1
|
Zheng L, Wu L, Zhong W, Du S, Li Z, Chen X, Huang J, Wu S, Liu L, Chen J, Wu Y. Label-Free Multiphoton Microscopy for Diagnosis of Psoriasis. JOURNAL OF BIOPHOTONICS 2025; 18:e202500025. [PMID: 40045176 DOI: 10.1002/jbio.202500025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/15/2025] [Accepted: 02/20/2025] [Indexed: 04/26/2025]
Abstract
Psoriasis is a global problem that significantly affects patients both physically and mentally. Accurate and rapid detection of psoriasis is crucial for diagnosis and treatment. Herein, we utilized multiphoton microscopy (MPM) to rapidly image psoriasis in imiquimod-induced mouse and human psoriatic samples. Our results showed that MPM accurately monitored the thickening of stratum corneum and epidermis in psoriatic tissues, similar to traditional H&E staining. Notably, we observed an increased alignment and number of collagen fibers in both mouse models and human psoriatic samples. Furthermore, a decrease in the proportionate area, length, width, and cross-linking gap of collagen fibers, as well as an increase in cross-linking density was also obtained in mouse psoriatic models. These findings suggest that collagen can be a biomarker for evaluating the progress of psoriasis. Overall, our study presents a rapid diagnostic method for psoriasis using MPM.
Collapse
Affiliation(s)
- Liqin Zheng
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, China
| | - Liuzhi Wu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Wenwen Zhong
- Department of Dermatology, The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou, China
| | - Shengrong Du
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, Collage of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Zhen Li
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, China
| | - Xi Chen
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, China
| | - Jianping Huang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, China
| | - Shulian Wu
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, China
| | - Lina Liu
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, China
| | - Jianxin Chen
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, China
| | - Yelin Wu
- Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Port H, Coppers B, Tragl S, Manger E, Niemiec LM, Bayat S, Simon D, Fagni F, Corte G, Bay-Jensen AC, Tascilar K, Hueber AJ, Schmidt KG, Schönau V, Sticherling M, Heinrich S, Leyendecker S, Bohr D, Schett G, Kleyer A, Holm Nielsen S, Liphardt AM. Serum extracellular matrix biomarkers in rheumatoid arthritis, psoriatic arthritis and psoriasis and their association with hand function. Sci Rep 2025; 15:13656. [PMID: 40254635 PMCID: PMC12009959 DOI: 10.1038/s41598-025-98395-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 04/11/2025] [Indexed: 04/22/2025] Open
Abstract
Inflammatory arthritis, including rheumatoid arthritis and psoriatic arthritis, is characterized by physical function impairment. This becomes apparent even before arthritis onset, as in psoriasis (PsO). Chronic inflammation triggers an accelerated remodeling of the extracellular matrix (ECM), resulting in released ECM fragments detectable in blood. We aimed to investigate levels of blood-based ECM biomarkers in patients with RA, PsA, PsO, and healthy controls and to explore the association of ECM biomarkers with hand function impairments. Patients with RA (n = 85), PsA (n = 115), PsO (n = 102) and controls (n = 110) were included in this cross-sectional study. ECM catabolic (C1M, C2M, C3M, C4M, PRO-C4, C6M, ARG), formation (PRO-C1, PRO-C3, PRO-C6) and inflammation biomarkers (VICM) were measured in serum from all patients. Objective hand function (fine motor skills (Moberg-Picking-Up Test), isometric grip strength (dynamometer) and patient-perceived hand function (Michigan Hand Questionnaire (MHQ)) were assessed. Patients with RA and PsA received treatment with disease-modifying anti-rheumatic drugs. VICM levels were higher in RA, PsA, and PsO than in controls (p < 0.0001). PsA and PsO showed higher C4M levels compared to controls (p < 0.0001, p < 0.0001), while C6M was lower in patients with RA, PsA and PsO than in controls (p < 0.0001, p < 0.001, p < 0.01). PsO presented with higher levels of C1M compared to controls and to RA (p < 0.001 and p < 0.0001). PRO-C6 correlated negatively with MHQ (ρ = -0.39, p < 0.01) and grip strength (ρ = -0.31, p < 0.05) in PsO, while only weak correlations were observed between biomarkers and hand function scores for RA and PsA patients (all ρ < ± 0.2-0.3). Patients with RA, PsA, and PsO showed significant alterations in ECM remodeling biomarkers. Especially PsA and PsO had higher levels of inflammatory biomarkers compared to RA and controls, likely due to modulation by treatment. Predominantly in PsO, ECM formation biomarkers were associated with hand function impairments.
Collapse
Affiliation(s)
- Helena Port
- University of Copenhagen, Copenhagen, Denmark
- Nordic Bioscience, Herlev, Denmark
| | - Birte Coppers
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Sonja Tragl
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Eva Manger
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Department of Internal Medicine, Clinical Division of Internal Medicine II, Medical University Innsbruck/Tirol Kliniken GmbH, Innsbruck, Austria
| | - Lisa M Niemiec
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Elisabeth-Krankenhaus Kassel, Kassel, Germany
| | - Sara Bayat
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - David Simon
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Charité Universitätsmedizin Berlin, Med. Klinik mit Schwerpunkt Rheumatologie und Klinische Immunologie Berlin, Berlin, Germany
| | - Filippo Fagni
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Giulia Corte
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | | | - Koray Tascilar
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Axel J Hueber
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Division of Rheumatology, Klinikum Nürnberg, Paracelsus Medical University, Nürnberg, Germany
| | - Katja G Schmidt
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Verena Schönau
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Michael Sticherling
- Deutsches Zentrum Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Departement of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Simon Heinrich
- Institute of Applied Dynamics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sigrid Leyendecker
- Institute of Applied Dynamics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Daniela Bohr
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Arnd Kleyer
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Charité Universitätsmedizin Berlin, Med. Klinik mit Schwerpunkt Rheumatologie und Klinische Immunologie Berlin, Berlin, Germany
| | | | - Anna-Maria Liphardt
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.
- Deutsches Zentrum Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.
| |
Collapse
|
3
|
Kim SH, Kim YH, Kim JB, Park NY, So JH, Park D, Choi DK, Yeom E, Gwon Y, Jo DS, Lee JA, Bae JE, Cho DH. Suppression of stress granule assembly by pyridoxal hydrochloride attenuates oxidative damage in skin fibroblasts. Bioorg Med Chem Lett 2025; 123:130238. [PMID: 40216204 DOI: 10.1016/j.bmcl.2025.130238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/28/2025] [Accepted: 04/03/2025] [Indexed: 04/17/2025]
Abstract
Stress granules (SGs) are membrane-less cytoplasmic structures that form in response to various stress stimuli and play a critical role in maintaining cellular homeostasis. Dysregulation of SG dynamics has been implicated in several diseases, including neurodegenerative and inflammatory conditions; however, their role in skin biology remains largely unexplored. In this study, we identified pyridoxal hydrochloride, a form of vitamin B6, as a novel regulator of SG formation through a metabolite library screening. Our results demonstrate that pyridoxal hydrochloride significantly suppresses oxidative stress-induced SG formation in skin fibroblasts, exhibiting effects comparable to G3Ia, a known SG inhibitor. Furthermore, pyridoxal hydrochloride mitigates oxidative stress by reducing reactive oxygen species (ROS) accumulation and preventing cell toxicity. Notably, it also attenuates ROS-induced upregulation of MMP1, thereby preserving collagen1 stability. These findings suggest the crucial role of SGs in skin fibroblast homeostasis and suggest that pyridoxal hydrochloride may serve as a potential therapeutic agent for oxidative stress-related skin disorders.
Collapse
Affiliation(s)
- Seong Hyun Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Yong Hwan Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Joon Bum Kim
- Organelle Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Na Yeon Park
- Organelle Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Jun Hee So
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Daeun Park
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Dong Kyu Choi
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Eunbyul Yeom
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Youngdae Gwon
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Doo Sin Jo
- Orgasis Corp., Suwon, Gyeonggi-do, Republic of Korea
| | - Jin-A Lee
- Department of Biological Sciences and Biotechnology, College of Life Sciences and Nanotechnology, Hannam University, Daejeon, Republic of Korea
| | - Ji-Eun Bae
- Organelle Institute, Kyungpook National University, Daegu, Republic of Korea.
| | - Dong-Hyung Cho
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea; Organelle Institute, Kyungpook National University, Daegu, Republic of Korea; Orgasis Corp., Suwon, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
4
|
Johansen MB, Nielsen SH, Port H, Todberg T, Løvendorf MB, Skov L. Biomarkers of Extracellular Matrix Fragments in Patients with Psoriasis. Int J Mol Sci 2024; 26:261. [PMID: 39796116 PMCID: PMC11720200 DOI: 10.3390/ijms26010261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/16/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Blood-based extracellular matrix (ECM) fragments have been identified as potential pharmacologic biomarkers in spondyloarthritis and diagnostic biomarkers in psoriatic arthritis and psoriasis vulgaris. This study aimed to explore whether ECM fragments can differentiate patients with psoriasis from healthy controls (HC) and determine their potential as biomarkers for response to treatment in psoriasis. The study population included 59 patients with moderate to severe psoriasis, not receiving systemic anti-psoriatic treatment at inclusion, and 52 HC matched by age, sex, and BMI. An EDTA plasma sample was taken from all subjects at inclusion. Nine patients with psoriasis who initiated treatment with adalimumab after inclusion and responded successfully had an additional EDTA plasma sample taken after three to six months. Twelve ECM fragments were measured using validated ELISAs and Immunodiagnostic Systems automated chemiluminescent assays. C4M, indicating collagen IV degradation, PRO-C3, indicating tissue fibrosis, and PRO-C4, indicating epidermal basement membrane turnover showed significantly elevated levels in psoriasis patients compared with HC (p = 0.005, p = 0.016, and p = 0.018, respectively). Despite successful treatment, adalimumab did not alter C4M, PRO-C3, or PRO-C4 levels. In conclusion, compared with controls, C4M, PRO-C3, and PRO-C4 were elevated in psoriasispatients, but treatment did not modulate these fragments.
Collapse
Affiliation(s)
- Mila Broby Johansen
- Department of Dermatology and Allergy, Copenhagen University Hospital—Herlev and Gentofte, 2900 Hellerup, Denmark; (T.T.); (M.B.L.); (L.S.)
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen N, Denmark
| | | | - Helena Port
- Nordic Bioscience, 2730 Herlev, Denmark; (S.H.N.); (H.P.)
| | - Tanja Todberg
- Department of Dermatology and Allergy, Copenhagen University Hospital—Herlev and Gentofte, 2900 Hellerup, Denmark; (T.T.); (M.B.L.); (L.S.)
| | - Marianne Bengtson Løvendorf
- Department of Dermatology and Allergy, Copenhagen University Hospital—Herlev and Gentofte, 2900 Hellerup, Denmark; (T.T.); (M.B.L.); (L.S.)
- The Leo Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Lone Skov
- Department of Dermatology and Allergy, Copenhagen University Hospital—Herlev and Gentofte, 2900 Hellerup, Denmark; (T.T.); (M.B.L.); (L.S.)
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen N, Denmark
| |
Collapse
|
5
|
Noddeland HK, Canbay V, Lind M, Savickas S, Jensen LB, Petersson K, Malmsten M, Koch J, Auf dem Keller U, Heinz A. Matrix metalloproteinase landscape in the imiquimod-induced skin inflammation mouse model. Biochimie 2024; 226:99-106. [PMID: 38513823 DOI: 10.1016/j.biochi.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/29/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Inflammation and autoimmunity are known as central processes in many skin diseases, including psoriasis. It is therefore important to develop pre-clinical models that describe disease-related aspects to enable testing of pharmaceutical drug candidates and formulations. A widely accepted pre-clinical model of psoriasis is the imiquimod (IMQ)-induced skin inflammation mouse model, where topically applied IMQ provokes local skin inflammation. In this study, we investigated the abundance of a subset of matrix metalloproteinases (MMPs) in skin from mice with IMQ-induced skin inflammation and skin from naïve mice using targeted proteomics. Our findings reveal a significant increase in the abundance of MMP-2, MMP-7, MMP-8, and MMP-13 after treatment with IMQ compared to the control skin, while MMP-3, MMP-9, and MMP-10 were exclusively detected in the IMQ-treated skin. The increased abundance and broader representation of MMPs in the IMQ-treated skin provide valuable insight into the pathophysiology of skin inflammation in the IMQ model, adding to previous studies on cytokine levels using conventional immunochemical methods. Specifically, the changes in the MMP profiles observed in the IMQ-treated skin resemble the MMP patterns found in skin lesions of individuals with psoriasis. Ultimately, the differences in MMP abundance under IMQ-induced inflammation as compared to non-inflamed control skin can be exploited as a model to investigate drug efficacy or performance of drug delivery systems.
Collapse
Affiliation(s)
- Heidi Kyung Noddeland
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100, Copenhagen, Denmark; Explorative Formulation & Technologies, CMC Design and Development, LEO Pharma A/S, 2750, Ballerup, Denmark
| | - Vahap Canbay
- Technical University of Denmark, Department of Biotechnology and Biomedicine, 2800, Kongens Lyngby, Denmark
| | - Marianne Lind
- Explorative Formulation & Technologies, CMC Design and Development, LEO Pharma A/S, 2750, Ballerup, Denmark
| | - Simonas Savickas
- Technical University of Denmark, Department of Biotechnology and Biomedicine, 2800, Kongens Lyngby, Denmark
| | - Louise Bastholm Jensen
- Explorative Formulation & Technologies, CMC Design and Development, LEO Pharma A/S, 2750, Ballerup, Denmark
| | - Karsten Petersson
- Explorative Formulation & Technologies, CMC Design and Development, LEO Pharma A/S, 2750, Ballerup, Denmark
| | - Martin Malmsten
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100, Copenhagen, Denmark; Department of Physical Chemistry 1, University of Lund, SE-22100, Lund, Sweden
| | - Janne Koch
- Translational Sciences, Research and Early Development, LEO Pharma A/S, 2750, Ballerup, Denmark
| | - Ulrich Auf dem Keller
- Technical University of Denmark, Department of Biotechnology and Biomedicine, 2800, Kongens Lyngby, Denmark; ETH Zürich, Department of Biology, Institute of Molecular Health Sciences, 8093, Zürich, Switzerland
| | - Andrea Heinz
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100, Copenhagen, Denmark.
| |
Collapse
|
6
|
Chen Y, Huang M, You Z, Sa R, Zhao L, Ku C, Wang W, Duan X. Unveiling the genetic link and pathogenesis between psoriasis and IgA nephropathy based on Mendelian randomization and transcriptome data analyses. Arch Dermatol Res 2024; 316:717. [PMID: 39460798 DOI: 10.1007/s00403-024-03465-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/07/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
It has been reported that many people with psoriasis have been diagnosed with secondary IgA nephropathy (IgAN). However, the mechanisms behind the association between psoriasis and IgAN have not been well clarified. The connection between psoriasis and IgAN deserves deeper exploration. Mendelian randomization (MR) analysis would be employed to explore the link of causality between IgAN and psoriasis, psoriasis vulgaris, other and unspecified psoriasis, guttate psoriasis, and arthropathic psoriasis. Transcriptomic analyses were carried out against the Gene Expression Omnibus databases. We identified crosstalk genes through the analysis of Differentially expressed genes and weight gene co-expression network analysis. Functional annotations were enriched for these crosstalk genes. Subsequently, we established a protein-protein interaction network, and candidate genes would be discovered through the utilization of the MCODE and CytoHubba plug-in applications. Lastly, the predictive efficacy of these genes was examined via creating receiver operating characteristic curves. The MR analysis suggested that psoriasis vulgaris patients were at a higher risk for IgAN. [OR = 1.040, 95%CI (1.005,1.076), p = 0.026 < 0.05]. Additionally, arthropathic psoriasis may augment the incidence of IgAN [OR = 1.081, 95%CI (1.040-1.124), p < 0.01] in the European population. Through the analysis of DEGs and WGCNA, we identified 12 significant genes (NETO2, RRM2, SLAMF7, GBP1, KIF20A, CCL4, MMP1, IL1β, NDC80, CXCL9, C15orf48, GSTA3), which may be potential crosstalk genes between the two diseases. Then, the functional annotation results indicated that the crosstalk genes seemed primarily involved in immune and inflammatory responses. By establishing the PPI network, we further discovered that CXCL9, IL1β, CCL4, and MMP1 play a vital part in psoriasis and IgAN, and all have good diagnostic values. Our MR analysis provided evidence that genetic vulnerability to IgAN may be associated with an elevated risk of psoriasis vulgaris and arthropathic psoriasis respectively among Europeans. Doctors should be aware of these associations when patients with psoriasis present with renal dysfunction, especially those with psoriasis vulgaris and arthropathic psoriasis. Chronic inflammation, drug effects, and immunity may contribute to the generation and development of both diseases. IL1β, CXCL9, CCL4, and MMP1 may be core biomarkers for psoriasis and IgAN.
Collapse
Affiliation(s)
- Yingwen Chen
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Min Huang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Ziqing You
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Rule Sa
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Lu Zhao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Congwen Ku
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Wenying Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Xingwu Duan
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| |
Collapse
|
7
|
Bozó R, Flink LB, Ambrus B, Ghaffarinia A, Koncz B, Kui R, Gyulai R, Kemény L, Bata-Csörgő Z. The Expression of Cytokines and Chemokines Potentially Distinguishes Mild and Severe Psoriatic Non-Lesional and Resolved Skin from Healthy Skin and Indicates Different Stages of Inflammation. Int J Mol Sci 2024; 25:11292. [PMID: 39457071 PMCID: PMC11509107 DOI: 10.3390/ijms252011292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
In the psoriatic non-lesional (PS-NL) skin, the tissue environment potentially influences the development and recurrence of lesions. Therefore, we aimed to investigate mechanisms involved in regulating tissue organization in PS-NL skin. Cytokine, chemokine, protease, and protease inhibitor levels were compared between PS-NL skin of patients with mild and severe symptoms and healthy skin. By comparing mild and severe PS-NL vs. healthy skin, differentially expressed cytokines and chemokines suggested alterations in hemostasis-related processes, while protease inhibitors showed no psoriasis severity-related changes. Comparing severe and mild PS-NL skin revealed disease severity-related changes in the expression of proteases, cytokines, and chemokines primarily involving methyl-CpG binding protein 2 (MECP2) and extracellular matrix organization-related mechanisms. Cytokine and chemokine expression in clinically resolved versus healthy skin showed slight interleukin activity, differing from patterns in mild and severe PS-NL skin. Immunofluorescence analysis revealed the severity-dependent nuclear expression pattern of MECP2 and decreased expression of 5-methylcytosine and 5-hydroxymethylcytosine in the PS-NL vs. healthy skin, and in resolved vs. healthy skin. Our results suggest distinct cytokine-chemokine signaling between the resolved and PS-NL skin of untreated patients with varying severities. These results highlight an altered inflammatory response, epigenetic regulation, and tissue organization in different types of PS-NL skin with possibly distinct, severity-dependent para-inflammatory states.
Collapse
Affiliation(s)
- Renáta Bozó
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary; (L.B.F.); (Z.B.-C.)
- HCEMM-USZ Skin Research Group, University of Szeged, H-6720 Szeged, Hungary
| | - Lili Borbála Flink
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary; (L.B.F.); (Z.B.-C.)
- HCEMM-USZ Skin Research Group, University of Szeged, H-6720 Szeged, Hungary
| | - Barbara Ambrus
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary; (L.B.F.); (Z.B.-C.)
| | - Ameneh Ghaffarinia
- HCEMM-USZ Skin Research Group, University of Szeged, H-6720 Szeged, Hungary
| | - Balázs Koncz
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, H-6726 Szeged, Hungary
- HCEMM-BRC Systems Immunology Research Group, H-6726 Szeged, Hungary
| | - Róbert Kui
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary; (L.B.F.); (Z.B.-C.)
| | - Rolland Gyulai
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary; (L.B.F.); (Z.B.-C.)
| | - Lajos Kemény
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary; (L.B.F.); (Z.B.-C.)
- HCEMM-USZ Skin Research Group, University of Szeged, H-6720 Szeged, Hungary
- HUN-REN-SZTE Dermatological Research Group, Hungarian Research Network, H-6720 Szeged, Hungary
| | - Zsuzsanna Bata-Csörgő
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary; (L.B.F.); (Z.B.-C.)
- HCEMM-USZ Skin Research Group, University of Szeged, H-6720 Szeged, Hungary
- HUN-REN-SZTE Dermatological Research Group, Hungarian Research Network, H-6720 Szeged, Hungary
| |
Collapse
|
8
|
Gade L, Boyd BJ, Malmsten M, Heinz A. Stimuli-responsive drug delivery systems for inflammatory skin conditions. Acta Biomater 2024; 187:1-19. [PMID: 39209132 DOI: 10.1016/j.actbio.2024.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/26/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Inflammatory skin conditions highly influence the quality of life of the patients suffering from these disorders. Symptoms include red, itchy and painful skin lesions, which are visible to the rest of the world, causing stigmatization and a significantly lower mental health of the patients. Treatment options are often unsatisfactory, as they suffer from either low patient adherence or the risk of severe side effects. Considering this, there is a need for new treatments, and notably of new ways of delivering the drugs. Stimuli-responsive drug delivery systems are able to deliver their drug cargo in response to a given stimulus and are, thus, promising for the treatment of inflammatory skin conditions. For example, the use of external stimuli such as ultraviolet light, near infrared radiation, or alteration of magnetic field enables drug release to be precisely controlled in space and time. On the other hand, internal stimuli induced by the pathological condition, including pH alteration in the skin or upregulation of reactive oxygen species or enzymes, can be utilized to create drug delivery systems that specifically target the diseased skin to achieve a better efficacy and safety. In the latter context, however, it is of key importance to match the trigger mechanism of the drug delivery system to the actual pathological features of the specific skin condition. Hence, the focus of this article is placed not only on reviewing stimuli-responsive drug delivery systems developed to treat specific inflammatory skin conditions, but also on critically evaluating their efficacy in the context of specific skin diseases. STATEMENT OF SIGNIFICANCE: Skin diseases affect one-third of the world's population, significantly lowering the quality of life of the patients, who deal with symptoms such as painful and itchy skin lesions, as well as stigmatization due to the visibility of their symptoms. Current treatments for inflammatory skin conditions are often hampered by low patient adherence or serious drug side effects. Therefore, more emphasis should be placed on developing innovative formulations that provide better efficacy and safety for patients. Stimuli-responsive drug delivery systems hold considerable promise in this regard, as they can deliver their cargo precisely where and when it is needed, reducing adverse effects and potentially offering better treatment outcomes.
Collapse
Affiliation(s)
- Luna Gade
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark
| | - Ben J Boyd
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark; Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Martin Malmsten
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark; Department of Physical Chemistry 1, Lund University, Lund, Sweden
| | - Andrea Heinz
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark.
| |
Collapse
|
9
|
Chihaoui I, Abbes A, Zidi W, Fourti N, El Euch D, Mebazaa A, Feki M, Mokni M, Hadj Taieb S, Allal-Elasmi M. Plasma levels and diagnostic utility of VEGF, MMP-9 and TIMP-2 in the diagnosis of psoriasis forms. Growth Factors 2024; 42:188-197. [PMID: 39579153 DOI: 10.1080/08977194.2024.2430205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 11/06/2024] [Indexed: 11/25/2024]
Abstract
Psoriasis pathogenisis remain unknown despite the fact that it is considered as the most common autoimmune skin disease. We raised the hypothesis whether the selected biomarkers in this study provide actual evidence of psoriasis presence and severity. We aim in a first level to study serum level of pro-angiogenic marker VEGF variation and its correlation with MMP-9 and its specific inhibitor TIMP-2 in psoriatic patients serum. The study included 115 psoriatic patients and 51 controls. The biological parameters were measured by ELISA methods. Logistic regression analysis showed that VEGF, MMP-9, and inflammation Z-score are associated with psoriasis. ROC analysis showed that VEGF has low discriminant power for PsVG, However TIMP-2 and inflammation Z-scorewell discriminate this variant of psoriasis. The combined analysis of VEGF-TIMP-2 resulted in a significant increase in discriminant power for PsVG. Increase inflammatory phase may be reflecting the tissue destruction byMMP-9, emphasizing the deleterious expanse and the architectural changes of the skin which are more severe in PsP.
Collapse
Affiliation(s)
- Imen Chihaoui
- Laboratory of Biochemistry, La Rabta Hospital Tunis and LR99ES11, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunisia
- Faculty of Sciences of Tunis, University of Tunis El Manar, Tunisia
| | - Arbia Abbes
- Laboratory of Biochemistry, La Rabta Hospital Tunis and LR99ES11, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunisia
- Faculty of Sciences of Tunis, University of Tunis El Manar, Tunisia
| | - Wiem Zidi
- Laboratory of Biochemistry, La Rabta Hospital Tunis and LR99ES11, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunisia
| | - Nesrine Fourti
- Laboratory of Biochemistry, La Rabta Hospital Tunis and LR99ES11, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunisia
- Faculty of Sciences of Tunis, University of Tunis El Manar, Tunisia
| | - Dalenda El Euch
- Department of Dermatology, La Rabta Hospital, Tunis, Tunisia
| | - Amel Mebazaa
- Department of Dermatology, La Rabta Hospital, Tunis, Tunisia
| | - Moncef Feki
- Laboratory of Biochemistry, La Rabta Hospital Tunis and LR99ES11, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunisia
| | - Mourad Mokni
- Department of Dermatology, La Rabta Hospital, Tunis, Tunisia
| | - Sameh Hadj Taieb
- Laboratory of Biochemistry, La Rabta Hospital Tunis and LR99ES11, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunisia
| | - Monia Allal-Elasmi
- Laboratory of Biochemistry, La Rabta Hospital Tunis and LR99ES11, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunisia
| |
Collapse
|
10
|
Zewail M, Abbas H, El Sayed N, Abd-El-Azim H. Combined photodynamic therapy and hollow microneedle approach for effective non-invasive delivery of hypericin for the management of imiquimod-induced psoriasis. J Drug Target 2024; 32:941-952. [PMID: 38853622 DOI: 10.1080/1061186x.2024.2365930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/18/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND Conventional topical psoriasis treatments suffer from limited delivery to affected areas and skin irritation due to high local drug concentration. PURPOSE This study aims to prepare hypericin (HYP) loaded nanostructured lipid carriers (NLCs) and their application in psoriasis treatment through intradermal administration using hollow microneedles assisted by photodynamic therapy. METHODS The colloidal characteristics of NLCs, entrapment efficiency and morphology were evaluated. An ex-vivo skin distribution study was conducted along with testing the in vivo antipsoriatic activity in mice with the imiquimod-induced psoriasis model. RESULTS The particle size and zeta potential of HYP-NLCs were 167.70 nm and -18.1, respectively. The ex-vivo skin distribution study demonstrated the superior distribution of HYP-NLCs to a depth of 1480 µm within the skin layers relative to only 750 µm for free HYP. In vivo studies revealed that the levels of NF-KB, IL 6, MMP1, GSH, and catalase in the group treated with HYP-NLCs in the presence of light were comparable to the negative control. CONCLUSIONS The histopathological inspection of dissected skin samples reflected the superiority of HYP-NLCs over HYP ointment. This could be ascribed to the effect of nanoencapsulation on improving HYP properties besides the ability of hollow microneedles to ensure effective HYP delivery to the affected psoriatic area.
Collapse
Affiliation(s)
- Mariam Zewail
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Haidy Abbas
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Nesrine El Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Heba Abd-El-Azim
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| |
Collapse
|
11
|
Bharatha M, Nandana MB, Praveen R, Nayaka S, Velmurugan D, Vishwanath BS, Rajaiah R. Unconjugated bilirubin and its derivative ameliorate IMQ-induced psoriasis-like skin inflammation in mice by inhibiting MMP9 and MAPK pathway. Int Immunopharmacol 2024; 130:111679. [PMID: 38377853 DOI: 10.1016/j.intimp.2024.111679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 02/22/2024]
Abstract
Psoriasis is a chronic immune-mediated inflammatory skin disease that involves dysregulated proliferation of keratinocytes. Psoriatic skin lesions are characterized by redness, thickness, and scaling. The interleukin axis of IL-23/IL-17 is critically involved in the development of human psoriasis. Imiquimod (IMQ), an agonist of TLR7 is known to induce psoriatic-like skin inflammation in mice. The topical application of IMQ induces systemic inflammation with increased proinflammatory cytokines in serum and secondary lymphoid organs. Further, matrix metalloproteases (MMPs) have been implicated in the pathophysiology of psoriatic-like skin inflammation. The increased MMP9 activity and gene expression of proinflammatory cytokines in IMQ-induced psoriatic skin is mediated by the activation of the MAPK pathway. Moreover, the increased expression of neutrophil-specific chemokines confirmed the infiltration of neutrophils at the site of psoriatic skin inflammation. In contrast, expression of IL-10, an anti-inflammatory cytokine gene expression is reduced in IMQ-treated mice skin. Topical application of unconjugated bilirubin (UCB) and its derivative dimethyl ester of bilirubin (BD1) on IMQ-induced psoriatic mice skin significantly mitigated the symptoms of psoriasis by inhibiting the activity of MMP9. Further, UCB and BD1 reduced neutrophil infiltration as evidenced by decreased myeloperoxidase (MPO) activity and reduced gene expression of proinflammatory cytokines, and neutrophil-specific chemokines. Apart from these modulations UCB and BD1 reduced MAPK phosphorylation and upregulated anti-inflammatory cytokines. To conclude, UCB and BD1 immunomodulated the psoriatic skin inflammation induced by IMQ in mice by inhibiting neutrophil mediated MMP9, decreased proinflammatory cytokines gene expression and modulating the MAPK pathway.
Collapse
Affiliation(s)
- Madeva Bharatha
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysore, Karnataka 570006, India
| | - Manuganahalli B Nandana
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysore, Karnataka 570006, India
| | - Raju Praveen
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysore, Karnataka 570006, India
| | - Spandan Nayaka
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysore, Karnataka 570006, India
| | - Devadasan Velmurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, India
| | - Bannikuppe S Vishwanath
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysore, Karnataka 570006, India.
| | - Rajesh Rajaiah
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysore, Karnataka 570006, India.
| |
Collapse
|
12
|
Chaudhary R, Prasad A, Agarwal V, Rehman M, Kumar A, Kaushik AS, Srivastava S, Srivastava S, Mishra V. Chronic stress predisposes to the aggravation of inflammation in autoimmune diseases with focus on rheumatoid arthritis and psoriasis. Int Immunopharmacol 2023; 125:111046. [PMID: 37879231 DOI: 10.1016/j.intimp.2023.111046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/27/2023] [Accepted: 10/08/2023] [Indexed: 10/27/2023]
Abstract
The global incidence of autoimmune diseases is on the rise, and many healthcare professionals believe that chronic stress plays a prominent role in both the aggravation and remission of these conditions. It is believed that prolonged exposure to stress is associated with neuroimmune axis malfunction, which eventually dysregulates multiple immunological factors as well as deregulates autoimmune responses that play a central role in various autoimmune diseases, including rheumatoid arthritis and psoriasis. Herein, we performed validation of an 8-week long rat model of chronic unpredictable stress (CUS) which consisted of exposing groups of rats to random stressors daily for 8 weeks. Additionally, we developed a novel rat model combining 8-week long random stressor-induced CUS with CIA-triggered arthritis and IMQ-triggered psoriasis and have successfully used both these models to assess the role of chronic stress in the aggravation of arthritis and psoriasis, respectively. Notably, the 8-week CUS protocol extensively aggravated and prolonged both arthritis and psoriasis condition in the rat model by upregulating the release of different pro-inflammatory cytokines, dysregulation of immune cell responses and oxidative stress system, which were all related to severe inflammation. Further, CUS aggravated macroscopic features and the increase in destruction of joint tissue and epidermal thickness induced by CIA and IMQ, respectively, in rats. In conclusion, this study suggests that exposure to an 8-week long CUS paradigm aggravates the distinctive characteristics of rheumatoid arthritis and psoriasis in rats via amplifying the inflammatory circuits and immune cell responses linked to these autoimmune diseases.
Collapse
Affiliation(s)
- Rishabh Chaudhary
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Ajay Prasad
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Vipul Agarwal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Mujeeba Rehman
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Anand Kumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Arjun Singh Kaushik
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Siddhi Srivastava
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Sukriti Srivastava
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Vikas Mishra
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India.
| |
Collapse
|
13
|
Mar K, Rivers JK. The Mind Body Connection in Dermatologic Conditions: A Literature Review. J Cutan Med Surg 2023; 27:628-640. [PMID: 37898903 PMCID: PMC10714694 DOI: 10.1177/12034754231204295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/14/2023] [Accepted: 09/04/2023] [Indexed: 10/31/2023]
Abstract
Psychodermatology pertains to the relationship between the skin and brain. This review aims to summarize the evidence of the mind body connection in four psychophysiological conditions: rosacea, atopic dermatitis (AD), acne vulgaris (AV), and psoriasis. A literature search was conducted using several English language databases. All four conditions share similar psychiatric co-morbidities, including but not limited to anxiety, depression, and suicidality. In rosacea, the upregulation of transient receptor potential vanilloid type 1, Toll like receptor 2, and Th17 cells releases downstream products that are simultaneously implicated in mood disorders. Stress exacerbates AV through the hypothalamic-pituitary-adrenal (HPA) system, which alters functioning of sebocytes and Cutibacterium acnes. In AD and psoriasis, the HPA axis influences Th1, Th2, Th22, and Th1, Th17 immune mediated responses, respectively. This leads to the secretion of pro-inflammatory cytokines which are also involved in the pathogenesis of anxiety and depression. Neurotransmitters implicated in mental illness, such as gamma-aminobutyric acid and serotonin, may also play a role in the development of AD and psoriasis. The management of cutaneous disease may mitigate psychological distress, and future research may show the corollary to also be true.
Collapse
Affiliation(s)
- Kristie Mar
- University of British Columbia, Vancouver, BC, Canada
| | - Jason K. Rivers
- Pacific Derm, Vancouver, BC, Canada
- Department of Dermatology and Skin Science, University of British Columba, Vancouver, BC, Canada
| |
Collapse
|
14
|
Noddeland HK, Lind M, Petersson K, Caruso F, Malmsten M, Heinz A. Protease-Responsive Hydrogel Microparticles for Intradermal Drug Delivery. Biomacromolecules 2023. [PMID: 37307231 DOI: 10.1021/acs.biomac.3c00265] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Protease-responsive multi-arm polyethylene glycol-based microparticles with biscysteine peptide crosslinkers (CGPGG↓LAGGC) were obtained for intradermal drug delivery through inverse suspension photopolymerization. The average size of the spherical hydrated microparticles was ∼40 μm after crosslinking, making them attractive as a skin depot and suitable for intradermal injections, as they are readily dispensable through 27G needles. The effects of exposure to matrix metalloproteinase 9 (MMP-9) on the microparticles were evaluated by scanning electron microscopy and atomic force microscopy, demonstrating partial network destruction and decrease in elastic moduli. Given the recurring course of many skin diseases, the microparticles were exposed to MMP-9 in a flare-up mimicking fashion (multiple-time exposure), showing a significant increase in release of tofacitinib citrate (TC) from the MMP-responsive microparticles, which was not seen for the non-responsive microparticles (polyethylene glycol dithiol crosslinker). It was found that the degree of multi-arm complexity of the polyethylene glycol building blocks can be utilized to tune not only the release profile of TC but also the elastic moduli of the hydrogel microparticles, with Young's moduli ranging from 14 to 140 kPa going from 4-arm to 8-arm MMP-responsive microparticles. Finally, cytotoxicity studies conducted with skin fibroblasts showed no reduction in metabolic activity after 24 h exposure to the microparticles. Overall, these findings demonstrate that protease-responsive microparticles exhibit the properties of interest for intradermal drug delivery.
Collapse
Affiliation(s)
- Heidi K Noddeland
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
- Explorative Formulation & Technologies, CMC Design and Development, LEO Pharma A/S, 2750 Ballerup, Denmark
| | - Marianne Lind
- Explorative Formulation & Technologies, CMC Design and Development, LEO Pharma A/S, 2750 Ballerup, Denmark
| | - Karsten Petersson
- Explorative Formulation & Technologies, CMC Design and Development, LEO Pharma A/S, 2750 Ballerup, Denmark
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Martin Malmsten
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
- Department of Physical Chemistry 1, University of Lund, SE-22100 Lund, Sweden
| | - Andrea Heinz
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
15
|
Human Umbilical Cord-Derived Mesenchymal Stem Cells Alleviate Psoriasis Through TNF-α/NF-κB/MMP13 Pathway. Inflammation 2023; 46:987-1001. [PMID: 36749439 DOI: 10.1007/s10753-023-01785-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 02/08/2023]
Abstract
Psoriasis is a chronic, immune-mediated disease that affects 2-3% of the global population. Recently, mesenchymal stem cells (MSCs) have been used to alleviate psoriasis. However, the therapeutic mechanisms of MSCs remain unclear. Matrix metalloproteinase-13 (MMP13), a member of the MMPs family, is the key enzyme in the cleavage of type II collagen and plays a pivotal role in extracellular matrix (ECM) remodeling. Here, it was found that Mmp13 was upregulated in the skin lesions of an imiquimod-induced mouse model, which was downregulated after intravenous infusion of human umbilical cord MSCs (hUC-MSCs). Knockdown of MMP13 inhibited the proliferation of keratinocytes and arrested the cell cycle in G1 stage. In addition, hUC-MSCs were co-cultured with THP-1 or PMA-stimulated THP-1 directly in vitro to simulate the fate of systematically infused hUC-MSCs. The level of TNF-α was decreased in the supernatant of co-cultured hUC-MSCs and THP-1 or PMA-stimulated THP-1. Moreover, it was identified that TNF-α upregulated MMP13 through the NF-κB pathway in keratinocytes. In conclusion, we propose that systematically infused hUC-MSCs exert a therapeutic effect on psoriasis through the TNF-α/NF-κB/MMP13 pathway.
Collapse
|
16
|
Nguyen LTH, Ahn SH, Shin HM, Yang IJ. Anti-Psoriatic Effect of Rheum palmatum L. and Its Underlying Molecular Mechanisms. Int J Mol Sci 2022; 23:16000. [PMID: 36555642 PMCID: PMC9781959 DOI: 10.3390/ijms232416000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Psoriasis is a chronic, immune-mediated inflammatory skin disorder. Rheum palmatum L. is a common traditional medicinal herb with anti-inflammatory and immunomodulatory activities. This study aimed to investigate the anti-psoriatic effects of the ethanolic extract from R. palmatum L. (RPE) and its chemical constituents, as well as the mechanisms underlying their therapeutic significance. An imiquimod (IMQ)-induced psoriasis-like mouse model was used to examine the anti-psoriatic effect of RPE in vivo. Network pharmacological analysis was performed to investigate the potential targets and related pathways of the RPE components, including rhein, emodin, chrysophanol, aloe-emodin, and physcion. The anti-inflammatory effects and underlying mechanisms of these components were examined using in vitro models. Topical application of RPE alleviated psoriasis-like symptoms and reduced levels of inflammatory cytokines and proliferation markers in the skin. Network pharmacological analysis revealed that RPE components target 20 genes that are linked to psoriasis-related pathways, such as IL-17, MAPK, and TNF signaling pathways. Among the five components of RPE, rhein and emodin showed inhibitory effects on TNF-α and IL-17 production in EL-4 cells, attenuated the production of CXCL8, CXCL10, CCL20, and MMP9, and reduced proliferation in HaCaT cells. Chrysophanol, aloe-emodin, and physcion were less effective than rhein and emodin in suppressing inflammatory responses and keratinocyte proliferation. The effects of these compounds might occur through the inhibition of the ERK, STAT3, and NF-κB signaling pathways. This study suggested the anti-psoriatic effect of RPE, with rhein and emodin as the main contributors that regulate multiple signaling pathways.
Collapse
Affiliation(s)
- Ly Thi Huong Nguyen
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Sang-Hyun Ahn
- Department of Anatomy, College of Korean Medicine, Semyung University, Jecheon-si 27136, Republic of Korea
| | - Heung-Mook Shin
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - In-Jun Yang
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| |
Collapse
|
17
|
Chen Y, Wang YF, Song SS, Zhu J, Wu LL, Li XY. Potential shared therapeutic and hepatotoxic mechanisms of Tripterygium wilfordii polyglycosides treating three kinds of autoimmune skin diseases by regulating IL-17 signaling pathway and Th17 cell differentiation. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115496. [PMID: 35750104 DOI: 10.1016/j.jep.2022.115496] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/07/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tripterygium wilfordii polyglycosides (TWP) are extracted from Tripterygium wilfordii Hook. f., which has the significant effects of anti-inflammation and immunosuppression and has been widely used to treat autoimmune diseases in traditional Chinese medicine. AIM OF STUDY In Chinese clinical dermatology, TWP was generally used for the treatment of autoimmune skin diseases including psoriasis (PSO), systemic lupus erythematosus (SLE) and pemphigus (PEM). However, the potential hepatotoxicity (HPT) induced by TWP was also existing with the long-term use of TWP. This study aims to explore the potential shared therapeutic mechanism of TWP treating PSO, SLE, PEM and the possible hepatotoxic mechanism induced by TWP. MATERIALS AND METHODS Network pharmacology was used to predict the potential targets and pathways in this study. The main bioactive compounds in TWP was screened according to TCMSP, PubChem, ChEMBL databases and Lipinski's Rule of Five. The potential targets of these chemical constituents were obtained from PharmMapper, SEA and SIB databases. The related targets of PSO, SLE, PEM and HPT were collected from GeneCards, DrugBank, DisGeNET and CTD databases. The target network construction was performed through STRING database and Cytoscape. GO enrichment, KEGG enrichment and molecular docking were then performed, respectively. In particular, imiquimod (IMQ)-induced PSO model was selected as the representative for the experimental verification of effects and shared therapeutic mechanisms of TWP. RESULTS 41 targets were considered as the potential shared targets of TWP treating PSO, SLE and PEM. KEGG enrichment indicated that IL-17 signaling pathway and Th17 cell differentiation were significant in the potential shared therapeutic mechanism of TWP. The animal experimental verification demonstrated that TWP could notably ameliorate skin lesions (P˂0.001), decrease inflammatory response (P˂0.05, P˂0.01, P˂0.001) and inhibit the differentiation of Th1/Th17 cells (P˂0.05, P˂0.01) compared to PSO model group. The molecular docking and qPCR validation then showed that TWP could effectively act on MAPK14, IL-2, IL-6 and suppress Th17 cell differentiation and IL-17 signaling pathway. The possible hepatotoxic mechanism of TWP indicated that there were 145 hepatotoxic targets and it was also associated with IL-17 signaling pathway and Th17 cell differentiation, especially for the key role of ALB, CASP3 and HSP90AA1. Meanwhile, the potential correlations between efficacy and hepatotoxicity of TWP showed that 28 targets were shared by therapeutic and hepatotoxic mechanisms such as IL-6, IL-2, MAPK14, MMP9, ALB, CASP3 and HSP90AA1. These significant relevant targets were also involved in IL-17 signaling pathway and Th17 cell differentiation. CONCLUSIONS There were shared disease targets in PSO, SLE and PEM, and TWP could treat them by potential shared therapeutic mechanisms of suppressing IL-17 signaling pathway and Th17 cell differentiation. The possible hepatotoxicity induced by TWP was also significantly associated with the regulation of IL-17 signaling pathway and Th17 cell differentiation. Meanwhile, the potential correlations between efficacy and hepatotoxicity of TWP also mainly focused on IL-17 signaling pathway and Th17 cell differentiation, which provided a potential direction for the study of the mechanism of "You Gu Wu Yun" theory of TWP treating autoimmune skin diseases in the future.
Collapse
Affiliation(s)
- Yi Chen
- Hospital of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
| | - Yong-Fang Wang
- Hospital of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
| | - Sha-Sha Song
- Hospital of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
| | - Jia Zhu
- Hospital of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
| | - Li-Li Wu
- Hospital of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
| | - Xin-Yu Li
- Hospital of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China.
| |
Collapse
|
18
|
Yang R, Zhao G, Cheng B, Yan B. Identification of potential matrix metalloproteinase-2 inhibitors from natural products through advanced machine learning-based cheminformatics approaches. Mol Divers 2022:10.1007/s11030-022-10467-9. [PMID: 35773549 DOI: 10.1007/s11030-022-10467-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/20/2022] [Indexed: 11/29/2022]
Abstract
Matrix metalloproteinase-2 (MMP-2) is capable of degrading Collage TypeIV in the vascular basement membrane and extracellular matrix. Studies have shown that MMP-2 is tightly associated with the biological behavior of malignant tumors. Therefore, the identification of inhibitors targeting MMP-2 could be effective in treating the disease by maintaining extracellular matrix homeostasis. In the pharmaceutical and biomedical fields, many computational tools are widely used, which improve the efficiency of the whole process to some extent. Apart from the conventional cheminformatics approaches (e.g., pharmacophore model and molecular docking), virtual screening strategies based on machine learning also have promising applications. In this study, we collected 2871 compound activity data against MMP-2 from the ChEMBL database and divided the training and test sets in a 3:1 ratio. Four machine learning algorithms were then selected to construct the classification models, and the best-performing model, i.e., the stacking-based fusion model with the highest AUC value in both training and test datasets, was used for the virtual screening of ZINC database. Next, we screened 17 potential MMP-2 inhibitors from the results predicted by the machine learning model via ADME/T analysis. The interactions between these compounds and the target protein were explored through molecular docking calculations, and the results showed that ZINC712249, ZINC4270723, and ZINC15858504 had lower binding free energies than the co-crystal ligand. To further examine the binding stability of the complexes, we performed molecular dynamics simulations and finally identified these three hits as the most promising natural products for MMP-2 inhibitors.
Collapse
Affiliation(s)
- Ruoqi Yang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Guiping Zhao
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Bin Cheng
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Bin Yan
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
19
|
Karas A, Holmannova D, Borsky P, Fiala Z, Andrys C, Hamakova K, Svadlakova T, Palicka V, Krejsek J, Rehacek V, Esterkova M, Kovarikova H, Borska L. Significantly Altered Serum Levels of NAD, AGE, RAGE, CRP, and Elastin as Potential Biomarkers of Psoriasis and Aging—A Case-Control Study. Biomedicines 2022; 10:biomedicines10051133. [PMID: 35625870 PMCID: PMC9138308 DOI: 10.3390/biomedicines10051133] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 01/11/2023] Open
Abstract
Background: This study aims to investigate potential markers of psoriasis and aging, and to elucidate possible connections between these two processes. Methods: The serum samples of 60 psoriatic patients and 100 controls were analysed, and the levels of four selected parameters (AGEs, RAGE, NAD, and elastin) were determined using commercial ELISA kits. Serum C-reactive protein was assayed using an immune-nephelometry method. Findings: Among the patients, the levels of CRP, AGEs, and RAGE were all increased, while the levels of NAD were reduced when compared to the control group. A negative correlation between the levels of AGEs and NAD was found. A negative correlation between age and the NAD levels among the control group was observed, however among the patients the relationship was diminished. While there was no difference in the levels of native elastin between the patients and the controls, a positive correlation between the levels of native elastin and age and a negative correlation between the levels of native elastin and the severity of psoriasis were found. Conclusions: The results of our study support the notion of psoriasis and possibly other immune-mediated diseases accelerating the aging process through sustained systemic damage. The serum levels of CRP, NAD, AGEs, and RAGE appear to be promising potential biomarkers of psoriasis. The decrease in the serum levels of NAD is associated with (pro)inflammatory states. Our analysis indicates that the levels of native elastin might strongly reflect both the severity of psoriasis and the aging process.
Collapse
Affiliation(s)
- Adam Karas
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (A.K.); (D.H.); (Z.F.); (T.S.); (M.E.); (L.B.)
| | - Drahomira Holmannova
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (A.K.); (D.H.); (Z.F.); (T.S.); (M.E.); (L.B.)
| | - Pavel Borsky
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (A.K.); (D.H.); (Z.F.); (T.S.); (M.E.); (L.B.)
- Correspondence: ; Tel.: +420-495-816-386
| | - Zdenek Fiala
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (A.K.); (D.H.); (Z.F.); (T.S.); (M.E.); (L.B.)
| | - Ctirad Andrys
- Institute of Clinical Immunology and Allergology, University Hospital, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (C.A.); (J.K.)
| | - Kvetoslava Hamakova
- Clinic of Dermal and Venereal Diseases, University Hospital, 500 03 Hradec Kralove, Czech Republic;
| | - Tereza Svadlakova
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (A.K.); (D.H.); (Z.F.); (T.S.); (M.E.); (L.B.)
- Institute of Clinical Immunology and Allergology, University Hospital, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (C.A.); (J.K.)
| | - Vladimir Palicka
- Institute of Clinical Biochemistry and Diagnostics, University Hospital, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (V.P.); (H.K.)
| | - Jan Krejsek
- Institute of Clinical Immunology and Allergology, University Hospital, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (C.A.); (J.K.)
| | - Vit Rehacek
- Transfusion Center, University Hospital, 500 03 Hradec Kralove, Czech Republic;
| | - Monika Esterkova
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (A.K.); (D.H.); (Z.F.); (T.S.); (M.E.); (L.B.)
| | - Helena Kovarikova
- Institute of Clinical Biochemistry and Diagnostics, University Hospital, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (V.P.); (H.K.)
| | - Lenka Borska
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (A.K.); (D.H.); (Z.F.); (T.S.); (M.E.); (L.B.)
| |
Collapse
|
20
|
Gül C, Kilic S, Şehitoğlu MH. The importance of ADAM10 and ADAM17 metalloproteinases in the pathogenesis of psoriasis. Clin Exp Dermatol 2022; 47:1673-1678. [PMID: 35474465 DOI: 10.1111/ced.15239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Psoriasis is a chronic inflammatory skin disorder characterized by inflammation, hyperproliferation, andneoangiogenesis. The disease pathogenesis has not been fully elucidated. ADAM17 and ADAM10 are important proteases serving as regulators of inflammation. OBJECTIVES This study aimed to determine the role of ADAM17 and ADAM10 in the pathogenesis of Psoriasis through the comparison of serum ADAM17 and ADAM10 levels between Psoriasis patients and healthy controls. METHODS A total of 179 subjects, including 90 psoriasis patients and 89 healthy controls, were included in the study. Serum ADAM17 and serum ADAM10 levels were measured by the ELISA method for each participant from the patient and control groups. The statistical data analysis was performed using the SPSS 19.0 program. P-value < 0.05 was considered statistically significant. RESULTS The mean values for serum ADAM10 and ADAM17 were respectively 3.1±2.2 and 76.5±31.1 in the patient group, whereas 8.6±3.7 and 29.5±22.4 in the control group. A statistically significant difference was detected between the patient and control groups regarding ADAM10 and ADAM17 levels (p=0.0001). CONCLUSIONS Considering the high levels of ADAM17 in Psoriasis patient group, ADAM17 protease might have a crucial role in the pathogenesis of psoriasis, while the low levels of ADAM10 might be attributed to its regulatory effect on keratinocyte differentiation and proliferation.
Collapse
Affiliation(s)
- Ceren Gül
- Departments of Dermatology, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Sevilay Kilic
- Departments of Dermatology, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Müşerref H Şehitoğlu
- Departments of Medical Biochemistry, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| |
Collapse
|
21
|
Wagner MFMG, Theodoro TR, Filho CDASM, Oyafuso LKM, Pinhal MAS. Extracellular matrix alterations in the skin of patients affected by psoriasis. BMC Mol Cell Biol 2021; 22:55. [PMID: 34715781 PMCID: PMC8555298 DOI: 10.1186/s12860-021-00395-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 10/15/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Psoriasis is a chronic inflammatory disease dependent upon a complex interaction between genetic predisposition and immunological factors. It is characterized by skin lesions throughout the body, causing great morbidity and affecting life quality. The present study aimed to evaluate the protein and mRNA expression of heparanase-1 (HPSE), heparanase-2 (HPSE2), syndecan-1 (SYND1), metalloproteinases (MMP2, MMP9), and tissue inhibitor metalloproteinases 2 (TIMP2) in skin samples. METHODS From each psoriasis patient, two samples were collected, one sample from a psoriasis plaque (n = 23) and the other sample from non-affected skin (n = 23), as well as tissue collected by blepharoplasty from control individuals (n = 18). Protein expression was investigated by immunohistochemistry, followed by digital quantification. Quantitative RT-PCR obtained mRNA expression. Statistical analyses were done, and p values < 0.05 were considered significant. RESULTS A significant increase in protein and mRNA expression was observed in both heparanases (HPSE and HPSE2), and higher protein levels of MMP9 and TIMP2 were observed in the psoriasis plaque compared to the non-affected skin. The data point to a probable activation of MMP2 by TIMP2. Moreover, there was a significant increase in HPSE2, SYND1, MMP9, and TIMP2 in non-affected skin samples from patients with psoriasis than in the control sample (tissue obtained by individuals who do not have psoriasis). CONCLUSIONS These results show a possible correlation between the characteristic inflammatory process and alterations in the expression of the extracellular matrix in psoriasis. The increased expression of HPSE2, SYND1, MMP9, and TIMP2, even in the absence of psoriatic plaque, indicates that these molecules may be involved with extracellular matrix changes in the initial alterations the psoriatic process and may be candidates for the development of target treatments.
Collapse
Affiliation(s)
| | - Thérèse Rachell Theodoro
- Biochemistry Department of Centro Universitário Saúde ABC (FMABC), Avenida Lauro Gomes 2000, Santo André, São Paulo, CEP 09060870, Brazil
| | | | | | - Maria Aparecida Silva Pinhal
- Biochemistry Department of Centro Universitário Saúde ABC (FMABC), Avenida Lauro Gomes 2000, Santo André, São Paulo, CEP 09060870, Brazil.
| |
Collapse
|
22
|
Han R, Ho LWC, Bai Q, Chan CKW, Lee LKC, Choi PCL, Choi CHJ. Alkyl-Terminated Gold Nanoparticles as a Self-Therapeutic Treatment for Psoriasis. NANO LETTERS 2021; 21:8723-8733. [PMID: 34618470 DOI: 10.1021/acs.nanolett.1c02899] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We present a self-therapeutic nanoparticle for topical delivery to epidermal keratinocytes to prevent and treat psoriasis. Devoid of known chemical or biological antipsoriatic drugs, this sub-15 nm nanoparticle contains a 3 nm gold core and a shell of 1000 Da polyethylene glycol strands modified with 30% octadecyl chains. When it is applied to imiquimod-induced psoriasis mice without an excipient, the nanoparticle can cross the stratum corneum and preferentially enter keratinocytes. Applying the nanoparticles concurrently with imiquimod prevents psoriasis and downregulates genes that are enriched in the downstream of the interleukin-17 signaling pathway and linked to epidermis hyperproliferation and inflammation. Applying the nanoparticles after psoriasis is established treats the psoriatic skin as effectively as standard steroid and vitamin D analog-based therapy but without hair loss and skin wrinkling. The nanoparticles do not accumulate in major organs or induce long-term toxicity. Our nanoparticle offers a simple, safe, and effective alternative for treating psoriasis.
Collapse
|
23
|
Cannabidiol Decreases Metalloproteinase Activity and Normalizes Angiogenesis Factor Expression in UVB-Irradiated Keratinocytes from Psoriatic Patients. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7624389. [PMID: 34691360 PMCID: PMC8528591 DOI: 10.1155/2021/7624389] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/25/2021] [Indexed: 11/17/2022]
Abstract
The development of psoriasis is associated with the consequences of oxidative stress and inflammation leading to metabolic changes locally, in the skin cells, and systemically, in the blood. Therefore, the aim of this study was to analyze the effect of psoriasis vulgaris (PsV) and psoriatic arthritis (PsA) on the basal plasma/keratinocyte levels of matrix metalloproteinases (MMPs), tissue inhibitors of matrix metalloproteinases (TIMPs), and angiogenesis factors, as well as to evaluate the effect of CBD on these parameters in keratinocytes isolated from psoriatic/healthy individuals with and without in vitro irradiation by UVB. A quantitative chemiluminescent method of detection based on an ELISA protocol and zymography technique was used during analysis. It was shown that activity levels of MMP-9 and TIMP-2 in PsA plasma were higher than in PsV. Changes in the proteolytic activity were accompanied by an increase in markers of angiogenesis (angiopoietin-2, HGF, VEGF, TNFα, PDGF, FGF), where in the specific case of angiopoietin-2 and TNFα, the overexpression in PsV was significantly stronger than in PsA. CBD application to keratinocytes partially restored levels of MMP-1/2/3/7 and TIMP-1/2 (in an effect which was particularly enhanced by UVB irradiation), as well as levels of the examined angiogenic factors except TNFα (levels of which were increased in psoriatic keratinocytes and decreased in healthy keratinocytes). Presented results indicate that CBD may be suggested as an antiangiogenic factor that reduces the proinflammatory action of UVB in psoriatic keratinocytes and partially has a protective effect for healthy keratinocytes.
Collapse
|
24
|
The Psoriatic Nonlesional Skin: A Battlefield between Susceptibility and Protective Factors. J Invest Dermatol 2021; 141:2785-2790. [PMID: 34216605 DOI: 10.1016/j.jid.2021.05.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 12/31/2022]
Abstract
In the last two decades, large-scale gene-expression studies on psoriatic skin samples revealed that even though nonlesional skin is macroscopically identical to healthy skin, it harbors several molecular differences. Originally, these molecular differences were thought to represent susceptibility factors for plaque formation. However, we review in this paper the several factors of immune regulation and structural alteration that are specific for the nonlesional skin and serve as protective factors by counteracting plaque formation and contributing to the maintenance of the nonlesional phenotype.
Collapse
|
25
|
Assessment of Selected Matrix Metalloproteinases (MMPs) and Correlation with Cytokines in Psoriatic Patients. Mediators Inflamm 2021; 2021:9913798. [PMID: 34305455 PMCID: PMC8263227 DOI: 10.1155/2021/9913798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/16/2021] [Indexed: 11/17/2022] Open
Abstract
Metalloproteinases (MMPs) and cytokines have a great impact on the pathogenesis of psoriasis. Cytokines, as key mediators of inflammation and autoimmune processes, play a crucial role in the regulation of MMP expression in different cell types. Parallel, MMPs have an influence on cytokine production. This interaction was not well recognized in psoriatic patients. Our study is aimed at assessing the selected serum MMP levels and their correlations with cytokine levels in the serum of psoriatic patients. We observed a significantly elevated level of pro-MMP-1 and MMP-9 in psoriatic patients' serum in comparison to the control group. We did not observe any statistically significant differences of MMP-3 and pro-MMP-10 between the psoriatic patients and the control group. We did not observe any statistically significant differences in all the studied MMP levels between the patients with and without psoriatic arthritis (PsA). MMP-3 level correlated positively with proinflammatory cytokines, i.e., IL-12p/70, IL-17A, and TNF-α as well as MMP-3 and pro MMP-1 correlated positively with IL-4 in the psoriatic patients. In the control group, a positive correlation between pro-MMP-1 and TNF-α was found. These results confirm MMPs and Th1 and Th17 cytokine interaction in the inflammatory regulation in psoriasis.
Collapse
|
26
|
Adil S, Paracha RZ, Tariq S, Nisar M, Ijaz S, Siddiqa A, Hussain Z, Amir A. A Computational Systems Analyses to Identify Biomarkers and Mechanistic Link in Psoriasis and Cutaneous Squamous Cell Carcinoma. Front Immunol 2021; 12:662528. [PMID: 34267747 PMCID: PMC8276676 DOI: 10.3389/fimmu.2021.662528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/19/2021] [Indexed: 11/13/2022] Open
Abstract
Psoriasis is the most common and chronic skin disease that affects individuals from every age group. The rate of psoriasis is increasing over the time in both developed and developing countries. Studies have revealed the possibility of association of psoriasis with skin cancers, particularly non-melanoma skin cancers (NMSC), which, include basal cell carcinoma and cutaneous squamous cell carcinoma (cSCC). There is a need to analyze the disease at molecular level to propose potential biomarkers and therapeutic targets in comparison to cSCC. Therefore, the second analyzed disease of this study is cSCC. It is the second most common prevalent skin cancer all over the world with the potential to metastasize and recur. There is an urge to validate the proposed biomarkers and discover new potential biomarkers as well. In order to achieve the goals and objectives of the study, microarray and RNA-sequencing data analyses were performed followed by network analysis. Afterwards, quantitative systems biology was implemented to analyze the results at a holistic level. The aim was to predict the molecular patterns that can lead psoriasis to cancer. The current study proposed potential biomarkers and therapeutic targets for psoriasis and cSCC. IL-17 signaling pathway is also identified as significant pathway in both diseases. Moreover, the current study proposed that autoimmune pathology, neutrophil recruitment, and immunity to extracellular pathogens are sensitive towards MAPKs (MAPK13 and MAPK14) and genes for AP-1 (FOSL1 and FOS). Therefore, these genes should be further studied in gene knock down based studies as they may play significant role in leading psoriasis towards cancer.
Collapse
Affiliation(s)
- Sidra Adil
- Research Center for Modeling and Simulation, National University of Sciences and Technology, Islamabad, Pakistan
| | - Rehan Zafar Paracha
- Research Center for Modeling and Simulation, National University of Sciences and Technology, Islamabad, Pakistan
| | - Salma Tariq
- Research Center for Modeling and Simulation, National University of Sciences and Technology, Islamabad, Pakistan
| | - Maryum Nisar
- Research Center for Modeling and Simulation, National University of Sciences and Technology, Islamabad, Pakistan
| | - Sadaf Ijaz
- Research Center for Modeling and Simulation, National University of Sciences and Technology, Islamabad, Pakistan
| | - Amnah Siddiqa
- Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | - Zamir Hussain
- Research Center for Modeling and Simulation, National University of Sciences and Technology, Islamabad, Pakistan
| | - Afreenish Amir
- National Institute of Health (Pakistan), Islamabad, Pakistan
| |
Collapse
|
27
|
Bozó R, Flink LB, Belső N, Gubán B, Széll M, Kemény L, Bata-Csörgő Z. Could basement membrane alterations, resembling micro-wounds at the dermo-epidermal junction in psoriatic non-lesional skin, make the skin susceptible to lesion formation? Exp Dermatol 2021; 30:765-772. [PMID: 33348435 DOI: 10.1111/exd.14267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/26/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022]
Abstract
Current data suggest that tissue microenvironment control immune functions. Therefore, understanding the tissue environment in which immune activation occurs will enhance our capability to interfere with abnormal immune pathology. Here, we argue that studying the constitutively abnormal functions of clinically uninvolved psoriatic skin in patients with plaque type psoriasis is very important to better understand psoriasis pathobiology, because non-lesional skin provides the tissue environment in which the psoriatic lesion develops. A key question in psoriasis is what initiates the abnormal, uncontrolled immune activation in the first place and the answer may lie in the skin. In light of this concept, we summarize abnormalities at the dermal-epidermal junction region which shows a special "non-healing-like" micro-wound phenotype in the psoriatic non-lesional skin that may act as a crucial susceptibility factor in the development of the disease.
Collapse
Affiliation(s)
- Renáta Bozó
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary.,HCEMM-SZTE Skin Research Group, Szeged, Hungary
| | - Lili Borbála Flink
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Nóra Belső
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary.,HCEMM-SZTE Skin Research Group, Szeged, Hungary
| | - Barbara Gubán
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Márta Széll
- MTA-SZTE Dermatological Research Group, Szeged, Hungary.,Department of Medical Genetics, University of Szeged, Szeged, Hungary
| | - Lajos Kemény
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary.,HCEMM-SZTE Skin Research Group, Szeged, Hungary.,MTA-SZTE Dermatological Research Group, Szeged, Hungary
| | - Zsuzsanna Bata-Csörgő
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary.,HCEMM-SZTE Skin Research Group, Szeged, Hungary.,MTA-SZTE Dermatological Research Group, Szeged, Hungary
| |
Collapse
|
28
|
Cabral-Pacheco GA, Garza-Veloz I, Castruita-De la Rosa C, Ramirez-Acuña JM, Perez-Romero BA, Guerrero-Rodriguez JF, Martinez-Avila N, Martinez-Fierro ML. The Roles of Matrix Metalloproteinases and Their Inhibitors in Human Diseases. Int J Mol Sci 2020; 21:E9739. [PMID: 33419373 PMCID: PMC7767220 DOI: 10.3390/ijms21249739] [Citation(s) in RCA: 819] [Impact Index Per Article: 163.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/10/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc-dependent extracellular matrix (ECM) remodeling endopeptidases that have the capacity to degrade almost every component of the ECM. The degradation of the ECM is of great importance, since it is related to embryonic development and angiogenesis. It is also involved in cell repair and the remodeling of tissues. When the expression of MMPs is altered, it can generate the abnormal degradation of the ECM. This is the initial cause of the development of chronic degenerative diseases and vascular complications generated by diabetes. In addition, this process has an association with neurodegeneration and cancer progression. Within the ECM, the tissue inhibitors of MMPs (TIMPs) inhibit the proteolytic activity of MMPs. TIMPs are important regulators of ECM turnover, tissue remodeling, and cellular behavior. Therefore, TIMPs (similar to MMPs) modulate angiogenesis, cell proliferation, and apoptosis. An interruption in the balance between MMPs and TIMPs has been implicated in the pathophysiology and progression of several diseases. This review focuses on the participation of both MMPs (e.g., MMP-2 and MMP-9) and TIMPs (e.g., TIMP-1 and TIMP-3) in physiological processes and on how their abnormal regulation is associated with human diseases. The inclusion of current strategies and mechanisms of MMP inhibition in the development of new therapies targeting MMPs was also considered.
Collapse
Affiliation(s)
| | - Idalia Garza-Veloz
- Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y Ciencias de la Salud, Carretera Zacatecas-Guadalajara Km.6. Ejido la Escondida, Zacatecas 98160, Mexico; (G.AC.-P.); (C.C.-D.l.R.); (J.MR.-A.); (B.AP.-R.); (J.FG.-R.); (N.M.-A.)
| | | | | | | | | | | | - Margarita L Martinez-Fierro
- Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y Ciencias de la Salud, Carretera Zacatecas-Guadalajara Km.6. Ejido la Escondida, Zacatecas 98160, Mexico; (G.AC.-P.); (C.C.-D.l.R.); (J.MR.-A.); (B.AP.-R.); (J.FG.-R.); (N.M.-A.)
| |
Collapse
|
29
|
Lee KB, Dunn ZS, Lopez T, Mustafa Z, Ge X. Generation of highly selective monoclonal antibodies inhibiting a recalcitrant protease using decoy designs. Biotechnol Bioeng 2020; 117:3664-3676. [PMID: 32716053 DOI: 10.1002/bit.27519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/10/2020] [Accepted: 07/26/2020] [Indexed: 11/11/2022]
Abstract
Matrix metalloproteinase-12 (MMP-12), also known as macrophage elastase, is a potent inflammatory mediator and therefore an important pharmacological target. Clinical trial failures of broad-spectrum compound MMP inhibitors suggested that specificity is the key for a successful therapy. To provide the required selectivity, monoclonal antibody (mAb)-based inhibitors are on the rise. However, poor production of active recombinant human MMP-12 catalytic domain (cdMMP-12) presented a technical hurdle for its inhibitory mAb development. We hypothesized that this problem could be solved by designing an expression-optimized cdMMP-12 mutant without structural disruptions at its reaction cleft and surrounding area, and thus isolated active-site inhibitory mAbs could maintain their binding and inhibition functions toward wild-type MMP-12. We combined three advances in the field-PROSS algorithm for cdMMP-12 mutant design, convex paratope antibody library construction, and functional selection for inhibitory mAbs. As a result, isolated Fab inhibitors showed nanomolar affinity and potency toward cdMMP-12 with high selectivity and high proteolytic stability. Particularly, Fab LH11 targeted the reaction cleft of wild-type cdMMP-12 with 75 nM binding KD and 23 nM inhibition IC50 . We expect that our methods can promote the development of mAbs inhibiting important proteases, many of which are recalcitrant to functional production.
Collapse
Affiliation(s)
- Ki Baek Lee
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, California
| | - Zachary S Dunn
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, California.,Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California
| | - Tyler Lopez
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, California.,Element Biosciences, Inc., San Diego, California
| | - Zahid Mustafa
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, California
| | - Xin Ge
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, California
| |
Collapse
|
30
|
Abbes A, Zayani Y, Zidi W, Hammami MB, Mebazaa A, El Euch D, Ben Ammar A, Sanhaji H, El May MV, Mokni M, Feki M, Allal-Elasmi M. Matrix metalloproteinase-7 could be a predictor for acute inflammation in psoriatic patients. Cytokine 2020; 134:155195. [PMID: 32663776 DOI: 10.1016/j.cyto.2020.155195] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 06/03/2020] [Accepted: 07/04/2020] [Indexed: 11/15/2022]
Abstract
PURPOSE The pathogenesis of psoriasis is characterized by a disruption of extracellular matrix (ECM) in which matrix metalloproteinases (MMPs) participate actively. We aimed to determine MMP-7 level and its association with the inflammatory response in order to determine its usefulness as a biomarker for psoriasis prediction. We also aimed to determine its distribution in uninvolved and involved psoriatic skin to evaluate the probable role of MMP-7 in psoriasis pathogenesis. MATERIALS AND METHODS We recruited 108 psoriatic patients and 133 healthy controls. MMP-7, tissue inhibitors of metalloproteinases (TIMPs) and interleukin-6 (IL-6) levels were measured by Enzyme-Linked Immunosorbent Assay (ELISA) assay. MMP-7 expression was detected by Immunohistochemistry (IHC) study. RESULTS ECM turnover and inflammatory biomarker levels were significantly higher in psoriatic patients. MMP-7 revealed to be independently associated to psoriasis even after adjustment for different models. The area under the curve (AUC) of MMP-7 and inflammation Z-score were similar. MMP-7 was positively correlated with IL-6 and inflammation Z-score. Psoriasis severity (PASI) was correlated significantly with IL-6 (p = 0.007). The MMP-7 expression was detected in the epidermis of involved and uninvolved psoriatic skin. In involved skin, MMP-7 was expressed by basal and mostly suprabasal keratinocytes. In uninvolved skin, expression of MMP-7 was restricted to basal keratinocytes. CONCLUSION MMP-7 is independently associated to psoriasis disease and to inflammatory response which make it a potential biomarker for this dermatosis.
Collapse
Affiliation(s)
- Arbia Abbes
- University of Tunis El Manar, Faculty of Medicine of Tunis, LR99ES11, Laboratory of Biochemistry, Rabta Hospital, Tunis, Tunisia; University of Tunis El Manar, Faculty of Sciences of Tunis, Tunisia
| | - Yosra Zayani
- University of Tunis El Manar, Faculty of Medicine of Tunis, LR99ES11, Laboratory of Biochemistry, Rabta Hospital, Tunis, Tunisia
| | - Wiem Zidi
- University of Tunis El Manar, Faculty of Medicine of Tunis, LR99ES11, Laboratory of Biochemistry, Rabta Hospital, Tunis, Tunisia
| | - Mohamed Bassem Hammami
- University of Tunis El Manar, Faculty of Medicine of Tunis, LR99ES11, Laboratory of Biochemistry, Rabta Hospital, Tunis, Tunisia
| | - Amel Mebazaa
- Department of Dermatology, Rabta Hospital, Tunis, Tunisia
| | | | - Awatef Ben Ammar
- Research Unit 17ES/13 Laboratory of Histology and Embryology, Faculty of Medicine, University of Tunis El Manar, Tunis, Tunisia
| | - Haifa Sanhaji
- University of Tunis El Manar, Faculty of Medicine of Tunis, LR99ES11, Laboratory of Biochemistry, Rabta Hospital, Tunis, Tunisia
| | - Michele Veronique El May
- Research Unit 17ES/13 Laboratory of Histology and Embryology, Faculty of Medicine, University of Tunis El Manar, Tunis, Tunisia
| | - Mourad Mokni
- Department of Dermatology, Rabta Hospital, Tunis, Tunisia
| | - Moncef Feki
- University of Tunis El Manar, Faculty of Medicine of Tunis, LR99ES11, Laboratory of Biochemistry, Rabta Hospital, Tunis, Tunisia
| | - Monia Allal-Elasmi
- University of Tunis El Manar, Faculty of Medicine of Tunis, LR99ES11, Laboratory of Biochemistry, Rabta Hospital, Tunis, Tunisia.
| |
Collapse
|
31
|
Lin WW, Lu YC, Chuang CH, Cheng TL. Ab locks for improving the selectivity and safety of antibody drugs. J Biomed Sci 2020; 27:76. [PMID: 32586313 PMCID: PMC7318374 DOI: 10.1186/s12929-020-00652-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/22/2020] [Indexed: 02/06/2023] Open
Abstract
Monoclonal antibodies (mAbs) are a major targeted therapy for malignancies, infectious diseases, autoimmune diseases, transplant rejection and chronic inflammatory diseases due to their antigen specificity and longer half-life than conventional drugs. However, long-term systemic antigen neutralization by mAbs may cause severe adverse events. Improving the selectivity of mAbs to distinguish target antigens at the disease site from normal healthy tissue and reducing severe adverse events caused by the mechanisms-of-action of mAbs is still a pressing need. Development of pro-antibodies (pro-Abs) by installing a protease-cleavable Ab lock is a novel and advanced recombinant Ab-based strategy that efficiently masks the antigen binding ability of mAbs in the normal state and selectively "turns on" the mAb activity when the pro-Ab reaches the proteolytic protease-overexpressed diseased tissue. In this review, we discuss the design and advantages/disadvantages of different Ab lock strategies, focusing particularly on spatial-hindrance-based and affinity peptide-based approaches. We expect that the development of different masking strategies for mAbs will benefit the local reactivity of mAbs at the disease site, increase the therapeutic efficacy and safety of long-term treatment with mAbs in chronic diseases and even permit scientists to develop Ab drugs for formerly undruggable targets and satisfy the unmet medical needs of mAb therapy.
Collapse
Affiliation(s)
- Wen-Wei Lin
- Department of Laboratory Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yun-Chi Lu
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Biomedical and Environmental Biology, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan
| | - Chih-Hung Chuang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tian-Lu Cheng
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
- Department of Biomedical and Environmental Biology, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
32
|
Protection against Ultraviolet A-Induced Skin Apoptosis and Carcinogenesis through the Oxidative Stress Reduction Effects of N-(4-bromophenethyl) Caffeamide, A Propolis Derivative. Antioxidants (Basel) 2020; 9:antiox9040335. [PMID: 32326032 PMCID: PMC7222364 DOI: 10.3390/antiox9040335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/18/2022] Open
Abstract
Ultraviolet A (UVA) is a major factor in skin aging and damage. Antioxidative materials may ameliorate this UV damage. This study investigated the protective properties of N-(4-bromophenethyl) caffeamide (K36H) against UVA-induced skin inflammation, apoptosis and genotoxicity in keratinocytes. The protein expression or biofactor concentration related to UVA-induced skin damage were identified using an enzyme-linked immunosorbent assay and western blotting. K36H reduced UVA-induced intracellular reactive oxygen species generation and increased nuclear factor erythroid 2–related factor 2 translocation into the nucleus to upregulate the expression of heme oxygenase-1, an intrinsic antioxidant enzyme. K36H inhibited UVA-induced activation of extracellular-signal-regulated kinases and c-Jun N-terminal kinases, reduced the overexpression of matrix metalloproteinase (MMP)-1 and MMP-2 and elevated the expression of the metalloproteinase-1 tissue inhibitor. Moreover, K36H inhibited the phosphorylation of c-Jun and downregulated c-Fos expression. K36H attenuated UVA-induced Bax and caspase-3 expression and upregulated antiapoptotic protein B-cell lymphoma 2 expression. K36H reduced UVA-induced DNA damage. K36H also downregulated inducible nitric oxide synthase, cyclooxygenase-2 and interleukin-6 expression as well as the subsequent generation of prostaglandin E2 and nitric oxide. We observed that K36H ameliorated UVA-induced oxidative stress, inflammation, apoptosis and antiphotocarcinogenic activity. K36H can potentially be used for the development of antiphotodamage and antiphotocarcinogenic products.
Collapse
|
33
|
Diani M, Perego S, Sansoni V, Bertino L, Gomarasca M, Faraldi M, Pigatto PDM, Damiani G, Banfi G, Altomare G, Lombardi G. Differences in Osteoimmunological Biomarkers Predictive of Psoriatic Arthritis among a Large Italian Cohort of Psoriatic Patients. Int J Mol Sci 2019; 20:ijms20225617. [PMID: 31717649 PMCID: PMC6888436 DOI: 10.3390/ijms20225617] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 12/13/2022] Open
Abstract
(1) Background: In literature it is reported that 20–30% of psoriatic patients evolve to psoriatic arthritis over time. Currently, no specific biochemical markers can either predict progression to psoriatic arthritis or response to therapies. This study aimed to identify osteoimmunological markers applicable to clinical practice, giving a quantitative tool for evaluating pathological status and, eventually, to provide prognostic support in diagnosis. (2) Methods: Soluble (serum) bone and cartilage markers were quantified in 50 patients with only psoriasis, 50 psoriatic patients with psoriatic arthritis, and 20 healthy controls by means of multiplex and enzyme-linked immunoassays. (3) Results: Differences in the concentrations of matrix metalloproteases (MMPs), tissue inhibitors of metalloproteinases (TIMPs), receptor activator of nuclear factor kappa-B- ligand (RANK-L), procollagen type I N propeptide (PINP), C-terminal telopeptide of type I collagen (CTx-I), dickkopf-related protein 1 (DKK1), and sclerostin (SOST) distinguished healthy controls from psoriasis and psoriatic arthritis patients. We found that MMP2, MMP12, MMP13, TIMP2, and TIMP4 distinguished psoriasis from psoriatic arthritis patients undergoing a systemic treatment, with a good diagnostic accuracy (Area under the ROC Curve (AUC) > 0.7). Then, chitinase-3-like protein 1 (CHI3L1) and MMP10 distinguished psoriasis from psoriatic arthritis not undergoing systemic therapy and, in the presence of onychopathy, MMP8 levels were higher in psoriasis than in psoriatic arthritis. However, in these latter cases, the diagnostic accuracy of the identified biomarkers was low (0.5 < AUC < 0.7). (4) Conclusions. By highlighting never exploited differences, the wide osteoimmunological biomarkers panel provides a novel clue to the development of diagnostic paths in psoriasis and psoriasis-associated arthropathic disease.
Collapse
Affiliation(s)
- Marco Diani
- Department of Dermatology and Venereology, IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy; (M.D.); (P.D.M.P.); (G.A.)
| | - Silvia Perego
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy; (S.P.); (V.S.); (M.G.); (M.F.); (G.B.); (G.L.)
| | - Veronica Sansoni
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy; (S.P.); (V.S.); (M.G.); (M.F.); (G.B.); (G.L.)
| | - Lucrezia Bertino
- Department of Clinical and Experimental Medicine, section of Dermatology, University of Messina, 98122 Messina, Italy;
| | - Marta Gomarasca
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy; (S.P.); (V.S.); (M.G.); (M.F.); (G.B.); (G.L.)
| | - Martina Faraldi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy; (S.P.); (V.S.); (M.G.); (M.F.); (G.B.); (G.L.)
| | - Paolo Daniele Maria Pigatto
- Department of Dermatology and Venereology, IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy; (M.D.); (P.D.M.P.); (G.A.)
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milano, Italy
| | - Giovanni Damiani
- Department of Dermatology and Venereology, IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy; (M.D.); (P.D.M.P.); (G.A.)
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milano, Italy
- Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106, USA
- Young Dermatologists Italian Network, Centro Studi GISED, 24121 Bergamo, Italy
- Correspondence: ; Tel.: +39-0266214068
| | - Giuseppe Banfi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy; (S.P.); (V.S.); (M.G.); (M.F.); (G.B.); (G.L.)
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Gianfranco Altomare
- Department of Dermatology and Venereology, IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy; (M.D.); (P.D.M.P.); (G.A.)
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy; (S.P.); (V.S.); (M.G.); (M.F.); (G.B.); (G.L.)
- Department of Physiology and Pharmacology, Gdańsk University of Physical Education and Sport, 80336 Gdańsk, Poland
| |
Collapse
|
34
|
Ning J, Shen Y, Wang T, Wang M, Liu W, Sun Y, Zhang F, Chen L, Wang Y. Altered expression of matrix remodelling associated 7 (MXRA7) in psoriatic epidermis: Evidence for a protective role in the psoriasis imiquimod mouse model. Exp Dermatol 2019; 27:1038-1042. [PMID: 29781547 DOI: 10.1111/exd.13687] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2018] [Indexed: 12/14/2022]
Abstract
Preliminary data mining performed with Gene Expression Omnibus data sets implied that psoriasis may involve the matrix remodelling associated 7 (MXRA7), a gene with little function information yet. To test that hypothesis, studies were performed in human samples and murine models. Immunohistochemistry in normal human skin showed that MXRA7 proteins were present across the full epidermal layer, with highest expression level detected in the basal layer. In psoriatic samples, MXRA7 proteins were absent in the basal stem cells layer, while suprabasal keratinocytes were stained at a higher level than in normal tissues. In an imiquimod-induced psoriasis-like disease model in mice, diseased skins manifested similar MXRA7 expression pattern and change as in human samples, and MXRA7-deficient mice developed severer psoriasis-like diseases than wild-type mice did. While levels of propsoriatic genes (eg IL17, IL22, IL23) in imiquimod-stimulated MXRA7-deficient mice were higher than in wild-type mice, keratinocytes isolated from MXRA7-deficient mice showed increased proliferation upon differentiation induction in culture. These data demonstrated that MXRA7 gene might function as a negative modulator in psoriasis development when propsoriatic factors attack, presumably via expression alteration or redistribution of MXRA7 proteins in keratinocytes.
Collapse
Affiliation(s)
- Jinling Ning
- Collaborative Innovation Center of Hematology, MOH Key Lab of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Medical School, Suzhou, China
| | - Ying Shen
- Collaborative Innovation Center of Hematology, MOH Key Lab of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Medical School, Suzhou, China
| | - Ting Wang
- Collaborative Innovation Center of Hematology, MOH Key Lab of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Medical School, Suzhou, China
| | - Mengru Wang
- Collaborative Innovation Center of Hematology, MOH Key Lab of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Medical School, Suzhou, China
| | - Wei Liu
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yonghu Sun
- Shandong Provincial Key Lab for Dermatovenereology, Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, China
| | - Furen Zhang
- Shandong Provincial Key Lab for Dermatovenereology, Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, China
| | - Lingling Chen
- Department of Dermatology, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, China
| | - Yiqiang Wang
- Collaborative Innovation Center of Hematology, MOH Key Lab of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Medical School, Suzhou, China
| |
Collapse
|
35
|
Protective Effects and Mechanisms of N-Phenethyl Caffeamide from UVA-Induced Skin Damage in Human Epidermal Keratinocytes through Nrf2/HO-1 Regulation. Int J Mol Sci 2019; 20:ijms20010164. [PMID: 30621167 PMCID: PMC6337442 DOI: 10.3390/ijms20010164] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/24/2018] [Accepted: 12/27/2018] [Indexed: 02/07/2023] Open
Abstract
The skin provides an effective barrier against physical, chemical, and microbial invasion; however, overexposure to ultraviolet (UV) radiation causes excessive cellular oxidative stress, which leads to skin damage, DNA damage, mutations, and skin cancer. This study investigated the protective effects of N-phenethyl caffeamide (K36) from UVA damage on human epidermal keratinocytes. We found that K36 reduced UVA-induced intracellular reactive oxygen species (ROS) production and induced the expression of the intrinsic antioxidant enzyme heme oxygenase-1 (HO-1) by increasing the translocation of nuclear factor erythroid 2⁻related factor 2 (Nrf2). K36 could inhibit the phosphorylation of extracellular-signal-regulated kinase (ERK) and c-Jun N-terminal kinases (JNK) and reduce UVA-induced matrix metalloproteinase (MMP)-1 and MMP-2 overexpression; it could also elevate the expression of tissue inhibitors of metalloproteinases (TIMP). In addition, K36 ameliorated 8-hydroxy-2'-deoxyguanosine (8-OHdG) induced by UVA irradiation. Furthermore, K36 could downregulate the expression of inducible nitric oxide synthase (iNOS) and interleukin-6 (IL-6) and the subsequent production of nitric oxide (NO) and prostaglandin E₂ (PGE₂). Based on our findings, K36 possessed potent antioxidant, anti-inflammatory, antiphotodamage, and even antiphotocarcinogenesis activities. Thus, K36 has the potential to be used to multifunctional skin care products and drugs.
Collapse
|
36
|
Human Skin: Composition, Structure and Visualisation Methods. STUDIES IN MECHANOBIOLOGY, TISSUE ENGINEERING AND BIOMATERIALS 2019. [DOI: 10.1007/978-3-030-13279-8_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
37
|
Dainichi T, Kabashima K. Interaction of Psoriasis and Bullous Diseases. Front Med (Lausanne) 2018; 5:222. [PMID: 30135860 PMCID: PMC6092515 DOI: 10.3389/fmed.2018.00222] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/20/2018] [Indexed: 12/26/2022] Open
Abstract
Patients with psoriasis are frequently complicated with autoimmune bullous diseases, especially, pemphigoid diseases. It has been known that one-third cases of anti-laminin gamma1 pemphigoid, formerly anti-p200 pemphigoid, are associated with psoriasis whereas bullous pemphigoid is the most frequently associated bullous disease in psoriasis cases regardless of the lack of detectable levels of the accompanying anti-laminin gamma1 autoantibodies. Despite several suggestions, however, the definitive reason of the striking association of psoriasis and these autoimmune bullous diseases remains elusive. In this review, we look over the epidemiological evidence of the association of psoriasis and autoimmune bullous diseases and the information of genetic susceptibilities of each disease, and discuss the possible mechanisms of their complication with reference to the recent understandings of each pathogenesis.
Collapse
Affiliation(s)
- Teruki Dainichi
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Singapore Immunology Network and Institute of Medical Biology, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| |
Collapse
|
38
|
Amezcua-Guerra LM, Bojalil R, Espinoza-Hernandez J, Vega-Memije ME, Lacy-Niebla RM, Ortega-Springall F, Ortega-Hernández J, Sánchez-Muñoz F, Springall R. Serum of Patients with Psoriasis Modulates the Production of MMP-9 and TIMP-1 in Cells of Monocytic Lineage. Immunol Invest 2018; 47:725-734. [PMID: 29979898 DOI: 10.1080/08820139.2018.1489831] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Psoriasis is triggered by several stimuli that share a systemic production of interferon (IFN)-γ and other inflammatory mediators, which are key to regulate the production of matrix metalloproteinase (MMP)-9 and its inhibitor (TIMP)-1 by cells of monocytic lineage. This study evaluates the effect of the sera of 55 patients with psoriasis and 41 non-psoriatic individuals on the production of MMP-9 and TIMP-1 in cultured monocytes from a single healthy blood donor and in U937 cells. The effect of IFN-γ stimulation was also evaluated. Serum and supernatant concentrations of IFN-γ, MMP-9, and TIMP-1 were measured by enzyme-linked immunoassays, and the MMP-9/TIMP-1 ratios were calculated. In monocytes, incubation with psoriasis' sera increased the production of MMP-9 and TIMP-1 in comparison with both baseline and monocytes incubated with non-psoriatic sera. Although the MMP-9/TIMP-1 ratio was significantly higher compared to the baseline, no differences between groups were observed. In contrast, IFN-γ stimulation in monocytes previously exposed to psoriasis' sera increased MMP-9 levels and decreased TIMP-1 levels, whereas stimulation in monocytes exposed to non-psoriatic sera did not further modify the levels of MMP-9 or TIMP-1. Consequently, the MMP-9/TIMP-1 ratio in cells exposed to psoriatic serum was significantly higher than in cells exposed to non-psoriatic sera (24.5 versus 16.7; P < 0.05). Similar results were observed in U937 cells. Therefore, our results suggest that soluble mediators in psoriatic sera may enhance the proteolytic phenotype of monocytes when stimulated with IFN-γ, which supports the existence of a primed state in the inflammatory cells of patients with psoriasis.
Collapse
Affiliation(s)
- Luis M Amezcua-Guerra
- a Department of Immunology , Instituto Nacional de Cardiología Ignacio Chávez , Mexico City , Mexico.,b Cardiovascular Research Laboratory , Unidad de Investigación Traslacional, Universidad Nacional Autónoma de México/Instituto Nacional de Cardiología Ignacio Chávez , Mexico City , Mexico.,c Department of Health Care , Universidad Autónoma Metropolitana-Xochimilco , Mexico City , Mexico
| | - Rafael Bojalil
- a Department of Immunology , Instituto Nacional de Cardiología Ignacio Chávez , Mexico City , Mexico.,c Department of Health Care , Universidad Autónoma Metropolitana-Xochimilco , Mexico City , Mexico
| | | | - María E Vega-Memije
- d Department of Dermatology , Hospital General Dr. Manuel Gea Gonzalez , Mexico City , Mexico
| | - Rosa M Lacy-Niebla
- d Department of Dermatology , Hospital General Dr. Manuel Gea Gonzalez , Mexico City , Mexico
| | | | - Jorge Ortega-Hernández
- a Department of Immunology , Instituto Nacional de Cardiología Ignacio Chávez , Mexico City , Mexico
| | - Fausto Sánchez-Muñoz
- a Department of Immunology , Instituto Nacional de Cardiología Ignacio Chávez , Mexico City , Mexico
| | - Rashidi Springall
- a Department of Immunology , Instituto Nacional de Cardiología Ignacio Chávez , Mexico City , Mexico
| |
Collapse
|
39
|
Mogulevtseva JA, Mezentsev AV, Bruskin SA. RNAI-MEDIATED SILENCING OF MATRIX METALLOPROTEINASE 1 IN EPIDERMAL KERATINOCYTES INFLUENCES THE BIOLOGICAL EFFECTS OF INTERLEUKIN 17A. Vavilovskii Zhurnal Genet Selektsii 2018. [DOI: 10.18699/vj18.378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are important for the pathogenesis of psoriasis and other autoimmune disorders. In the extracellular matrix, accumulation of proinflammatory cytokines, such as interleukin 17A (IL-17A), leads to induction of several MMPs, including MMP1. MMPs change the composition and other properties of the extracellular matrix. These changes facilitate tissue remodeling and promote the development of psoriatic plaques. The aim of this study was to explore how MMP1 silencing might influence the biological effects of IL-17A on migration and proliferation of human epidermal keratinocytes and the expression of genes involved in their division and differentiation. The experiments were performed with MMP1-deficient and control epidermal keratinocytes, HaCaT-MMP1 and HaCaT-KTR, respectively. Cell proliferation and migration were assessed by comparative analysis of the growth curves and scratch assay, respectively. To quantify cell migration, representative areas of cell cultures were photographed at the indicated time points and compared to each other. Changes in gene expression were analyzed by real-time PCR. The obtained results demonstrated that MMP1 silencing in the cells treated with IL-17A resulted in downregulation of MMP9 and -12, FOSL1, CCNA2, IVL, KRT14 and -17 as well as upregulation of MMP2, CCND1 and LOR. Moreover, MMP1 silencing led to a decrease in cell proliferation and an impairment of cell migration. Thus, MMP1-deficiency in epidermal keratinocytes can be beneficial for psoriasis patients that experience an accumulation of IL-17 in lesional skin. Knocking MMP1 down could influence migration and proliferation of epidermal keratinocytes in vivo, as well as help to control the expression of MMP1, -2, -9 и -12, CCNA2, CCND1, KRT14 and -17 that are crucial for the pathogenesis of psoriasis.
Collapse
|
40
|
Gęgotek A, Domingues P, Wroński A, Wójcik P, Skrzydlewska E. Proteomic plasma profile of psoriatic patients. J Pharm Biomed Anal 2018; 155:185-193. [DOI: 10.1016/j.jpba.2018.03.068] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/29/2018] [Accepted: 03/31/2018] [Indexed: 12/16/2022]
|
41
|
ROC analysis of selected matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) in psoriatic patients. Postepy Dermatol Alergol 2018; 35:167-173. [PMID: 29760616 PMCID: PMC5949546 DOI: 10.5114/ada.2018.75238] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 02/17/2017] [Indexed: 12/26/2022] Open
Abstract
Introduction Inherited ichthyoses are caused by mutations in various genes important for keratinocyte differentiation and epidermal barrier function. Although ichthyoses are rare disorders, they require costly long-term medical management, and thus there is a need for efficient preventive and therapeutic strategies. Aim We performed a retrospective study to determine the frequency, types, clinical presentation and associated genomic errors of primary hereditary ichthyoses in Egyptian patients and their relatives consulting the Genetics Clinic, Pediatric Hospital, Ain Shams University. Material and methods The outpatient log books of patients between January 2000 and December 2014 were reviewed, and diagnosis of new patients was confirmed through examination by a dermatologist. All epidemiologic, demographic, and clinical data were extracted and recorded in especially designed data collection forms. Results The occurrence rate of primary hereditary ichthyoses in our study was 25.7% of genodermatosis patients attending the genetics clinics and 1 per 2359 patients attending the Pediatric Hospital. The commonest type of ichthyosis in our study was Lamellar ichthyosis (38%), followed by congenital ichthyosiform erythroderma (26.8%). Consanguineous marriage was reported among the parents of 79% of patients and positive family history was reported in 72% of patients. Conclusions To the best of our knowledge, this preliminary study is the first report on the clinico-epidemiological features of primary hereditary ichthyoses in Egypt. The high rate of prenatal consanguinity among parents of our patients may account for the high frequency of these genodermatoses in Egypt. This highlights the importance of genetic counselling and prenatal diagnosis in Egypt.
Collapse
|
42
|
Influence of narrowband ultraviolet-B phototherapy on plasma concentration of matrix metalloproteinase-12 in psoriatic patients. Postepy Dermatol Alergol 2017; 34:328-333. [PMID: 28951707 PMCID: PMC5560180 DOI: 10.5114/ada.2017.69312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/01/2016] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Matrix metalloproteinase-12 (MMP-12) may play an important role in the pathogenesis and spread of psoriatic disease. AIM To investigate plasma levels of the selected enzyme in plaque psoriasis patients before and after the course of narrowband UVB (NBUVB) therapy with respect to disease advancement. MATERIAL AND METHODS The cohort included 49 patients suffering from plaque psoriasis, divided into groups according to severity of the disease. The control group consisted of 40 healthy volunteers. Plasma levels of MMP-12 were determined using immunoenzyme assay (ELISA), while the Psoriasis Area and Severity Index (PASI) was used to define disease advancement. RESULTS The results have shown a significantly decreased plasma level of MMP-12 in the total psoriasis patient group compared to healthy individuals, declining with the increase in disease advancement. The NBUVB therapy caused a decrease in the concentration of the analyzed enzyme, but this change was not statistically significant in the total group of psoriatic patients, while a significant change was detected in patients with a mild advancement of the disease. CONCLUSIONS Decreased synthesis of MMP-12 may lead to the stimulation of the epidermal angiogenesis process, which results in the appearance and spread of psoriatic scales. Based on the obtained results, macrophage metalloelastase seems to be a negatively reacting plasma biomarker of the studied disease.
Collapse
|
43
|
Głażewska EK, Niczyporuk M, Ławicki S, Szmitkowski M, Donejko M, Zajkowska M, Będkowska GE, Przylipiak A. Narrowband ultraviolet B light treatment changes plasma concentrations of MMP-3, MMP-9 and TIMP-3 in psoriatic patients. Ther Clin Risk Manag 2017; 13:575-582. [PMID: 28490884 PMCID: PMC5414720 DOI: 10.2147/tcrm.s125595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background Matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) are thought to be associated with the pathogenesis and spread of psoriatic disease. This study was designed to investigate the plasma levels of MMP-3, MMP-9 and TIMP-3 in plaque psoriasis patients prior to and following a course of ultraviolet B narrowband treatment with respect to disease advancement. Methods Plasma samples of 49 patients suffering from plaque psoriasis and 40 healthy volunteers were evaluated. Concentrations of MMP-3, MMP-9 and TIMP-3 were determined using enzyme-linked immunosorbent assay, while Psoriasis Area and Severity Index was used to define disease advancement. Results Plasma levels of MMP-3, MMP-9 and TIMP-3 were significantly elevated in psoriasis patients compared to healthy individuals. A course of ultraviolet B narrowband treatment resulted in a significant decline in the studied metalloproteinases. Furthermore, the concentration of selected tissue inhibitors was negatively correlated with baseline Psoriasis Area and Severity Index score. Conclusion Our research highlights the meaningful role of MMP-3, MMP-9 and TIMP-3 in psoriasis pathogenesis and clearance of disease symptoms. Furthermore, plasma levels of the analyzed metalloproteinases seem to be a valuable psoriasis biomarker.
Collapse
|
44
|
Can signal peptide-CUB-EGF domain-containing protein (SCUBE) levels be a marker of angiogenesis in patients with psoriasis? Arch Dermatol Res 2017; 309:203-207. [PMID: 28238185 DOI: 10.1007/s00403-017-1722-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 01/23/2017] [Accepted: 01/30/2017] [Indexed: 01/09/2023]
Abstract
Angiogenesis is an important process being involved in the pathogenesis of psoriasis and promises new potential parameter for diagnosis and screening of treatment. This study investigated the levels of signal peptide-CUB-EGF (epidermal growth factor-like protein) family domain-containing protein (SCUBE) 1 and 3. Potential value as a novel marker of angiogenesis in patients with psoriasis is also evaluated by assessing possible relation of SCUBE-1 and 3 with disease activity in conjunction with vascular endothelial growth factor (VEGF) levels, as an established marker of angiogenesis. Forty-eight patients with psoriasis (aged >18 years) and 48 age- and gender-matched healthy controls were included. Detailed information was obtained through history and physical examination. Psoriasis area and severity index (PASI) scores were calculated. Blood SCUBE 1 and 3, and VEGF levels were measured by enzyme-linked immunosorbent assay. The mean PASI score of the patients was 6.7 ± 4.1. Patients' serum SCUBE 1 and 3 and VEGF levels were significantly higher than those of the controls (P = 0.001). The sensitivity and specificity were calculated as 83 and 62% for the 0.67 ng/ml cut-off level of SCUBE 1, and 63 and 71% for the 2.57 ng/ml cut-off level of SCUBE 3, respectively. A cut-off VEGF level of 310 ng/mL predicted the presence of psoriasis with a sensitivity of 50% and specificity of 77%. The results of this pioneering study indicate that SCUBE protein family appears to have a probable role in the pathogenesis and angiogenesis development in psoriasis and SCUBE 1 and 3 may be novel markers of angiogenesis in psoriasis.
Collapse
|
45
|
Cannabinoids: Possible agents for treatment of psoriasis via suppression of angiogenesis and inflammation. Med Hypotheses 2016; 99:15-18. [PMID: 28110689 DOI: 10.1016/j.mehy.2016.12.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 10/13/2016] [Accepted: 12/08/2016] [Indexed: 01/21/2023]
Abstract
Psoriasis is a chronic skin disease also affecting other sites such as joints. This disease highly depends on inflammation and angiogenesis as well as other pathways. At each step of the psoriasis molecular pathway, different inflammatory cytokines and angiogenic growth factors are involved such as hypoxia inducible factor-1 α (HIF-1 α), vascular endothelial growth factor (VEGF), matrix metalo proteinases (MMPs), basic fibroblast growth factor (bFGF), Angiopoitin-2, interleukin-8 (IL-8), IL-17, and IL-2. Beside the mentioned growth factors and cytokines, cellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) which play roles in both angiogenesis and inflammation are also involved in the pathogenesis. Cannabinoids are active compounds of Cannabina Sativa inducing their effects through cannabinoid receptors (CBs). JWH-133 is a synthetic cannabinoid with strong anti-angiogenic and anti-inflammatory activities. This agent is able to inhibit HIF-1 α, VEGF, MMPs, bFGF, IL-8, IL-17, and other mentioned cytokines and adhesion molecules both in vivo and in vitro. Altogether, authors suggest using this cannabinoid for treatment of psoriasis due to its potential in suppressing the two main steps of psoriatic pathogenesis. Of course complementary animal studies and human trials are still required.
Collapse
|
46
|
Głażewska EK, Niczyporuk M, Ławicki S, Szmitkowski M, Zajkowska M, Będkowska GE, Przylipiak A. Therapy of psoriasis with narrowband ultraviolet-B light influences plasma concentrations of MMP-2 and TIMP-2 in patients. Ther Clin Risk Manag 2016; 12:1579-1585. [PMID: 27799779 PMCID: PMC5085301 DOI: 10.2147/tcrm.s113769] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Matrix metalloproteinases (MMPs), which show a significant ability to cleave the components of extracellular matrix, and tissue inhibitors of metalloproteinases (TIMPs), which slow down the activity of those enzymes, may be implicated in the pathogenesis and spread of psoriatic disease. This study aims to analyze plasma levels of MMP-2 and TIMP-2 in plaque psoriasis patients before and after the course of narrowband ultraviolet-B (NBUVB) therapy with respect to disease advancement. PATIENTS AND METHODS A total of 49 patients suffering from plaque psoriasis and 40 healthy volunteers were enrolled into the study. Plasma levels of MMP-2 and TIMP-2 were determined using enzyme-linked immunosorbent assay, while Psoriasis Area and Severity Index (PASI) was used to define the disease advancement. RESULTS The results showed increased plasma levels of MMP-2 and TIMP-2, but this change was significant only in case of MMP-2 in total psoriatic group compared to healthy subjects. Moreover, there was an increase in the concentrations of chosen factors with an increase in the severity of the disease. The NBUVB therapy causes a decline in the concentration of the analyzed enzyme and its inhibitor, although this change was statistically significant in the total psoriatic group only in case of MMP-2. There was also a positive correlation between MMP-2, TIMP-2, and PASI score value. CONCLUSION Our study highlights a possible important role of MMP-2 in the activity of psoriasis and clearance of disease symptoms. Moreover, plasma MMP-2 seems to be a valuable psoriasis biomarker.
Collapse
|
47
|
Wen H, Qin Y, Zhong W, Li C, Liu X, Shen Y. Trivalent metal ions based on inorganic compounds with in vitro inhibitory activity of matrix metalloproteinase 13. Enzyme Microb Technol 2016; 92:9-17. [PMID: 27542739 DOI: 10.1016/j.enzmictec.2016.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 06/07/2016] [Accepted: 06/10/2016] [Indexed: 02/02/2023]
Abstract
Collagenase-3 (MMP-13) inhibitors have attracted considerable attention in recent years and have been developed as a therapeutic target for a variety of diseases, including cancer. Matrix metalloproteinases (MMPs) can be inhibited by a multitude of compounds, including hydroxamic acids. Studies have shown that materials and compounds containing trivalent metal ions, particularly potassium hexacyanoferrate (III) (K3[Fe(CN)6]), exhibit cdMMP-13 inhibitory potential with a half maximal inhibitory concentration (IC50) of 1.3μM. The target protein was obtained by refolding the recombinant histidine-tagged cdMMP-13 using size exclusion chromatography (SEC). The secondary structures of the refolded cdMMP-13 with or without metal ions were further analyzed via circular dichroism and the results indicate that upon binding with metal ions, an altered structure with increased domain stability was obtained. Furthermore, isothermal titration calorimetry (ITC) experiments demonstrated that K3[Fe(CN)6]is able to bind to MMP-13 and endothelial cell tube formation tests provide further evidence for this interaction to exhibit anti-angiogenesis potential. To the best of our knowledge, no previous report of an inorganic compound featuring a MMP-13 inhibitory activity has ever been reported in the literature. Our results demonstrate that K3[Fe(CN)6] is useful as a new effective and specific inhibitor for cdMMP-13 which may be of great potential for future drug screening applications.
Collapse
Affiliation(s)
- Hanyu Wen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Shaanxi Alcohol Ether and Biomass Energy Engineering Research Center, Key laboratory of Yulin Desert Plants Resources, 229 Taibai North Road, Xi'an 710069, PR China
| | - Yuan Qin
- College of Pharmacy, Nankai University, PR China
| | | | - Cong Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Shaanxi Alcohol Ether and Biomass Energy Engineering Research Center, Key laboratory of Yulin Desert Plants Resources, 229 Taibai North Road, Xi'an 710069, PR China
| | - Xiang Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Shaanxi Alcohol Ether and Biomass Energy Engineering Research Center, Key laboratory of Yulin Desert Plants Resources, 229 Taibai North Road, Xi'an 710069, PR China; College of Pharmacy, Nankai University, PR China.
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Shaanxi Alcohol Ether and Biomass Energy Engineering Research Center, Key laboratory of Yulin Desert Plants Resources, 229 Taibai North Road, Xi'an 710069, PR China; College of Pharmacy, Nankai University, PR China.
| |
Collapse
|
48
|
Liang J, Zhao T, Yang J, Li W, Zhang F, Zhang S, Huang Z, Lin R, Zhang X. MMP-9 gene polymorphisms (rs3918242, rs3918254 and rs4810482) and the risk of psoriasis vulgaris: No evidence for associations in a Chinese Han population. Immunol Lett 2015; 168:343-8. [PMID: 26554609 DOI: 10.1016/j.imlet.2015.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 10/16/2015] [Accepted: 11/04/2015] [Indexed: 01/24/2023]
Abstract
Several previous studies including one of them co-authored by our group have revealed that serum and psoriatic plaque expression of matrix metalloproteinase-9 (MMP-9) was significantly upregulated in psoriasis. The aim of this study was to investigate the association of three single nucleotide polymorphisms (SNPs) and haplotypes of MMP-9 (rs3918242, rs3918254 and rs4810482) with psoriasis vulgaris in a Chinese Han population. The serum levels of MMP-9 in 245 psoriasis vulgaris cases and 256 healthy controls were assessed using ELSA kits, and the three SNPs were genotyped using polymerase chain reaction-ligation detection reaction (PCR-LDR) method. Four haplotypes based on the three SNPs were also analyzed. Our study showed that the serum MMP-9 levels in patients with psoriasis vulgaris were significantly higher than that in controls (P<0.05). However, the three SNPs were not significantly associated with psoriasis vulgaris susceptibility (all P>0.05). Similar results were found in further subgroup analysis based on gender, age of onset, family history, and serum MMP-9 levels, except that a protective effect of psoriasis vulgaris was detected among female subjects with the CT genotype of rs3918254 (OR=0.47, 95% CI=0.23-0.96, P=0.038), but this association did not survive after Bonferroni correction (P(adj)=0.076). The haplotype analysis also failed to show any association with psoriasis vulgaris. We found no evidence for the association between the MMP-9 polymorphisms and psoriasis vulgaris susceptibility in a Chinese Han population.
Collapse
Affiliation(s)
- Jingyao Liang
- Institute of Dermatology, Guangzhou Medical University, Guangzhou 510095, PR China; Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou 510095, PR China
| | - Tian Zhao
- Institute of Dermatology, Guangzhou Medical University, Guangzhou 510095, PR China; Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou 510095, PR China
| | - Juan Yang
- Institute of Dermatology, Guangzhou Medical University, Guangzhou 510095, PR China; Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou 510095, PR China
| | - Wei Li
- Institute of Dermatology, Guangzhou Medical University, Guangzhou 510095, PR China; Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou 510095, PR China
| | - Fang Zhang
- Institute of Dermatology, Guangzhou Medical University, Guangzhou 510095, PR China; Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou 510095, PR China
| | - Sanquan Zhang
- Institute of Dermatology, Guangzhou Medical University, Guangzhou 510095, PR China; Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou 510095, PR China
| | - Zhenming Huang
- Institute of Dermatology, Guangzhou Medical University, Guangzhou 510095, PR China; Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou 510095, PR China
| | - Rihua Lin
- Institute of Dermatology, Guangzhou Medical University, Guangzhou 510095, PR China; Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou 510095, PR China
| | - Xibao Zhang
- Institute of Dermatology, Guangzhou Medical University, Guangzhou 510095, PR China; Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou 510095, PR China.
| |
Collapse
|
49
|
Andrade PR, Pinheiro RO, Sales AM, Illarramendi X, de Mattos Barbosa MG, Moraes MO, Jardim MR, da Costa Nery JA, Sampaio EP, Sarno EN. Type 1 reaction in leprosy: a model for a better understanding of tissue immunity under an immunopathological condition. Expert Rev Clin Immunol 2015; 11:391-407. [DOI: 10.1586/1744666x.2015.1012501] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|