1
|
Torres-Ulloa L, Calvo-Roitberg E, Pai AA. Genome-wide kinetic profiling of pre-mRNA 3' end cleavage. RNA (NEW YORK, N.Y.) 2024; 30:256-270. [PMID: 38164598 PMCID: PMC10870368 DOI: 10.1261/rna.079783.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024]
Abstract
Cleavage and polyadenylation is necessary for the formation of mature mRNA molecules. The rate at which this process occurs can determine the temporal availability of mRNA for subsequent function throughout the cell and is likely tightly regulated. Despite advances in high-throughput approaches for global kinetic profiling of RNA maturation, genome-wide 3' end cleavage rates have never been measured. Here, we describe a novel approach to estimate the rates of cleavage, using metabolic labeling of nascent RNA, high-throughput sequencing, and mathematical modeling. Using in silico simulations of nascent RNA-seq data, we show that our approach can accurately and precisely estimate cleavage half-lives for both constitutive and alternative sites. We find that 3' end cleavage is fast on average, with half-lives under a minute, but highly variable across individual sites. Rapid cleavage is promoted by the presence of canonical sequence elements and an increased density of polyadenylation signals near a cleavage site. Finally, we find that cleavage rates are associated with the localization of RNA polymerase II at the end of a gene, and faster cleavage leads to quicker degradation of downstream readthrough RNA. Our findings shed light on the features important for efficient 3' end cleavage and the regulation of transcription termination.
Collapse
Affiliation(s)
- Leslie Torres-Ulloa
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, USA
| | - Ezequiel Calvo-Roitberg
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, USA
| | - Athma A Pai
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, USA
| |
Collapse
|
2
|
Zhang G, Luo H, Li X, Hu Z, Wang Q. The Dynamic Poly(A) Tail Acts as a Signal Hub in mRNA Metabolism. Cells 2023; 12:572. [PMID: 36831239 PMCID: PMC9954528 DOI: 10.3390/cells12040572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/19/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
In eukaryotes, mRNA metabolism requires a sophisticated signaling system. Recent studies have suggested that polyadenylate tail may play a vital role in such a system. The poly(A) tail used to be regarded as a common modification at the 3' end of mRNA, but it is now known to be more than just that. It appears to act as a platform or hub that can be understood in two ways. On the one hand, polyadenylation and deadenylation machinery constantly regulates its dynamic activity; on the other hand, it exhibits the ability to recruit RNA-binding proteins and then interact with diverse factors to send various signals to regulate mRNA metabolism. In this paper, we outline the main complexes that regulate the dynamic activities of poly(A) tails, explain how these complexes participate polyadenylation/deadenylation process and summarize the diverse signals this hub emit. We are trying to make a point that the poly(A) tail can metaphorically act as a "flagman" who is supervised by polyadenylation and deadenylation and sends out signals to regulate the orderly functioning of mRNA metabolism.
Collapse
Affiliation(s)
- Guiying Zhang
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Haolin Luo
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
| | - Xinyi Li
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
| | - Zhangli Hu
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Quan Wang
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|
3
|
Biswas B, Guemiri R, Cadix M, Labbé CM, Chakraborty A, Dutertre M, Robert C, Vagner S. Differential Effects on the Translation of Immune-Related Alternatively Polyadenylated mRNAs in Melanoma and T Cells by eIF4A Inhibition. Cancers (Basel) 2022; 14:cancers14051177. [PMID: 35267483 PMCID: PMC8909304 DOI: 10.3390/cancers14051177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 02/05/2023] Open
Abstract
Targeting the translation initiation complex eIF4F, which binds the 5' cap of mRNAs, is a promising anti-cancer approach. Silvestrol, a small molecule inhibitor of eIF4A, the RNA helicase component of eIF4F, inhibits the translation of the mRNA encoding the signal transducer and activator of transcription 1 (STAT1) transcription factor, which, in turn, reduces the transcription of the gene encoding one of the major immune checkpoint proteins, i.e., programmed death ligand-1 (PD-L1) in melanoma cells. A large proportion of human genes produce multiple mRNAs differing in their 3'-ends through the use of alternative polyadenylation (APA) sites, which, when located in alternative last exons, can generate protein isoforms, as in the STAT1 gene. Here, we provide evidence that the STAT1α, but not STAT1β protein isoform generated by APA, is required for silvestrol-dependent inhibition of PD-L1 expression in interferon-γ-treated melanoma cells. Using polysome profiling in activated T cells we find that, beyond STAT1, eIF4A inhibition downregulates the translation of some important immune-related mRNAs, such as the ones encoding TIM-3, LAG-3, IDO1, CD27 or CD137, but with little effect on the ones for BTLA and ADAR-1 and no effect on the ones encoding CTLA-4, PD-1 and CD40-L. We next apply RT-qPCR and 3'-seq (RNA-seq focused on mRNA 3' ends) on polysomal RNAs to analyze in a high throughput manner the effect of eIF4A inhibition on the translation of APA isoforms. We identify about 150 genes, including TIM-3, LAG-3, AHNAK and SEMA4D, for which silvestrol differentially inhibits the translation of APA isoforms in T cells. It is therefore crucial to consider 3'-end mRNA heterogeneity in the understanding of the anti-tumor activities of eIF4A inhibitors.
Collapse
Affiliation(s)
- Biswendu Biswas
- Institut Curie, PSL Research University, CNRS UMR 3348, INSERM U1278, 91401 Orsay, France; (B.B.); (M.C.); (C.M.L.); (A.C.); (M.D.)
- Biologie de l’ARN, Signalisation et Cancer, Université Paris Sud, Université Paris-Saclay, CNRS UMR 3348, 91401 Orsay, France
- Équipe Labellisée Ligue Contre le Cancer, 91401 Orsay, France
- INSERM U981, Gustave Roussy Cancer Campus, 94805 Villejuif, France;
- Faculté de Médecine, Université Paris Sud, Université Paris-Saclay, 94270 Kremlin-Bicêtre, France
| | - Ramdane Guemiri
- INSERM U981, Gustave Roussy Cancer Campus, 94805 Villejuif, France;
- Faculté de Médecine, Université Paris Sud, Université Paris-Saclay, 94270 Kremlin-Bicêtre, France
| | - Mandy Cadix
- Institut Curie, PSL Research University, CNRS UMR 3348, INSERM U1278, 91401 Orsay, France; (B.B.); (M.C.); (C.M.L.); (A.C.); (M.D.)
- Biologie de l’ARN, Signalisation et Cancer, Université Paris Sud, Université Paris-Saclay, CNRS UMR 3348, 91401 Orsay, France
- Équipe Labellisée Ligue Contre le Cancer, 91401 Orsay, France
| | - Céline M. Labbé
- Institut Curie, PSL Research University, CNRS UMR 3348, INSERM U1278, 91401 Orsay, France; (B.B.); (M.C.); (C.M.L.); (A.C.); (M.D.)
- Biologie de l’ARN, Signalisation et Cancer, Université Paris Sud, Université Paris-Saclay, CNRS UMR 3348, 91401 Orsay, France
- Équipe Labellisée Ligue Contre le Cancer, 91401 Orsay, France
| | - Alina Chakraborty
- Institut Curie, PSL Research University, CNRS UMR 3348, INSERM U1278, 91401 Orsay, France; (B.B.); (M.C.); (C.M.L.); (A.C.); (M.D.)
- Biologie de l’ARN, Signalisation et Cancer, Université Paris Sud, Université Paris-Saclay, CNRS UMR 3348, 91401 Orsay, France
- Équipe Labellisée Ligue Contre le Cancer, 91401 Orsay, France
| | - Martin Dutertre
- Institut Curie, PSL Research University, CNRS UMR 3348, INSERM U1278, 91401 Orsay, France; (B.B.); (M.C.); (C.M.L.); (A.C.); (M.D.)
- Biologie de l’ARN, Signalisation et Cancer, Université Paris Sud, Université Paris-Saclay, CNRS UMR 3348, 91401 Orsay, France
- Équipe Labellisée Ligue Contre le Cancer, 91401 Orsay, France
| | - Caroline Robert
- INSERM U981, Gustave Roussy Cancer Campus, 94805 Villejuif, France;
- Faculté de Médecine, Université Paris Sud, Université Paris-Saclay, 94270 Kremlin-Bicêtre, France
- Correspondence: (C.R.); (S.V.)
| | - Stéphan Vagner
- Institut Curie, PSL Research University, CNRS UMR 3348, INSERM U1278, 91401 Orsay, France; (B.B.); (M.C.); (C.M.L.); (A.C.); (M.D.)
- Biologie de l’ARN, Signalisation et Cancer, Université Paris Sud, Université Paris-Saclay, CNRS UMR 3348, 91401 Orsay, France
- Équipe Labellisée Ligue Contre le Cancer, 91401 Orsay, France
- Correspondence: (C.R.); (S.V.)
| |
Collapse
|
4
|
Blake D, Lynch KW. The three as: Alternative splicing, alternative polyadenylation and their impact on apoptosis in immune function. Immunol Rev 2021; 304:30-50. [PMID: 34368964 DOI: 10.1111/imr.13018] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/19/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022]
Abstract
The latest advances in next-generation sequencing studies and transcriptomic profiling over the past decade have highlighted a surprising frequency of genes regulated by RNA processing mechanisms in the immune system. In particular, two control steps in mRNA maturation, namely alternative splicing and alternative polyadenylation, are now recognized to occur in the vast majority of human genes. Both have the potential to alter the identity of the encoded protein, as well as control protein abundance or even protein localization or association with other factors. In this review, we will provide a summary of the general mechanisms by which alternative splicing (AS) and alternative polyadenylation (APA) occur, their regulation within cells of the immune system, and their impact on immunobiology. In particular, we will focus on how control of apoptosis by AS and APA is used to tune cell fate during an immune response.
Collapse
Affiliation(s)
- Davia Blake
- Immunology Graduate Group and the Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristen W Lynch
- Immunology Graduate Group and the Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
5
|
Li W, Ma N, Yuwen T, Yu B, Zhou Y, Yao Y, Li Q, Chen X, Wan J, Zhang Y, Zhang W. Comprehensive analysis of circRNA expression profiles and circRNA-associated competing endogenous RNA networks in the development of mouse thymus. J Cell Mol Med 2020; 24:6340-6349. [PMID: 32307889 PMCID: PMC7294154 DOI: 10.1111/jcmm.15276] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/19/2020] [Accepted: 03/28/2020] [Indexed: 12/13/2022] Open
Abstract
The thymus plays an irreplaceable role as a primary lymphoid organ. However, the complicate processes of its development and involution are incompletely understood. Accumulating evidence indicates that non-coding RNAs play key roles in the regulation of biological development. At present, the studies of the circRNA profiles and of circRNA-associated competing endogenous RNAs (ceRNAs) in the thymus are still scarce. Here, deep-RNA sequencing was used to study the biological mechanisms underlying the development process (from 2-week-old to 6-week-old) and the recession process (from 6-week-old to 3-month-old) of the mouse thymus. It was found that 196 circRNAs, 233 miRNAs and 3807 mRNAs were significantly dysregulated. The circRNA-associated ceRNA networks were constructed in the mouse thymus, which were mainly involved in early embryonic development and the proliferation and division of T cells. Taken together, these results elucidated the regulatory roles of ceRNAs in the development and involution processes of the mouse thymus.
Collapse
Affiliation(s)
- Wenting Li
- Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Nana Ma
- Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Ting Yuwen
- Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Bo Yu
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yao Zhou
- Hainan Provincial Key Laboratory for human reproductive medicine and Genetic Research, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Hainan, China
| | - Yufei Yao
- Hainan Provincial Key Laboratory for human reproductive medicine and Genetic Research, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Hainan, China
| | - Qi Li
- Hainan Provincial Key Laboratory for human reproductive medicine and Genetic Research, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Hainan, China
| | - Xiaofan Chen
- Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Jun Wan
- Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China.,Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China.,Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China
| | - Yu Zhang
- Hainan Provincial Key Laboratory for human reproductive medicine and Genetic Research, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Hainan, China.,Department of Reproductive Medicine, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Hainan, China.,Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Hainan, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Hainan, China
| | - Wei Zhang
- Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China.,Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China
| |
Collapse
|
6
|
Ma M, Xiong W, Hu F, Deng MF, Huang X, Chen JG, Man HY, Lu Y, Liu D, Zhu LQ. A novel pathway regulates social hierarchy via lncRNA AtLAS and postsynaptic synapsin IIb. Cell Res 2020; 30:105-118. [PMID: 31959917 DOI: 10.1038/s41422-020-0273-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 12/30/2019] [Indexed: 12/16/2022] Open
Abstract
Dominance hierarchy is a fundamental phenomenon in grouped animals and human beings, however, the underlying regulatory mechanisms remain elusive. Here, we report that an antisense long non-coding RNA (lncRNA) of synapsin II, named as AtLAS, plays a crucial role in the regulation of social hierarchy. AtLAS is decreased in the prefrontal cortical excitatory pyramidal neurons of dominant mice; consistently, silencing or overexpression of AtLAS increases or decreases the social rank, respectively. Mechanistically, we show that AtLAS regulates alternative polyadenylation of synapsin II gene and increases synapsin 2b (syn2b) expression. Syn2b reduces AMPA receptor (AMPAR)-mediated excitatory synaptic transmission through a direct binding with AMPAR at the postsynaptic site via its unique C-terminal sequence. Moreover, a peptide disrupting the binding of syn2b with AMPARs enhances the synaptic strength and social ranks. These findings reveal a novel role for lncRNA AtLAS and its target syn2b in the regulation of social behaviors by controlling postsynaptic AMPAR trafficking.
Collapse
Affiliation(s)
- Mei Ma
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Wan Xiong
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Fan Hu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Man-Fei Deng
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xian Huang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Jian-Guo Chen
- The Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Heng-Ye Man
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | - Youming Lu
- The Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Dan Liu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China. .,The Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Ling-Qiang Zhu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China. .,The Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
7
|
Wang H, Liu G, Li T, Wang N, Wu J, Zhi H. MiR-330-3p functions as a tumor suppressor that regulates glioma cell proliferation and migration by targeting CELF1. Arch Med Sci 2020; 16:1166-1175. [PMID: 32864006 PMCID: PMC7444697 DOI: 10.5114/aoms.2020.95027] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 12/24/2017] [Indexed: 01/04/2023] Open
Abstract
INTRODUCTION Glioma is a common type of neoplasm that occurs in the central nervous system. miRNAs have been demonstrated to act as critical regulators of carcinogenesis and tumor progression in multiple cancers, but the molecular mechanism of miR-330-3p in glioma remained unclear. The purpose of the study was to explore the role of miR-330-3p in glioma cell reproduction and migration. MATERIAL AND METHODS The expression levels of miR-330-3p and CELF1 in 27 glioma tissue specimens and human glioma cell lines were examined by qRT-PCR and western blot. The TargetScan database was used to predict the relationship between miR-330-3p and CELF1. Then the target relationship was verified using dual-luciferase reporter assay. The effects of miR-330-3p/CELF1 on glioma cell proliferation were evaluated by MTT and colony formation assay. Wound healing assay was employed to measure the migration ability of glioma cells. RESULTS MiR-330-3p was found lowly expressed in glioma tissues and cells compared with adjacent tissues and normal astrocytes, while CELF1 expression was relatively high in the glioma tissues and cells. Dual-luciferase reporter assay confirmed that miR-330-3p could directly target CELF1. Furthermore, miR-330-3p could down-regulate the expression of CELF1, therefore suppressing glioma cell reproduction and migration. CONCLUSIONS MiR-330-3p inhibited the propagation and migration of glioma cells by repressing CELF1 expression.
Collapse
Affiliation(s)
- Hongbin Wang
- Department of Neurosurgery, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, China
| | - Guijing Liu
- Department of Cardiology, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, China
| | - Tao Li
- Department of Neurosurgery, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, China
| | - Naizhu Wang
- Department of Neurosurgery, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, China
| | - Jingkun Wu
- Department of Neurosurgery, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, China
| | - Hua Zhi
- Department of Cardiology, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, China
| |
Collapse
|
8
|
Bernardes WS, Menossi M. Plant 3' Regulatory Regions From mRNA-Encoding Genes and Their Uses to Modulate Expression. FRONTIERS IN PLANT SCIENCE 2020; 11:1252. [PMID: 32922424 PMCID: PMC7457121 DOI: 10.3389/fpls.2020.01252] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/29/2020] [Indexed: 05/08/2023]
Abstract
Molecular biotechnology has made it possible to explore the potential of plants for different purposes. The 3' regulatory regions have a great diversity of cis-regulatory elements directly involved in polyadenylation, stability, transport and mRNA translation, essential to achieve the desired levels of gene expression. A complex interaction between the cleavage and polyadenylation molecular complex and cis-elements determine the polyadenylation site, which may result in the choice of non-canonical sites, resulting in alternative polyadenylation events, involved in the regulation of more than 80% of the genes expressed in plants. In addition, after transcription, a wide array of RNA-binding proteins interacts with cis-acting elements located mainly in the 3' untranslated region, determining the fate of mRNAs in eukaryotic cells. Although a small number of 3' regulatory regions have been identified and validated so far, many studies have shown that plant 3' regulatory regions have a higher potential to regulate gene expression in plants compared to widely used 3' regulatory regions, such as NOS and OCS from Agrobacterium tumefaciens and 35S from cauliflower mosaic virus. In this review, we discuss the role of 3' regulatory regions in gene expression, and the superior potential that plant 3' regulatory regions have compared to NOS, OCS and 35S 3' regulatory regions.
Collapse
|
9
|
Timchenko L. Correction of RNA-Binding Protein CUGBP1 and GSK3β Signaling as Therapeutic Approach for Congenital and Adult Myotonic Dystrophy Type 1. Int J Mol Sci 2019; 21:ijms21010094. [PMID: 31877772 PMCID: PMC6982105 DOI: 10.3390/ijms21010094] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 01/02/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a complex genetic disease affecting many tissues. DM1 is caused by an expansion of CTG repeats in the 3′-UTR of the DMPK gene. The mechanistic studies of DM1 suggested that DMPK mRNA, containing expanded CUG repeats, is a major therapeutic target in DM1. Therefore, the removal of the toxic RNA became a primary focus of the therapeutic development in DM1 during the last decade. However, a cure for this devastating disease has not been found. Whereas the degradation of toxic RNA remains a preferential approach for the reduction of DM1 pathology, other approaches targeting early toxic events downstream of the mutant RNA could be also considered. In this review, we discuss the beneficial role of the restoring of the RNA-binding protein, CUGBP1/CELF1, in the correction of DM1 pathology. It has been recently found that the normalization of CUGBP1 activity with the inhibitors of GSK3 has a positive effect on the reduction of skeletal muscle and CNS pathologies in DM1 mouse models. Surprisingly, the inhibitor of GSK3, tideglusib also reduced the toxic CUG-containing RNA. Thus, the development of the therapeutics, based on the correction of the GSK3β-CUGBP1 pathway, is a promising option for this complex disease.
Collapse
Affiliation(s)
- Lubov Timchenko
- Departments of Neurology and Pediatrics, Cincinnati Children's Hospital Medical Center and the University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
10
|
Guo L, Sharma SD, Debes JD, Beisang D, Rattenbacher B, Louis IVS, Wiesner DL, Cameron CE, Bohjanen PR. The hepatitis C viral nonstructural protein 5A stabilizes growth-regulatory human transcripts. Nucleic Acids Res 2019; 46:2537-2547. [PMID: 29385522 PMCID: PMC5861452 DOI: 10.1093/nar/gky061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 01/22/2018] [Indexed: 12/11/2022] Open
Abstract
Numerous mammalian proto-oncogene and other growth-regulatory transcripts are upregulated in malignancy due to abnormal mRNA stabilization. In hepatoma cells expressing a hepatitis C virus (HCV) subgenomic replicon, we found that the viral nonstructural protein 5A (NS5A), a protein known to bind to viral RNA, also bound specifically to human cellular transcripts that encode regulators of cell growth and apoptosis, and this binding correlated with transcript stabilization. An important subset of human NS5A-target transcripts contained GU-rich elements, sequences known to destabilize mRNA. We found that NS5A bound to GU-rich elements in vitro and in cells. Mutation of the NS5A zinc finger abrogated its GU-rich element-binding and mRNA stabilizing activities. Overall, we identified a molecular mechanism whereby HCV manipulates host gene expression by stabilizing host transcripts in a manner that would promote growth and prevent death of virus-infected cells, allowing the virus to establish chronic infection and lead to the development of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Liang Guo
- Department of Medicine, Division of Infectious Diseases and International Medicine, Program in Infection and Immunity, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology Training Program, University of Minnesota, Minneapolis, MN 55455, USA
- Graduate Program in Comparative and Molecular Bioscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Suresh D Sharma
- Department of Biochemistry & Molecular Biology, The Pennsylvania State University 201 Althouse Laboratory, University Park, PA 16802, USA
| | - Jose D Debes
- Department of Medicine, Division of Infectious Diseases and International Medicine, Program in Infection and Immunity, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel Beisang
- Department of Medicine, Division of Infectious Diseases and International Medicine, Program in Infection and Immunity, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bernd Rattenbacher
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Irina Vlasova-St Louis
- Department of Medicine, Division of Infectious Diseases and International Medicine, Program in Infection and Immunity, University of Minnesota, Minneapolis, MN 55455, USA
| | - Darin L Wiesner
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Craig E Cameron
- Department of Biochemistry & Molecular Biology, The Pennsylvania State University 201 Althouse Laboratory, University Park, PA 16802, USA
- Correspondence may also be addressed to Craig E. Cameron.
| | - Paul R Bohjanen
- Department of Medicine, Division of Infectious Diseases and International Medicine, Program in Infection and Immunity, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology Training Program, University of Minnesota, Minneapolis, MN 55455, USA
- Graduate Program in Comparative and Molecular Bioscience, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- To whom correspondence should be addressed.
| |
Collapse
|
11
|
Abstract
Viruses alter host-cell gene expression at many biochemical levels, such as transcription, translation, mRNA splicing and mRNA decay in order to create a cellular environment suitable for viral replication. In this review, we discuss mechanisms by which viruses manipulate host-gene expression at the level of mRNA decay in order to enable the virus to evade host antiviral responses to allow viral survival and replication. We discuss different cellular RNA decay pathways, including the deadenylation-dependent mRNA decay pathway, and various strategies that viruses exploit to manipulate these pathways in order to create a virus-friendly cellular environment.
Collapse
Affiliation(s)
- Liang Guo
- Department of Medicine, Division of Infectious Diseases & International Medicine, Program in Infection & Immunity, University of Minnesota, Minneapolis, MN 55455, USA.,Institute for Molecular Virology Training Program, University of Minnesota, Minneapolis, MN 55455, USA.,Graduate Program in Comparative & Molecular Bioscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Irina Vlasova-St Louis
- Department of Medicine, Division of Infectious Diseases & International Medicine, Program in Infection & Immunity, University of Minnesota, Minneapolis, MN 55455, USA
| | - Paul R Bohjanen
- Department of Medicine, Division of Infectious Diseases & International Medicine, Program in Infection & Immunity, University of Minnesota, Minneapolis, MN 55455, USA.,Department of Microbiology & Immunology, University of Minnesota, Minneapolis, MN 55455, USA.,Institute for Molecular Virology Training Program, University of Minnesota, Minneapolis, MN 55455, USA.,Graduate Program in Comparative & Molecular Bioscience, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
12
|
RNA-binding proteins control gene expression and cell fate in the immune system. Nat Immunol 2018; 19:120-129. [PMID: 29348497 DOI: 10.1038/s41590-017-0028-4] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/29/2017] [Indexed: 12/19/2022]
Abstract
RNA-binding proteins (RBPs) are essential for the development and function of the immune system. They interact dynamically with RNA to control its biogenesis and turnover by transcription-dependent and transcription-independent mechanisms. In this Review, we discuss the molecular mechanisms by which RBPs allow gene expression changes to occur at different speeds and to varying degrees, and which RBPs regulate the diversity of the transcriptome and proteome. These proteins are nodes for integration of transcriptional and signaling networks and are intimately linked to intermediary metabolism. They are essential components of regulatory feedback mechanisms that maintain immune tolerance and limit inflammation. The role of RBPs in malignancy and autoimmunity has led to their emergence as targets for the development of new therapeutic modalities.
Collapse
|
13
|
Re-evaluating Strategies to Define the Immunoregulatory Roles of miRNAs. Trends Immunol 2017; 38:558-566. [PMID: 28666937 DOI: 10.1016/j.it.2017.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/03/2017] [Accepted: 06/06/2017] [Indexed: 12/18/2022]
Abstract
miRNAs play an important role in fine-tuning host immune homeostasis and responses through the regulation of mRNA stability and translation. Studies have demonstrated that miRNA-mediated regulation of gene expression has a profound impact on immune cell development, function, and response to invading pathogens. As we continue to examine the mechanisms by which miRNAs maintain the balance between robust protective host immune responses and dysregulated responses that promote immune pathology, careful consideration of the complexity of post-transcriptional immune regulation is needed. Distinct tissue- and stimulus-specific RNA-RNA and RNA-protein interactions can modulate the functions of a given miRNA. Thus, new challenges emerge in the identification of post-transcriptional coregulatory modules and the genetic factors that impact miRNA function.
Collapse
|
14
|
Russo J, Lee JE, López CM, Anderson J, Nguyen TMP, Heck AM, Wilusz J, Wilusz CJ. The CELF1 RNA-Binding Protein Regulates Decay of Signal Recognition Particle mRNAs and Limits Secretion in Mouse Myoblasts. PLoS One 2017; 12:e0170680. [PMID: 28129347 PMCID: PMC5271678 DOI: 10.1371/journal.pone.0170680] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 01/09/2017] [Indexed: 02/06/2023] Open
Abstract
We previously identified several mRNAs encoding components of the secretory pathway, including signal recognition particle (SRP) subunit mRNAs, among transcripts associated with the RNA-binding protein CELF1. Through immunoprecipitation of RNAs crosslinked to CELF1 in myoblasts and in vitro binding assays using recombinant CELF1, we now provide evidence that CELF1 directly binds the mRNAs encoding each of the subunits of the SRP. Furthermore, we determined the half-lives of the Srp transcripts in control and CELF1 knockdown myoblasts. Our results indicate CELF1 is a destabilizer of at least five of the six Srp transcripts and that the relative abundance of the SRP proteins is out of balance when CELF1 is depleted. CELF1 knockdown myoblasts exhibit altered secretion of a luciferase reporter protein and are impaired in their ability to migrate and close a wound, consistent with a defect in the secreted extracellular matrix. Importantly, similar defects in wound healing are observed when SRP subunit imbalance is induced by over-expression of SRP68. Our studies support the existence of an RNA regulon containing Srp mRNAs that is controlled by CELF1. One implication is that altered function of CELF1 in myotonic dystrophy may contribute to changes in the extracellular matrix of affected muscle through defects in secretion.
Collapse
Affiliation(s)
- Joseph Russo
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jerome E. Lee
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Carolina M. López
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - John Anderson
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Thuy-mi P. Nguyen
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Adam M. Heck
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jeffrey Wilusz
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Carol J. Wilusz
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
15
|
Abstract
Alzheimer's disease (AD) is a progressive, neurodegenerative disease and the most common form of dementia in elderly people. It is an emerging public health problem that poses a huge societal burden. Linkage analysis was the first milestone in unraveling the mutations in APP, PSEN1, and PSEN2 that cause early-onset AD, followed by the discovery of apolipoprotein E-ε4 allele as the only one genetic risk factor for late-onset AD. Genome-wide association studies have revolutionized genetic research and have identified over 20 genetic loci associated with late-onset AD. Recently, next-generation sequencing technologies have enabled the identification of rare disease variants, including unmasking small mutations with intermediate risk of AD in PLD3, TREM2, UNC5C, AKAP9, and ADAM10. This review provides an overview of the genetic basis of AD and the relationship between these risk genes and the neuropathologic features of AD. An understanding of genetic mechanisms underlying AD pathogenesis and the potentially implicated pathways will lead to the development of novel treatment for this devastating disease.
Collapse
Affiliation(s)
- Mohan Giri
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, People’s Republic of China
| | - Man Zhang
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, People’s Republic of China
| | - Yang Lü
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, People’s Republic of China
| |
Collapse
|
16
|
Yeh HS, Yong J. Alternative Polyadenylation of mRNAs: 3'-Untranslated Region Matters in Gene Expression. Mol Cells 2016; 39:281-5. [PMID: 26912084 PMCID: PMC4844933 DOI: 10.14348/molcells.2016.0035] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 02/11/2016] [Indexed: 12/26/2022] Open
Abstract
Almost all of eukaryotic mRNAs are subjected to polyadenylation during mRNA processing. Recent discoveries showed that many of these mRNAs contain more than one polyadenylation sites in their 3' untranslated regions (UTR) and that alternative polyadenylation (APA) is prevalent among these genes. Many biological processes such as differentiation, proliferation, and tumorigenesis have been correlated to global APA events in the 3' UTR of mRNAs, suggesting that these APA events are tightly regulated and may play important physiological roles. In this review, recent discoveries in the physiological roles of APA events, as well as the known and proposed mechanisms are summarized. Perspective for future directions is also discussed.
Collapse
Affiliation(s)
- Hsin-Sung Yeh
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455,
USA
| | - Jeongsik Yong
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455,
USA
| |
Collapse
|
17
|
Blech-Hermoni Y, Dasgupta T, Coram RJ, Ladd AN. Identification of Targets of CUG-BP, Elav-Like Family Member 1 (CELF1) Regulation in Embryonic Heart Muscle. PLoS One 2016; 11:e0149061. [PMID: 26866591 PMCID: PMC4750973 DOI: 10.1371/journal.pone.0149061] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 12/30/2015] [Indexed: 01/17/2023] Open
Abstract
CUG-BP, Elav-like family member 1 (CELF1) is a highly conserved RNA binding protein that regulates pre-mRNA alternative splicing, polyadenylation, mRNA stability, and translation. In the heart, CELF1 is expressed in the myocardium, where its levels are tightly regulated during development. CELF1 levels peak in the heart during embryogenesis, and aberrant up-regulation of CELF1 in the adult heart has been implicated in cardiac pathogenesis in myotonic dystrophy type 1, as well as in diabetic cardiomyopathy. Either inhibition of CELF activity or over-expression of CELF1 in heart muscle causes cardiomyopathy in transgenic mice. Nonetheless, many of the cardiac targets of CELF1 regulation remain unknown. In this study, to identify cardiac targets of CELF1 we performed cross-linking immunoprecipitation (CLIP) for CELF1 from embryonic day 8 chicken hearts. We identified a previously unannotated exon in MYH7B as a novel target of CELF1-mediated regulation. We demonstrated that knockdown of CELF1 in primary chicken embryonic cardiomyocytes leads to increased inclusion of this exon and decreased MYH7B levels. We also investigated global changes in the transcriptome of primary embryonic cardiomyocytes following CELF1 knockdown in a published RNA-seq dataset. Pathway and network analyses identified strong associations between CELF1 and regulation of cell cycle and translation. Important regulatory proteins, including both RNA binding proteins and a cardiac transcription factor, were affected by loss of CELF1. Together, these data suggest that CELF1 is a key regulator of cardiomyocyte gene expression.
Collapse
Affiliation(s)
- Yotam Blech-Hermoni
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Program in Cell Biology, Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Twishasri Dasgupta
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Ryan J. Coram
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Andrea N. Ladd
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Program in Cell Biology, Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
18
|
Bohjanen PR, Moua ML, Guo L, Taye A, Vlasova-St Louis IA. Altered CELF1 binding to target transcripts in malignant T cells. RNA (NEW YORK, N.Y.) 2015; 21:1757-1769. [PMID: 26249002 PMCID: PMC4574752 DOI: 10.1261/rna.049940.115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 06/29/2015] [Indexed: 06/04/2023]
Abstract
The RNA-binding protein, CELF1, binds to a regulatory sequence known as the GU-rich element (GRE) and controls a network of mRNA transcripts that regulate cellular activation, proliferation, and apoptosis. We performed immunoprecipitation using an anti-CELF1 antibody, followed by identification of copurified transcripts using microarrays. We found that CELF1 is bound to a distinct set of target transcripts in the H9 and Jurkat malignant T-cell lines, compared with primary human T cells. CELF1 was not phosphorylated in resting normal T cells, but in malignant T cells, phosphorylation of CELF1 correlated with its inability to bind to GRE-containing mRNAs that served as CELF1 targets in normal T cells. Lack of binding by CELF1 to these mRNAs in malignant T cells correlated with stabilization and increased expression of these transcripts. Several of these GRE-containing transcripts that encode regulators of cell growth were also stabilized and up-regulated in primary tumor cells from patients with T-cell acute lymphoblastic leukemia. Interestingly, transcripts encoding numerous suppressors of cell proliferation that served as targets of CELF1 in malignant T cells, but not normal T cells, exhibited accelerated degradation and reduced expression in malignant compared with normal T cells, consistent with the known function of CELF1 to mediate degradation of bound transcripts. Overall, CELF1 dysfunction in malignant T cells led to the up-regulation of a subset of GRE-containing transcripts that promote cell growth and down-regulation of another subset that suppress cell growth, producing a net effect that would drive a malignant phenotype.
Collapse
Affiliation(s)
- Paul R Bohjanen
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA Department of Microbiology, University of Minnesota, Minneapolis, Minnesota 55455, USA Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Mai Lee Moua
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Liang Guo
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Ammanuel Taye
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Irina A Vlasova-St Louis
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
19
|
Xia L, Sun C, Li Q, Feng F, Qiao E, Jiang L, Wu B, Ge M. CELF1 is Up-Regulated in Glioma and Promotes Glioma Cell Proliferation by Suppression of CDKN1B. Int J Biol Sci 2015; 11:1314-24. [PMID: 26535026 PMCID: PMC4625542 DOI: 10.7150/ijbs.11344] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 07/20/2015] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND As a member of the CELF family, CELF1 (CUG-binding protein 1, CUGBP1) is involved in cardiac and embryonic development, skeletal muscle differentiation and mammary epithelial cell proliferation. CELF1 is also observed in many kinds of cancer and may play a great role in tumorigenesis and deterioration. However, the expression and mechanism of its function in human glioma remain unclear. METHODS We examined CELF1 expression in 62 glioma patients by immunohistochemistry and Western blot. The association between the expression of CELF1 protein and clinicopathological characteristics was analysed using SPSS 17.0. Survival analyses were performed using the Kaplan-Meier method. Small-interfering RNA was utilised to specifically knockdown CELF1 mRNA in U87 and U251 cells. Cell proliferation, cell cycle and cell apoptosis were tested by Cell Counting Kit-8 and flow cytometry. The expression of cell cycle-related gene CDKN1B was investigated by Western blot. The interactions between CELF1 and CDKN1B were detected with immune co-precipitation. Subcutaneous tumour models were used to study the effect of CELF1 on the growth of glioma cells in vivo. RESULTS Our results showed that CELF1 protein was frequently up-regulated in human glioma tissues. The expression level of this protein was positively correlated with glioma World Health Organisation grade and inversely correlated with patient survival (P < 0.05). Knockdown of CELF1 inhibited the glioma cell cycle process and proliferation potential, possibly by down-regulating its target, CDKN1B protein. CONCLUSIONS Results indicated that CELF1 may be a novel independent prognostic predictor of survival for glioma patients. It may promote glioma cell proliferation and cell cycle process during glioma carcinogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | - Limin Jiang
- ✉ Corresponding authors: Bin Wu M.D. ; Minghua Ge M.D. ; Limin Jiang M.D. . Address: Zhejiang Cancer Hospital, 38 Guangji Road, Hangzhou 310022, Zhejiang Province, P.R.C., Phone: +86-571-88122222
| | - Bin Wu
- ✉ Corresponding authors: Bin Wu M.D. ; Minghua Ge M.D. ; Limin Jiang M.D. . Address: Zhejiang Cancer Hospital, 38 Guangji Road, Hangzhou 310022, Zhejiang Province, P.R.C., Phone: +86-571-88122222
| | - Minghua Ge
- ✉ Corresponding authors: Bin Wu M.D. ; Minghua Ge M.D. ; Limin Jiang M.D. . Address: Zhejiang Cancer Hospital, 38 Guangji Road, Hangzhou 310022, Zhejiang Province, P.R.C., Phone: +86-571-88122222
| |
Collapse
|