pattern of expression in both strains. The housekeeping genes found in this work will facilitate the analysis of mRNA expression levels of other genes of interest in G. lamblia.
Collapse
|
22
|
Abstract
The world health organization currently recognizes diarrhoeal diseases as a significant cause of death in children globally. Protozoan parasites such as Giardia and Entamoeba that thrive in the oxygen-deprived environment of the human gut are common etiological agents of diarrhoea. In the urogenital tract of humans, the anaerobic protozoan parasite Trichomonas vaginalis is notorious as the most common non-viral, sexually transmitted pathogen. Even with high medical impact, our understanding of anaerobic parasite physiology is scarce and as a result, treatment choices are limited. Fluorescent proteins (FPs) are invaluable tools as genetically encoded protein tags for advancing knowledge of cellular function. These FP tags emit fluorescent colours and once attached to a protein of interest, allow tracking of parasite proteins in the dynamic cellular space. Application of green FPs-like FPs in anaerobic protozoans is hindered by their oxygen dependency. In this review, we examine aspects of anaerobic parasite biology that clash with physio-chemical properties of FPs and limit their use as live-parasite protein tags. We expose novel FPs, such as miniSOG that do not require oxygen for signal production. The potential use of novel FPs has the opportunity to leverage the anaerobe parasitologist toolkit to that of aerobe parasitologist.
Collapse
|
23
|
Martínez-Espinosa R, Argüello-García R, Saavedra E, Ortega-Pierres G. Albendazole induces oxidative stress and DNA damage in the parasitic protozoan Giardia duodenalis. Front Microbiol 2015; 6:800. [PMID: 26300866 PMCID: PMC4526806 DOI: 10.3389/fmicb.2015.00800] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 07/22/2015] [Indexed: 12/15/2022] Open
Abstract
The control of Giardia duodenalis infections is carried out mainly by drugs, among these albendazole (ABZ) is commonly used. Although the cytotoxic effect of ABZ usually involves binding to β-tubulin, it has been suggested that oxidative stress may also play a role in its parasiticidal mechanism. In this work the effect of ABZ in Giardia clones that are susceptible or resistant to different concentrations (1.35, 8, and 250 μM) of this drug was analyzed. Reactive oxygen species (ROS) were induced by ABZ in susceptible clones and this was associated with a decrease in growth that was alleviated by cysteine supplementation. Remarkably, ABZ-resistant clones exhibited partial cross-resistance to H2O2, whereas a Giardia H2O2-resistant strain can grow in the presence of ABZ. Lipid oxidation and protein carbonylation in ABZ-treated parasites did not show significant differences as compared to untreated parasites; however, ABZ induced the formation of 8OHdG adducts and DNA degradation, indicating nucleic acid oxidative damage. This was supported by observations of histone H2AX phosphorylation in ABZ-susceptible trophozoites treated with 250 μM ABZ. Flow cytometry analysis showed that ABZ partially arrested cell cycle in drug-susceptible clones at G2/M phase at the expense of cells in G1 phase. Also, ABZ treatment resulted in phosphatidylserine exposure on the parasite surface, an event related to apoptosis. All together these data suggest that ROS induced by ABZ affect Giardia genetic material through oxidative stress mechanisms and subsequent induction of apoptotic-like events.
Collapse
Affiliation(s)
- Rodrigo Martínez-Espinosa
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional México City, Mexico
| | - Raúl Argüello-García
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional México City, Mexico
| | - Emma Saavedra
- Department of Biochemistry, Instituto Nacional de Cardiología Ignacio Chávez México City, Mexico
| | - Guadalupe Ortega-Pierres
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional México City, Mexico
| |
Collapse
|
24
|
Argüello-García R, Cruz-Soto M, González-Trejo R, Paz-Maldonado LMT, Bazán-Tejeda ML, Mendoza-Hernández G, Ortega-Pierres G. An antioxidant response is involved in resistance of Giardia duodenalis to albendazole. Front Microbiol 2015; 6:286. [PMID: 25914688 PMCID: PMC4392323 DOI: 10.3389/fmicb.2015.00286] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 03/23/2015] [Indexed: 12/16/2022] Open
Abstract
Albendazole (ABZ) is a therapeutic benzimidazole used to treat giardiasis that targets β-tubulin. However, the molecular bases of ABZ resistance in Giardia duodenalis are not understood because β-tubulin in ABZ-resistant clones lacks mutations explaining drug resistance. In previous work we compared ABZ-resistant (1.35, 8, and 250 μM) and ABZ-susceptible clones by proteomic analysis and eight proteins involved in energy metabolism, cytoskeleton dynamics, and antioxidant response were found as differentially expressed among the clones. Since ABZ is converted into sulphoxide (ABZ-SO) and sulphone (ABZ-SOO) metabolites we measured the levels of these metabolites, the antioxidant enzymes and free thiols in the susceptible and resistant clones. Production of reactive oxygen species (ROS) and levels of ABZ-SO/ABZ-SOO induced by ABZ were determined by fluorescein diacetate-based fluorescence and liquid chromatography respectively. The mRNA and protein levels of antioxidant enzymes (NADH oxidase, peroxiredoxin 1a, superoxide dismutase and flavodiiron protein) in these clones were determined by RT-PCR and proteomic analysis. The intracellular sulfhydryl (R-SH) pool was quantified using dinitrobenzoic acid. The results showed that ABZ induced ROS accumulation in the ABZ-susceptible Giardia cultures but not in the resistant ones whilst the accumulation of ABZ-SO and ABZ-SOO was lower in all ABZ-resistant cultures. Consistent with these findings, all the antioxidant enzymes detected and analyzed were upregulated in ABZ-resistant clones. Likewise the R-SH pool increased concomitantly to the degree of ABZ-resistance. These results indicate an association between accumulation of ABZ metabolites and a pro-oxidant effect of ABZ in Giardia-susceptible clones. Furthermore the antioxidant response involving ROS-metabolizing enzymes and intracellular free thiols in ABZ-resistant parasites suggest that this response may contribute to overcome the pro-oxidant cytotoxicity of ABZ.
Collapse
Affiliation(s)
- Raúl Argüello-García
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados Instituto Politécnico Nacional, Mexico City Mexico
| | | | - Rolando González-Trejo
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados Instituto Politécnico Nacional, Mexico City Mexico
| | - Luz María T Paz-Maldonado
- Ingeniería de Biorreactores, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí Mexico
| | - M Luisa Bazán-Tejeda
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados Instituto Politécnico Nacional, Mexico City Mexico
| | - Guillermo Mendoza-Hernández
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City Mexico
| | - Guadalupe Ortega-Pierres
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados Instituto Politécnico Nacional, Mexico City Mexico
| |
Collapse
|
25
|
Bahadur V, Mastronicola D, Singh AK, Tiwari HK, Pucillo LP, Sarti P, Singh BK, Giuffrè A. Antigiardial activity of novel triazolyl-quinolone-based chalcone derivatives: when oxygen makes the difference. Front Microbiol 2015; 6:256. [PMID: 25904901 PMCID: PMC4389562 DOI: 10.3389/fmicb.2015.00256] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/16/2015] [Indexed: 01/25/2023] Open
Abstract
Giardiasis is a common diarrheal disease worldwide caused by the protozoan parasite Giardia intestinalis. It is urgent to develop novel drugs to treat giardiasis, due to increasing clinical resistance to the gold standard drug metronidazole (MTZ). New potential antiparasitic compounds are usually tested for their killing efficacy against G. intestinalis under anaerobic conditions, in which MTZ is maximally effective. On the other hand, though commonly regarded as an ‘anaerobic pathogen,’ G. intestinalis is exposed to relatively high O2 levels in vivo, living attached to the mucosa of the proximal small intestine. It is thus important to test the effect of O2 when searching for novel potential antigiardial agents, as outlined in a previous study [Bahadur et al. (2014) Antimicrob. Agents Chemother. 58, 543]. Here, 45 novel chalcone derivatives with triazolyl-quinolone scaffold were synthesized, purified, and characterized by high resolution mass spectrometry, 1H and 13C nuclear magnetic resonance and infrared spectroscopy. Efficacy of the compounds against G. intestinalis trophozoites was tested under both anaerobic and microaerobic conditions, and selectivity was assessed in a counter-screen on human epithelial colorectal adenocarcinoma cells. MTZ was used as a positive control in the assays. All the tested compounds proved to be more effective against the parasite in the presence of O2, with the exception of MTZ that was less effective. Under anaerobiosis eighteen compounds were found to be as effective as MTZ or more (up to three to fourfold); the same compounds proved to be up to >100-fold more effective than MTZ under microaerobic conditions. Four of them represent potential candidates for the design of novel antigiardial drugs, being highly selective against Giardia trophozoites. This study further underlines the importance of taking O2 into account when testing novel potential antigiardial compounds.
Collapse
Affiliation(s)
- Vijay Bahadur
- Bio-Organic Laboratory, Department of Chemistry, University of Delhi Delhi, India
| | - Daniela Mastronicola
- CNR Institute of Molecular Biology and Pathology Rome, Italy ; Department of Biochemical Sciences and Istituto Pasteur - Fondazione Cenci Bolognetti, Sapienza University of Rome Rome, Italy
| | - Amit K Singh
- Bio-Organic Laboratory, Department of Chemistry, University of Delhi Delhi, India
| | - Hemandra K Tiwari
- Bio-Organic Laboratory, Department of Chemistry, University of Delhi Delhi, India
| | - Leopoldo P Pucillo
- L. Spallanzani National Institute for Infectious Diseases, Istituto di Ricovero e Cura a Carattere Scientifico Rome, Italy
| | - Paolo Sarti
- CNR Institute of Molecular Biology and Pathology Rome, Italy ; Department of Biochemical Sciences and Istituto Pasteur - Fondazione Cenci Bolognetti, Sapienza University of Rome Rome, Italy
| | - Brajendra K Singh
- Bio-Organic Laboratory, Department of Chemistry, University of Delhi Delhi, India
| | | |
Collapse
|
26
|
UV irradiation responses in Giardia intestinalis. Exp Parasitol 2015; 154:25-32. [PMID: 25825252 DOI: 10.1016/j.exppara.2015.03.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/20/2015] [Accepted: 03/22/2015] [Indexed: 11/20/2022]
Abstract
The response to ultraviolet light (UV) radiation, a natural stressor to the intestinal protozoan parasite Giardia intestinalis, was studied to deepen the understanding of how the surrounding environment affects the parasite during transmission. UV radiation at 10 mJ/cm(2) kills Giardia cysts effectively whereas trophozoites and encysting parasites can recover from UV treatment at 100 mJ/cm(2) and 50 mJ/cm(2) respectively. Staining for phosphorylated histone H2A showed that UV treatment induces double-stranded DNA breaks and flow cytometry analyses revealed that UV treatment of trophozoites induces DNA replication arrest. Active DNA replication coupled to DNA repair could be an explanation to why UV light does not kill trophozoites and encysting cells as efficiently as the non-replicating cysts. We also examined UV-induced gene expression responses in both trophozoites and cysts using RNA sequencing (RNA seq). UV radiation induces small overall changes in gene expression in Giardia but cysts show a stronger response than trophozoites. Heat shock proteins, kinesins and Nek kinases are up-regulated, whereas alpha-giardins and histones are down-regulated in UV treated trophozoites. Expression of variable surface proteins (VSPs) is changed in both trophozoites and cysts. Our data show that Giardia cysts have limited ability to repair UV-induced damage and this may have implications for drinking- and waste-water treatment when setting criteria for the use of UV disinfection to ensure safe water.
Collapse
|
27
|
Hanevik K, Bakken R, Brattbakk HR, Saghaug CS, Langeland N. Whole genome sequencing of clinical isolates of Giardia lamblia. Clin Microbiol Infect 2014; 21:192.e1-3. [PMID: 25596782 DOI: 10.1016/j.cmi.2014.08.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 08/13/2014] [Accepted: 08/15/2014] [Indexed: 10/24/2022]
Abstract
Clinical isolates from protozoan parasites such as Giardia lamblia are at present practically impossible to culture. By using simple cyst purification methods, we show that Giardia whole genome sequencing of clinical stool samples is possible. Immunomagnetic separation after sucrose gradient flotation gave superior results compared to sucrose gradient flotation alone. The method enables detailed analysis of a wide range of genes of interest for genotyping, virulence and drug resistance.
Collapse
Affiliation(s)
- K Hanevik
- Department of Clinical Science, University of Bergen, Bergen, Norway; National Center for Tropical Infectious Diseases, Department of Medicine, Bergen, Norway.
| | - R Bakken
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - H R Brattbakk
- Department of Clinical Science, University of Bergen, Bergen, Norway; Center for Medical Genetics and Molecular Medicine, Bergen, Norway
| | - C S Saghaug
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - N Langeland
- Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
28
|
Ferella M, Davids BJ, Cipriano MJ, Birkeland SR, Palm D, Gillin FD, McArthur AG, Svärd S. Gene expression changes during Giardia-host cell interactions in serum-free medium. Mol Biochem Parasitol 2014; 197:21-3. [PMID: 25286381 DOI: 10.1016/j.molbiopara.2014.09.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 09/20/2014] [Accepted: 09/25/2014] [Indexed: 11/28/2022]
Abstract
Serial Analysis of Gene Expression (SAGE) was used to quantify transcriptional changes in Giardia intestinalis during its interaction with human intestinal epithelial cells (IECs, HT-29) in serum free M199 medium. Transcriptional changes were compared to those in trophozoites alone in M199 and in TYI-S-33 Giardia growth medium. In total, 90 genes were differentially expressed, mainly those involved in cellular redox homeostasis, metabolism and small molecule transport but also cysteine proteases and structural proteins of the giardin family. Only 29 genes changed their expression due to IEC interaction and the rest were due to M199 medium. Although our findings generated a small dataset, it was consistent with our earlier microarray studies performed under different interaction conditions. This study has confined the number of genes in Giardia to a small subset that specifically change their expression due to interaction with IECs.
Collapse
Affiliation(s)
- Marcela Ferella
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Barbara J Davids
- Department of Pathology, Division of Infectious Disease, University of California, San Diego, CA, USA
| | | | | | - Daniel Palm
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Frances D Gillin
- Department of Pathology, Division of Infectious Disease, University of California, San Diego, CA, USA
| | | | - Staffan Svärd
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|