1
|
Chandra T, Jaiswal S, Tomar RS, Iquebal MA, Kumar D. Realizing visionary goals for the International Year of Millet (IYoM): accelerating interventions through advances in molecular breeding and multiomics resources. PLANTA 2024; 260:103. [PMID: 39304579 DOI: 10.1007/s00425-024-04520-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/30/2024] [Indexed: 09/22/2024]
Abstract
MAIN CONCLUSION Leveraging advanced breeding and multi-omics resources is vital to position millet as an essential "nutricereal resource," aligning with IYoM goals, alleviating strain on global cereal production, boosting resilience to climate change, and advancing sustainable crop improvement and biodiversity. The global challenges of food security, nutrition, climate change, and agrarian sustainability demand the adoption of climate-resilient, nutrient-rich crops to support a growing population amidst shifting environmental conditions. Millets, also referred to as "Shree Anna," emerge as a promising solution to address these issues by bolstering food production, improving nutrient security, and fostering biodiversity conservation. Their resilience to harsh environments, nutritional density, cultural significance, and potential to enhance dietary quality index made them valuable assets in global agriculture. Recognizing their pivotal role, the United Nations designated 2023 as the "International Year of Millets (IYoM 2023)," emphasizing their contribution to climate-resilient agriculture and nutritional enhancement. Scientific progress has invigorated efforts to enhance millet production through genetic and genomic interventions, yielding a wealth of advanced molecular breeding technologies and multi-omics resources. These advancements offer opportunities to tackle prevailing challenges in millet, such as anti-nutritional factors, sensory acceptability issues, toxin contamination, and ancillary crop improvements. This review provides a comprehensive overview of molecular breeding and multi-omics resources for nine major millet species, focusing on their potential impact within the framework of IYoM. These resources include whole and pan-genome, elucidating adaptive responses to abiotic stressors, organelle-based studies revealing evolutionary resilience, markers linked to desirable traits for efficient breeding, QTL analysis facilitating trait selection, functional gene discovery for biotechnological interventions, regulatory ncRNAs for trait modulation, web-based platforms for stakeholder communication, tissue culture techniques for genetic modification, and integrated omics approaches enabled by precise application of CRISPR/Cas9 technology. Aligning these resources with the seven thematic areas outlined by IYoM catalyzes transformative changes in millet production and utilization, thereby contributing to global food security, sustainable agriculture, and enhanced nutritional consequences.
Collapse
Affiliation(s)
- Tilak Chandra
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Sarika Jaiswal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Rukam Singh Tomar
- Department of Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, 110012, India
| | - Mir Asif Iquebal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India.
| | - Dinesh Kumar
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| |
Collapse
|
2
|
Ge W, Chen H, Zhang Y, Feng S, Wang S, Shang Q, Wu M, Li Z, Zhang L, Guo H, Jin Y, Wang X. Integrative genomics analysis of the ever-shrinking pectin methylesterase (PME) gene family in foxtail millet ( Setaria italica). FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:874-886. [PMID: 35781367 DOI: 10.1071/fp21319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 06/10/2022] [Indexed: 05/26/2023]
Abstract
Pectin methylesterase (PME) plays a vital role in the growth and development of plants. Their genes can be classified into two types, with Type-1 having an extra domain, PMEI. PME genes in foxtail millet (Setaria italica L.) have not been identified, and their sequence features and evolution have not been explored. Here, we identified 41 foxtail millet PME genes. Decoding the pro-region, containing the PMEI domain, revealed its more active nature than the DNA encoding PME domain, easier to be lost to produce Type-2 PME genes. We inferred that the active nature of the pro-region could be related to its harbouring more repetitive DNA sequences. Further, we revealed that though whole-genome duplication and tandem duplication contributed to producing new copies of PME genes, phylogenetic analysis provided clear evidence of ever-shrinking gene family size in foxtail millet and the other grasses in the past 100 million years. Phylogenetic analysis also supports the existence of two gene groups, Group I and Group II, with genes in Group II being more conservative. Our research contributes to understanding how DNA sequence structure affects the functional innovation and evolution of PME genes.
Collapse
Affiliation(s)
- Weina Ge
- School of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Huilong Chen
- School of Life Sciences, North China University of Science and Technology, Tangshan 063210, China; and School of Information Science and Technology, Yanching Institute of Technology, Langfang 065000, Hebei, China
| | - Yingchao Zhang
- School of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Shuyan Feng
- School of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Shuailei Wang
- School of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Qian Shang
- School of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Meng Wu
- School of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Ziqi Li
- School of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Lan Zhang
- School of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - He Guo
- School of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Yongchao Jin
- College of Science, North China University of Science and Technology, Tangshan 063210, China
| | - Xiyin Wang
- School of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| |
Collapse
|
3
|
Deng Y, Zhang H, Wang H, Xing G, Lei B, Kuang Z, Zhao Y, Li C, Dai S, Yang X, Wei J, Zhang J. The Construction and Exploration of a Comprehensive MicroRNA Centered Regulatory Network in Foxtail Millet ( Setaria italica L.). FRONTIERS IN PLANT SCIENCE 2022; 13:848474. [PMID: 35599893 PMCID: PMC9121102 DOI: 10.3389/fpls.2022.848474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/14/2022] [Indexed: 06/15/2023]
Abstract
MicroRNA (miRNA) is an essential endogenous post-transcriptional regulatory factor, and foxtail millet (Setaria italica L.) is an ideal C4 model cereal that is a highly valuable crop in semiarid and arid areas. The Research on comprehensive and high confidence identification and annotation of foxtail millet miRNAs needs to be strengthened, and to our knowledge, there is no information on the regulatory network of foxtail millet miRNA. In this study, 136 high confidence miRNAs were identified through high-throughput sequencing of the small RNAs in seven tissues at the shooting and grain filling stages of foxtail millet. A total of 2,417 target genes were obtained by combining computational biology software and degradome sequencing methods. Furthermore, an analysis using transcriptome sequencing revealed the relationships between miRNAs and their target genes and simultaneously explored key regulatory modules in panicles during the grain filling stage. An miRNA regulatory network was constructed to explore the functions of miRNA in more detail. This network, centered on miRNAs and combining upstream transcriptional factors and downstream target genes, is primarily composed of feed forward loop motifs, which greatly enhances our knowledge of the potential functions of miRNAs and uncovers numerous previously unknown regulatory links. This study provides a solid foundation for research on the function and regulatory network of miRNAs in foxtail millet.
Collapse
Affiliation(s)
- Yang Deng
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing, China
| | - Haolin Zhang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- College of Life Science, Shanghai Normal University, Shanghai, China
| | - Hailong Wang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing, China
| | - Guofang Xing
- College of Agricultural, Shanxi Agricultural University, Jinzhong, China
- Shanxi Key Laboratory of Minor Crop Germplasm Innovation and Molecular Breeding, College of Agriculture, Shanxi Agricultural University, Jinzhong, China
| | - Biao Lei
- College of Agricultural, Shanxi Agricultural University, Jinzhong, China
- Shanxi Key Laboratory of Minor Crop Germplasm Innovation and Molecular Breeding, College of Agriculture, Shanxi Agricultural University, Jinzhong, China
| | - Zheng Kuang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing, China
| | - Yongxin Zhao
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing, China
| | - Congcong Li
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing, China
| | - Shaojun Dai
- College of Life Science, Shanghai Normal University, Shanghai, China
| | - Xiaozeng Yang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing, China
| | - Jianhua Wei
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing, China
| | - Jiewei Zhang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing, China
| |
Collapse
|
4
|
Chen H, Ge W. Identification, Molecular Characteristics, and Evolution of GRF Gene Family in Foxtail Millet (Setaria italica L.). Front Genet 2022; 12:727674. [PMID: 35185998 PMCID: PMC8851420 DOI: 10.3389/fgene.2021.727674] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Growth-regulating factor (GRF) is a multigene family that plays a vital role in the growth and development of plants. In the past, the GRF family of many plants has been studied. However, there is not a report about identification and evolution of GRF in foxtail millet (Setaria italia). Here, we identified 10 GRF genes in foxtail millet. Seven (70.00%) were regulated by Sit-miR396, and there were 19 optimal codons in GRFs of foxtail millet. Additionally, we found that WGD or segmental duplication have affected GRFs in foxtail millet between 15.07 and 45.97 million years ago. Regarding the GRF gene family of land plants, we identified a total of 157 GRF genes in 15 representative land plants. We found that GRF gene family originated from Group E, and the GRF gene family in monocots was gradually shrinking. Also, more loss resulted from the small number of GRF genes in lower plants. Exploring the evolution of GRF and functional analysis in the foxtail millet help us to understand GRF better and make a further study about the mechanism of GRF. These results provide a basis for the genetic improvement of foxtail millet and indicate an improvement of the yield.
Collapse
|
5
|
Azadirachta indica MicroRNAs: Genome-Wide Identification, Target Transcript Prediction, and Expression Analyses. Appl Biochem Biotechnol 2021; 193:1924-1944. [PMID: 33523368 DOI: 10.1007/s12010-021-03500-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 01/07/2021] [Indexed: 10/22/2022]
Abstract
MicroRNAs are short, endogenous, non-coding RNAs, liable for essential regulatory function. Numerous miRNAs have been identified and studied in plants with known genomic or small RNA resources. Despite the availability of genomic and transcriptomic resources, the miRNAs have not been reported in the medicinal tree Azadirachta indica (Neem) till date. Here for the first time, we report extensive identification of miRNAs and their possible targets in A. indica which might help to unravel their therapeutic potential. A comprehensive search of miRNAs in the A. indica genome by C-mii tool was performed. Overall, 123 miRNAs classified into 63 families and their stem-loop hairpin structures were predicted. The size of the A. indica (ain)-miRNAs ranged between 19 and 23 nt in length, and their corresponding ain-miRNA precursor sequence MFEI value averaged as -1.147 kcal/mol. The targets of ain-miRNAs were predicted in A. indica as well as Arabidopsis thaliana plant. The gene ontology (GO) annotation revealed the involvement of ain-miRNA targets in developmental processes, transport, stress, and metabolic processes including secondary metabolism. Stem-loop qRT-PCR was carried out for 25 randomly selected ain-miRNAs and differential expression patterns were observed in different A. indica tissues. Expression of miRNAs and its targets shows negative correlation in a dependent manner.
Collapse
|
6
|
Oany AR, Mia M, Pervin T, Junaid M, Hosen SMZ, Moni MA. Design of novel viral attachment inhibitors of the spike glycoprotein (S) of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) through virtual screening and dynamics. Int J Antimicrob Agents 2020; 56:106177. [PMID: 32987103 PMCID: PMC7518233 DOI: 10.1016/j.ijantimicag.2020.106177] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 09/14/2020] [Accepted: 09/20/2020] [Indexed: 12/12/2022]
Abstract
To date, the global COVID-19 pandemic has been associated with 11.8 million cases and over 545481 deaths. In this study, we have employed virtual screening approaches and selected 415 lead-like compounds from 103 million chemical substances, based on the existing drugs, from PubChem databases as potential candidates for the S protein-mediated viral attachment inhibition. Thereafter, based on drug-likeness and Lipinski's rules, 44 lead-like compounds were docked within the active side pocket of the viral-host attachment site of the S protein. Corresponding ligand properties and absorption, distribution, metabolism, excretion, and toxicity (ADMET) profile were measured. Furthermore, four novel inhibitors were designed and assessed computationally for efficacy. Comparative analysis showed the screened compounds in this study maintain better results than the proposed mother compounds, VE607 and SSAA09E2. The four designed novel lead compounds possessed more fascinating output without deviating from any of Lipinski's rules. They also showed higher bioavailability and the drug-likeness score was 0.56 and 1.81 compared with VE607 and SSAA09E2, respectively. All the screened compounds and novel compounds showed promising ADMET properties. Among them, the compound AMTM-02 was the best candidate, with a docking score of -7.5 kcal/mol. Furthermore, the binding study was verified by molecular dynamics simulation over 100 ns by assessing the stability of the complex. The proposed screened compounds and the novel compounds may give some breakthroughs for the development of a therapeutic drug to treat SARS-CoV-2 proficiently in vitro and in vivo.
Collapse
Affiliation(s)
- Arafat Rahman Oany
- Department of Biotechnology and Genetic Engineering, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail-1902, Bangladesh; Aristopharma Limited, Bangladesh.
| | - Mamun Mia
- Department of Biotechnology and Genetic Engineering, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail-1902, Bangladesh; Department of Medical Biotechnology, Bangladesh University of Health Sciences, Dhaka, Bangladesh
| | - Tahmina Pervin
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Md Junaid
- Molecular Modeling Drug-design and Discovery Laboratory, Pharmacology Research Division, BCSIR Laboratories Chattogram, Bangladesh Council of Scientific and Industrial Research, Chattogram, Bangladesh
| | - S M Zahid Hosen
- Molecular Modeling Drug-design and Discovery Laboratory, Pharmacology Research Division, BCSIR Laboratories Chattogram, Bangladesh Council of Scientific and Industrial Research, Chattogram, Bangladesh; Pancreatic Research Group, South Western Sydney Clinical School, and Ingham Institute for Applied Medical Research, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Mohammad Ali Moni
- WHO Collaborating Centre on eHealth, UNSW Digital Health, School of Public Health and Community Medicine, Faculty of Medicine, UNSW Sydney, Australia.
| |
Collapse
|
7
|
Tian W, Ge Y, Liu X, Dou G, Ma Y. Identification and characterization of Populus microRNAs in response to plant growth-promoting endophytic Streptomyces sp. SSD49. World J Microbiol Biotechnol 2019; 35:97. [PMID: 31222457 DOI: 10.1007/s11274-019-2671-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 06/05/2019] [Indexed: 12/01/2022]
Abstract
Endophytic Streptomyces sp. SSD49 inhibited eight pathogens, including the human opportunistic pathogenic microorganisms, the plant pathogenic fungi and bacteria. The growth of soybeans, tomatoes, peppers and Populus tomentosa seedings inoculated with SSD49 are remarkably promoted. Here, we constructed two P. tomentosa seedling microRNA (miRNA) libraries inoculated with (PS30d) and without SSD49 (PC30d) to explore the molecular regulatory roles in the plant response to the beneficial bacteria. Totals of 314 known and 144 novel miRNAs were identified, among which 27 known and 11 novel miRNA had significantly different expression. The targets of up-regulated miR160, miR156, ptc114 and down-regulated miR319 and other differential expressed miRNAs primarily regulated genes encoding transcription factors (auxin response factor, small auxin-up RNA, and GRAS proteins), disease resistance proteins, phytohormone oxidase, and response regulators, which could promote plant growth, influence disease resistance and miRNA biosynthesis in P. tomentosa. This is the first report on the genome-wide identification of biocontrol endophytic Streptomyces inoculation-responsive miRNAs using small RNA sequencing in P. tomentosa and these findings provide new insight into understanding the biocontrol effects of endophytic Streptomyces.
Collapse
Affiliation(s)
- Wenjia Tian
- Department of Microbiology, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Youyou Ge
- Department of Microbiology, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xiaoyu Liu
- Department of Microbiology, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Guiming Dou
- Department of Microbiology, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yuchao Ma
- Department of Microbiology, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
8
|
Abstract
Many important crops are members of the Poaceae family, which develop root systems characterized by a high degree of root initiation from the belowground basal nodes of the shoot, termed the crown. Although this postembryonic shoot-borne root system represents the major conduit for water uptake, little is known about the effect of water availability on its development. Here we demonstrate that in the model C4 grass Setaria viridis, the crown locally senses water availability and suppresses postemergence crown root growth under a water deficit. This response was observed in field and growth room environments and in all grass species tested. Luminescence-based imaging of root systems grown in soil-like media revealed a shift in root growth from crown-derived to primary root-derived branches, suggesting that primary root-dominated architecture can be induced in S. viridis under certain stress conditions. Crown roots of Zea mays and Setaria italica, domesticated relatives of teosinte and S. viridis, respectively, show reduced sensitivity to water deficit, suggesting that this response might have been influenced by human selection. Enhanced water status of maize mutants lacking crown roots suggests that under a water deficit, stronger suppression of crown roots actually may benefit crop productivity.
Collapse
|
9
|
Sahebi M, Hanafi MM, Azizi P, Hakim A, Ashkani S, Abiri R. Suppression Subtractive Hybridization Versus Next-Generation Sequencing in Plant Genetic Engineering: Challenges and Perspectives. Mol Biotechnol 2016; 57:880-903. [PMID: 26271955 DOI: 10.1007/s12033-015-9884-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Suppression subtractive hybridization (SSH) is an effective method to identify different genes with different expression levels involved in a variety of biological processes. This method has often been used to study molecular mechanisms of plants in complex relationships with different pathogens and a variety of biotic stresses. Compared to other techniques used in gene expression profiling, SSH needs relatively smaller amounts of the initial materials, with lower costs, and fewer false positives present within the results. Extraction of total RNA from plant species rich in phenolic compounds, carbohydrates, and polysaccharides that easily bind to nucleic acids through cellular mechanisms is difficult and needs to be considered. Remarkable advancement has been achieved in the next-generation sequencing (NGS) field. As a result of progress within fields related to molecular chemistry and biology as well as specialized engineering, parallelization in the sequencing reaction has exceptionally enhanced the overall read number of generated sequences per run. Currently available sequencing platforms support an earlier unparalleled view directly into complex mixes associated with RNA in addition to DNA samples. NGS technology has demonstrated the ability to sequence DNA with remarkable swiftness, therefore allowing previously unthinkable scientific accomplishments along with novel biological purposes. However, the massive amounts of data generated by NGS impose a substantial challenge with regard to data safe-keeping and analysis. This review examines some simple but vital points involved in preparing the initial material for SSH and introduces this method as well as its associated applications to detect different novel genes from different plant species. This review evaluates general concepts, basic applications, plus the probable results of NGS technology in genomics, with unique mention of feasible potential tools as well as bioinformatics.
Collapse
Affiliation(s)
- Mahbod Sahebi
- Laboratory of Plantation Crops, Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia,
| | | | | | | | | | | |
Collapse
|
10
|
Wang Y, Li L, Tang S, Liu J, Zhang H, Zhi H, Jia G, Diao X. Combined small RNA and degradome sequencing to identify miRNAs and their targets in response to drought in foxtail millet. BMC Genet 2016; 17:57. [PMID: 27068810 PMCID: PMC4828802 DOI: 10.1186/s12863-016-0364-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 04/01/2016] [Indexed: 12/03/2022] Open
Abstract
Background Foxtail millet (Setaria italica) is a diploid C4 panicoid species. Because of its prominent drought resistance, small genome size, self-pollination, and short life cycle, foxtail millet has become an ideal model system for studying drought tolerance of crops. MicroRNAs (miRNAs) are endogenous, small RNAs that play important regulatory roles in the development and stress response in plants. Results In this study, we applied Illumina sequencing to systematically investigate the drought-responsive miRNAs derived from S. italica inbred An04-4783 seedlings grown under control and drought conditions. Degradome sequencing was applied to confirm the targets of these miRNAs at a global level. A total of 81 known miRNAs belonging to 28 families were identified, among which 14 miRNAs were upregulated and four were downregulated in response to drought. In addition, 72 potential novel miRNAs were identified, three of which were differentially expressed under drought conditions. Degradome sequencing analysis showed that 56 and 26 genes were identified as targets of known and novel miRNAs, respectively. Conclusions Our analysis revealed post-transcriptional remodeling of cell development, transcription factors, ABA signaling, and cellar homeostasis in S.italica in response to drought. This preliminary characterization provided useful information for further studies on the regulatory networks of drought-responsive miRNAs in foxtail millet. Electronic supplementary material The online version of this article (doi:10.1186/s12863-016-0364-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yongqiang Wang
- College of Life Science, Hebei Normal University, Shijiazhuang, 050012, People's Republic of China.,Institute of cotton, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 05003, People's Republic of China
| | - Lin Li
- College of Life Science, Hebei Normal University, Shijiazhuang, 050012, People's Republic of China
| | - Sha Tang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Jianguang Liu
- Institute of cotton, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 05003, People's Republic of China
| | - Hanshuang Zhang
- Institute of cotton, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 05003, People's Republic of China
| | - Hui Zhi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Guanqing Jia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
| | - Xianmin Diao
- College of Life Science, Hebei Normal University, Shijiazhuang, 050012, People's Republic of China. .,Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
| |
Collapse
|
11
|
Yadav A, Khan Y, Prasad M. Dehydration-responsive miRNAs in foxtail millet: genome-wide identification, characterization and expression profiling. PLANTA 2016; 243:749-66. [PMID: 26676987 DOI: 10.1007/s00425-015-2437-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 11/20/2015] [Indexed: 05/27/2023]
Abstract
A set of novel and known dehydration-responsive miRNAs have been identified in foxtail millet. These findings provide new insights into understanding the functional role of miRNAs and their respective targets in regulating plant response to dehydration stress. MicroRNAs perform significant regulatory roles in growth, development and stress response of plants. Though the miRNA-mediated gene regulatory networks under dehydration stress remain largely unexplored in plant including foxtail millet (Setaria italica), which is a natural abiotic stress tolerant crop. To find out the dehydration-responsive miRNAs at the global level, four small RNA libraries were constructed from control and dehydration stress treated seedlings of two foxtail millet cultivars showing contrasting tolerance behavior towards dehydration stress. Using Illumina sequencing technology, 55 known and 136 novel miRNAs were identified, representing 22 and 48 miRNA families, respectively. Eighteen known and 33 novel miRNAs were differentially expressed during dehydration stress. After the stress treatment, 32 dehydration-responsive miRNAs were up-regulated in tolerant cultivar and 22 miRNAs were down-regulated in sensitive cultivar, suggesting that miRNA-mediated molecular regulation might play important roles in providing contrasting characteristics to these cultivars. Predicted targets of identified miRNAs were found to encode various transcription factors and functional enzymes, indicating their involvement in broad spectrum regulatory functions and biological processes. Further, differential expression patterns of seven known miRNAs were validated by northern blot and expression of ten novel dehydration-responsive miRNAs were confirmed by SL-qRT PCR. Differential expression behavior of five miRNA-target genes was verified under dehydration stress treatment and two of them also validated by RLM RACE. Overall, the present study highlights the importance of dehydration stress-associated post-transcriptional regulation governed by miRNAs and their targets in a naturally stress-tolerant model crop.
Collapse
Affiliation(s)
- Amita Yadav
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110 067, India
| | - Yusuf Khan
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110 067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110 067, India.
| |
Collapse
|
12
|
Yi F, Chen J, Yu J. Global analysis of uncapped mRNA changes under drought stress and microRNA-dependent endonucleolytic cleavages in foxtail millet. BMC PLANT BIOLOGY 2015; 15:241. [PMID: 26444665 PMCID: PMC4594888 DOI: 10.1186/s12870-015-0632-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 09/30/2015] [Indexed: 05/20/2023]
Abstract
BACKGROUND mRNA degradation plays an important role in the determination of mRNA abundance and can quickly regulate gene expression. The production of uncapped mRNAs, an important mechanism of mRNA degradation, can be initiated by decapping enzymes, endonucleases or small RNAs such as microRNAs (miRNAs). Little is known, however, about the role of uncapped mRNAs in plants under environmental stress. RESULTS Using a novel approach called parallel analysis of RNA ends (PARE), we performed a global study of uncapped mRNAs under drought stress in foxtail millet (Setaria italica [L.] P. Beauv.). When both gene degradation (PARE) and gene transcription (RNA-sequencing) data were considered, four types of mRNA decay patterns were identified under drought stress. In addition, 385 miRNA-target interactions were identified in the PARE data using PAREsnip. The PARE analysis also suggested that two miRNA hairpin processing mechanisms--loop-last and loop-first processing--operate in foxtail millet, with both miR319 and miR156 gene families undergoing precise processing via the unusual loop-first mechanism. Finally, we found 11 C4 photosynthesis-related enzymes encoded by drought-responsive genes. CONCLUSIONS We performed a global analysis of mRNA degradation under drought stress and uncovered diverse drought-response mechanisms in foxtail millet. This information will deepen our understanding of mRNA expression under stressful environmental conditions in gramineous plants. In addition, PARE analysis identified many miRNA targets and revealed miRNA-precursor processing modes in foxtail millet.
Collapse
Affiliation(s)
- Fei Yi
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Jian Chen
- State Key Laboratory of Agrobiotechnology, College of Agriculture and Biotechnology, China Agricultural University, Beijing, 100193, China.
| | - Jingjuan Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
13
|
Brutnell TP, Bennetzen JL, Vogel JP. Brachypodium distachyon and Setaria viridis: Model Genetic Systems for the Grasses. ANNUAL REVIEW OF PLANT BIOLOGY 2015; 66:465-85. [PMID: 25621515 DOI: 10.1146/annurev-arplant-042811-105528] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The family of grasses encompasses the world's most important food, feed, and bioenergy crops, yet we are only now beginning to develop the genetic resources to explore the diversity of form and function that underlies economically important traits. Two emerging model systems, Brachypodium distachyon and Setaria viridis, promise to greatly accelerate the process of gene discovery in the grasses and to serve as bridges in the exploration of panicoid and pooid grasses, arguably two of the most important clades of plants from a food security perspective. We provide both a historical view of the development of plant model systems and highlight several recent reports that are providing these developing communities with the tools for gene discovery and pathway engineering.
Collapse
|