1
|
Budzko L, Hoffa-Sobiech K, Jackowiak P, Figlerowicz M. Engineered deaminases as a key component of DNA and RNA editing tools. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102062. [PMID: 38028200 PMCID: PMC10661471 DOI: 10.1016/j.omtn.2023.102062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Over recent years, zinc-dependent deaminases have attracted increasing interest as key components of nucleic acid editing tools that can generate point mutations at specific sites in either DNA or RNA by combining a targeting module (such as a catalytically impaired CRISPR-Cas component) and an effector module (most often a deaminase). Deaminase-based molecular tools are already being utilized in a wide spectrum of therapeutic and research applications; however, their medical and biotechnological potential seems to be much greater. Recent reports indicate that the further development of nucleic acid editing systems depends largely on our ability to engineer the substrate specificity and catalytic activity of the editors themselves. In this review, we summarize the current trends and achievements in deaminase engineering. The presented data indicate that the potential of these enzymes has not yet been fully revealed or understood. Several examples show that even relatively minor changes in the structure of deaminases can give them completely new and unique properties.
Collapse
Affiliation(s)
- Lucyna Budzko
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Karolina Hoffa-Sobiech
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Paulina Jackowiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Marek Figlerowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| |
Collapse
|
2
|
Zhu M, Wang M, Shao Y, Nan Y, Blair HT, Morris ST, Zhao Z, Zhang H. Characterization of muscle development and gene expression in early embryos of chicken, quail, and their hybrids. Gene 2020; 768:145319. [PMID: 33246031 DOI: 10.1016/j.gene.2020.145319] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/09/2020] [Accepted: 11/14/2020] [Indexed: 11/26/2022]
Abstract
Myogenesis is a complex, regulated process that involves myoblast proliferation, migration, adhesion, and fusion into myotubes. To investigate early development of embryonic muscles and the expression of regulatory genes during myogenesis in chicken, quail and their hybrids, meat-breeding cocks and egg-breeding cocks were selected as male parents, quails were used as female parents. Their offspring were meat and egg hybrids via Artificial insemination. We measured expression of MUSTN1, IGF-1, and PDK4 using qRT-PCR. We examined muscle fiber diameter using scanning electron microscopy. The results showed that muscle development was two days slower in chicken, egg hybrid, and meat hybrid than in quail. Muscle fiber spacing was the largest in chicken, followed by meat hybrid, egg hybrid, and quail. A similar trend was obtained for muscle fiber diameter. Additionally, muscle fiber diameter increased with embryogenesis. The sarcomere was present on day 17 of incubation in quail, but not in the other species. MUSTN1 could up-regulated IGF-1 by activating PI3K/Akt. IGF-1 expression was consistent with myoblast proliferation and myotube fusion. PDK4 was expressed from E7 to E17. The first peak was reached on E10, egg hybrid and meat hybrid reached their peak at E15. PDK4 is involved in the early proliferation and differentiation of muscle, thereby affecting muscle growth and development. Our findings demonstrated that MUSTN1, IGF-1 and PDK4 genes are expressed to varying levels in breast muscle of chicken, quail, egg hybrid and meat hybrid during the embryonic period. Interestingly, with increasing embryonic age, muscle development was approximately 48 h faster in quail than in other species. We speculated that MUSTN1, IGF-1 and PDK4 genes may be the main candidate genes that cause differences in poultry muscle traits, but the molecular regulation mechanisms need to be further studied. Our findings shed some light on the avian embryo muscle formation and molecular breeding of poultry muscle traits, which provide theoretical basis for poultry breeding.
Collapse
Affiliation(s)
- Mengting Zhu
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, PR China
| | - Mingyuan Wang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, PR China
| | - Yanyan Shao
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, PR China
| | - Ying Nan
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, PR China
| | - Hugh T Blair
- Institute Veterinary, Animal & Biomedical Sciences, Massey University, Auckland, Palmerston North, New Zealand
| | - Stephen Todd Morris
- Institute Veterinary, Animal & Biomedical Sciences, Massey University, Auckland, Palmerston North, New Zealand
| | - Zongsheng Zhao
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, PR China.
| | - Hongmei Zhang
- First Affiliated Hospital, School of Medical College, Shihezi University, Shihezi, Xinjiang 832008, PR China.
| |
Collapse
|
3
|
Shi M, Tan L, Zhang Y, Meng C, Wang W, Sun Y, Song C, Liu W, Liao Y, Yu S, Ren T, Ding Z, Liu X, Qiu X, Ding C. Characterization and functional analysis of chicken APOBEC4. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 106:103631. [PMID: 31991164 DOI: 10.1016/j.dci.2020.103631] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
The APOBEC proteins play significant roles in the innate and adaptive immune system, probably due to their deaminase activities. Because APOBEC1 (A1) and APOBEC3 (A3) are absent in the chicken genome, we were interested in determining whether chicken APOBEC4 (A4) possessed more complex functions than its mammalian homologs. In this study, chicken A4 (chA4) mRNA was identified and cloned for the first time. Based on bioinformatics analyses, the conserved zinc-coordinating motif (HXE … PC(X)2-6C) was identified on the surface of chA4 and contained highly conserved His97, Glu99, Pro130, Cys131 and Cys138 active sites. The highest expression levels of constitutive chA4 were detected in primary lymphocytes and bursa of Fabricius. Newcastle Disease (ND) is one of the most serious infectious diseases in birds, causing major economic losses to the poultry industry. In vitro, Newcastle Disease Virus (NDV) early infection induced significant increases in chA4 expression in the chicken B cell line, DT40, the macrophage cell line, HD11 and the CD4+ T cell line, MSB-1, but not the fibroblast cell line, DF-1. In vivo, the expression levels of chA4 were up-regulated in several tissues from NDV-infected chickens, especially the thymus, testicles, duodenum and kidney. The high level expression of exogenous chA4 displayed inhibitory effects on NDV and reduced viral RNA in infected cells. Taken together, these data demonstrate that chA4 is involved in the chicken immune system and may play important roles in host anti-viral responses.
Collapse
Affiliation(s)
- Mengyu Shi
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China.
| | - Lei Tan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China.
| | - Yaodan Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China.
| | - Chunchun Meng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China.
| | - Wei Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China.
| | - Yingjie Sun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China.
| | - Cuiping Song
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China.
| | - Weiwei Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China.
| | - Ying Liao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China.
| | - Shengqing Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China.
| | - Tao Ren
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China.
| | - Zhuang Ding
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Jilin University, Changchun, 130062, PR China.
| | - Xiufan Liu
- Key Laboratory of Animal Infectious Diseases, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, PR China.
| | - Xusheng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China.
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, PR China.
| |
Collapse
|
4
|
Tarsani E, Kranis A, Maniatis G, Avendano S, Hager-Theodorides AL, Kominakis A. Discovery and characterization of functional modules associated with body weight in broilers. Sci Rep 2019; 9:9125. [PMID: 31235723 PMCID: PMC6591351 DOI: 10.1038/s41598-019-45520-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 06/04/2019] [Indexed: 12/31/2022] Open
Abstract
Aim of the present study was to investigate whether body weight (BW) in broilers is associated with functional modular genes. To this end, first a GWAS for BW was conducted using 6,598 broilers and the high density SNP array. The next step was to search for positional candidate genes and QTLs within strong LD genomic regions around the significant SNPs. Using all positional candidate genes, a network was then constructed and community structure analysis was performed. Finally, functional enrichment analysis was applied to infer the functional relevance of modular genes. A total number of 645 positional candidate genes were identified in strong LD genomic regions around 11 genome-wide significant markers. 428 of the positional candidate genes were located within growth related QTLs. Community structure analysis detected 5 modules while functional enrichment analysis showed that 52 modular genes participated in developmental processes such as skeletal system development. An additional number of 14 modular genes (GABRG1, NGF, APOBEC2, STAT5B, STAT3, SMAD4, MED1, CACNB1, SLAIN2, LEMD2, ZC3H18, TMEM132D, FRYL and SGCB) were also identified as related to body weight. Taken together, current results suggested a total number of 66 genes as most plausible functional candidates for the trait examined.
Collapse
Affiliation(s)
- Eirini Tarsani
- Department of Animal Science and Aquaculture, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece.
| | - Andreas Kranis
- Aviagen Ltd., Newbridge, Midlothian, EH28 8SZ, UK.,The Roslin Institute, University of Edinburgh, EH25 9RG, Midlothian, United Kingdom
| | | | | | - Ariadne L Hager-Theodorides
- Department of Animal Science and Aquaculture, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| | - Antonios Kominakis
- Department of Animal Science and Aquaculture, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| |
Collapse
|
5
|
Prost S, Armstrong EE, Nylander J, Thomas GWC, Suh A, Petersen B, Dalen L, Benz BW, Blom MPK, Palkopoulou E, Ericson PGP, Irestedt M. Comparative analyses identify genomic features potentially involved in the evolution of birds-of-paradise. Gigascience 2019; 8:giz003. [PMID: 30689847 PMCID: PMC6497032 DOI: 10.1093/gigascience/giz003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 10/30/2018] [Accepted: 01/10/2019] [Indexed: 12/14/2022] Open
Abstract
The diverse array of phenotypes and courtship displays exhibited by birds-of-paradise have long fascinated scientists and nonscientists alike. Remarkably, almost nothing is known about the genomics of this iconic radiation. There are 41 species in 16 genera currently recognized within the birds-of-paradise family (Paradisaeidae), most of which are endemic to the island of New Guinea. In this study, we sequenced genomes of representatives from all five major clades within this family to characterize genomic changes that may have played a role in the evolution of the group's extensive phenotypic diversity. We found genes important for coloration, morphology, and feather and eye development to be under positive selection. In birds-of-paradise with complex lekking systems and strong sexual dimorphism, the core birds-of-paradise, we found Gene Ontology categories for "startle response" and "olfactory receptor activity" to be enriched among the gene families expanding significantly faster compared to the other birds in our study. Furthermore, we found novel families of retrovirus-like retrotransposons active in all three de novo genomes since the early diversification of the birds-of-paradise group, which might have played a role in the evolution of this fascinating group of birds.
Collapse
Affiliation(s)
- Stefan Prost
- Department of Biodiversity and Genetics, Swedish Museum of Natural History, Frescativaegen 40, 114 18 Stockholm, Sweden
- Department of Integrative Biology, University of California, 3040 Valley Life Science Building, Berkeley, CA 94720-3140, USA
| | - Ellie E Armstrong
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA 94305–5020, USA
| | - Johan Nylander
- Department of Biodiversity and Genetics, Swedish Museum of Natural History, Frescativaegen 40, 114 18 Stockholm, Sweden
| | - Gregg W C Thomas
- Department of Biology and School of Informatics, Computing, and Engineering, Indiana University, 1001 E. Third Street, Bloomington, IN 47405, USA
| | - Alexander Suh
- Department of Evolutionary Biology (EBC), Uppsala University, Norbyvaegen 14-18, 75236 Uppsala, Sweden
| | - Bent Petersen
- Natural History Museum of Denmark, University of Copenhagen, Oster Voldgade 5-7, 1353 Copenhagen, Denmark
- Centre of Excellence for Omics-Driven Computational Biodiscovery, Faculty of Applied Sciences, Asian Institute of Medicine, Science and Technology,Jalan Bedong-Semeling, 08100 Bedong, Kedah, Malaysia
| | - Love Dalen
- Department of Biodiversity and Genetics, Swedish Museum of Natural History, Frescativaegen 40, 114 18 Stockholm, Sweden
| | - Brett W Benz
- Department of Ornithology, American Museum of Natural History, Central Park West, New York, NY 10024, USA
| | - Mozes P K Blom
- Department of Biodiversity and Genetics, Swedish Museum of Natural History, Frescativaegen 40, 114 18 Stockholm, Sweden
| | - Eleftheria Palkopoulou
- Department of Biodiversity and Genetics, Swedish Museum of Natural History, Frescativaegen 40, 114 18 Stockholm, Sweden
| | - Per G P Ericson
- Department of Biodiversity and Genetics, Swedish Museum of Natural History, Frescativaegen 40, 114 18 Stockholm, Sweden
| | - Martin Irestedt
- Department of Biodiversity and Genetics, Swedish Museum of Natural History, Frescativaegen 40, 114 18 Stockholm, Sweden
| |
Collapse
|
6
|
Sato Y, Ohtsubo H, Nihei N, Kaneko T, Sato Y, Adachi SI, Kondo S, Nakamura M, Mizunoya W, Iida H, Tatsumi R, Rada C, Yoshizawa F. Apobec2 deficiency causes mitochondrial defects and mitophagy in skeletal muscle. FASEB J 2018; 32:1428-1439. [PMID: 29127187 PMCID: PMC5892721 DOI: 10.1096/fj.201700493r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Apobec2 is a member of the activation-induced deaminase/apolipoprotein B mRNA editing enzyme catalytic polypeptide cytidine deaminase family expressed in differentiated skeletal and cardiac muscle. We previously reported that Apobec2 deficiency in mice leads to a shift in muscle fiber type, myopathy, and diminished muscle mass. However, the mechanisms of myopathy caused by Apobec2 deficiency and its physiologic functions are unclear. Here we show that, although Apobec2 localizes to the sarcomeric Z-lines in mouse tissue and cultured myotubes, the sarcomeric structure is not affected in Apobec2-deficient muscle. In contrast, electron microscopy reveals enlarged mitochondria and mitochondria engulfed by autophagic vacuoles, suggesting that Apobec2 deficiency causes mitochondrial defects leading to increased mitophagy in skeletal muscle. Indeed, Apobec2 deficiency results in increased reactive oxygen species generation and depolarized mitochondria, leading to mitophagy as a defensive response. Furthermore, the exercise capacity of Apobec2-/- mice is impaired, implying Apobec2 deficiency results in ongoing muscle dysfunction. The presence of rimmed vacuoles in myofibers from 10-mo-old mice suggests that the chronic muscle damage impairs normal autophagy. We conclude that Apobec2 deficiency causes mitochondrial defects that increase muscle mitophagy, leading to myopathy and atrophy. Our findings demonstrate that Apobec2 is required for mitochondrial homeostasis to maintain normal skeletal muscle function.-Sato, Y., Ohtsubo, H., Nihei, N., Kaneko, T., Sato, Y., Adachi, S.-I., Kondo, S., Nakamura, M., Mizunoya, W., Iida, H., Tatsumi, R., Rada, C., Yoshizawa, F. Apobec2 deficiency causes mitochondrial defects and mitophagy in skeletal muscle.
Collapse
Affiliation(s)
- Yusuke Sato
- Department of Agrobiology and Bioresources, Utsunomiya University, Tochigi, Japan
| | - Hideaki Ohtsubo
- Department of Animal and Marine Bioresource Sciences, Kyushu University, Fukuoka, Japan
| | - Naohiro Nihei
- Department of Agrobiology and Bioresources, Utsunomiya University, Tochigi, Japan
| | - Takane Kaneko
- Department of Animal and Marine Bioresource Sciences, Kyushu University, Fukuoka, Japan
| | - Yoriko Sato
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Shin-Ichi Adachi
- Department of Agrobiology and Bioresources, Utsunomiya University, Tochigi, Japan
| | - Shinji Kondo
- Department of Agrobiology and Bioresources, Utsunomiya University, Tochigi, Japan
| | - Mako Nakamura
- Department of Animal and Marine Bioresource Sciences, Kyushu University, Fukuoka, Japan
| | - Wataru Mizunoya
- Department of Animal and Marine Bioresource Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroshi Iida
- Department of Animal and Marine Bioresource Sciences, Kyushu University, Fukuoka, Japan
| | - Ryuichi Tatsumi
- Department of Animal and Marine Bioresource Sciences, Kyushu University, Fukuoka, Japan
| | - Cristina Rada
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Fumiaki Yoshizawa
- Department of Agrobiology and Bioresources, Utsunomiya University, Tochigi, Japan.,United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
7
|
Maternal consumption of fish oil programs reduced adiposity in broiler chicks. Sci Rep 2017; 7:13129. [PMID: 29030616 PMCID: PMC5640664 DOI: 10.1038/s41598-017-13519-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/25/2017] [Indexed: 12/20/2022] Open
Abstract
Maternal intake of eicosapentaenoic acid (EPA; 20:5 n-3) and docosahexaenoic acid (22:6 n-3) has been associated with reduced adiposity in children, suggesting the possibility to program adipose development through dietary fatty acids before birth. This study determined if enriching the maternal diet in fish oil, the primary source of EPA and DHA, affected adipose development in offspring. Broiler chickens were used because they are obesity-prone, and because fatty acids provided to the embryo can be manipulated through the hen diet. Hens were fed diets supplemented (2.8% wt:wt) with corn oil (CO; n-6) or fish oil (FO; n-3) for 28 d. Chicks from both maternal diet groups were fed the same diet after hatch. Maternal FO consumption enriched chick adipose tissue in EPA and DHA and reduced adiposity by promoting more, but smaller, adipocytes. This adipocyte profile was paralleled by lower expression of the adipogenic regulator PPARG and its co-activator PPARGC1B, and elevated expression of LPL. Proteomics identified 95 differentially abundant proteins between FO and CO adipose tissue, including components of glucose metabolism, lipid droplet trafficking, and cytoskeletal organization. These results demonstrate that the maternal dietary fatty acid profile programs offspring adipose development.
Collapse
|
8
|
Knisbacher BA, Gerber D, Levanon EY. DNA Editing by APOBECs: A Genomic Preserver and Transformer. Trends Genet 2016; 32:16-28. [PMID: 26608778 DOI: 10.1016/j.tig.2015.10.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 10/18/2015] [Accepted: 10/22/2015] [Indexed: 10/22/2022]
Abstract
Information warfare is not limited to the cyber world because it is waged within our cells as well. The unique AID (activation-induced cytidine deaminase)/APOBEC (apolipoprotein B mRNA editing enzyme, catalytic polypeptide) family comprises proteins that alter DNA sequences by converting deoxycytidines to deoxyuridines through deamination. This C-to-U DNA editing enables them to inhibit parasitic viruses and retrotransposons by disrupting their genomic content. In addition to attacking genomic invaders, APOBECs can target their host genome, which can be beneficial by initiating processes that create antibody diversity needed for the immune system or by accelerating the rate of evolution. AID can also alter gene regulation by removing epigenetic modifications from genomic DNA. However, when uncontrolled, these powerful agents of change can threaten genome stability and eventually lead to cancer.
Collapse
Affiliation(s)
- Binyamin A Knisbacher
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 52900 Israel
| | - Doron Gerber
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 52900 Israel
| | - Erez Y Levanon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 52900 Israel.
| |
Collapse
|