1
|
Sun Y, Yuan J, Han S, Wang Q, Akhtar MR, Xia X. PxSpätzle3 Regulates the Toll Pathway To Affect Bacillus thuringiensis Susceptibility of Plutella xylostella. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:5129-5139. [PMID: 39965920 DOI: 10.1021/acs.jafc.4c11380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Spätzle is an important messenger in the Toll pathway of the insect innate immune system. However, the function of Spätzle in regulating the Toll pathway in Bacillus thuringiensis (Bt) susceptibility of Plutella xylostella is unclear. In this study, we cloned the Spätzle3 gene of P. xylostella. Molecular docking and yeast two-hybrid experiments indicated that PxSpätzle3 combined with PxToll6 to regulate the Toll pathway. After knocking out PxSpätzle3, the expression of downstream Toll pathway genes and antimicrobial peptides (AMPs) decreased. Antibacterial assays showed that PxGloverin2 could inhibit Bt8010. Further bioassays revealed that the susceptibility of the mutant to Bt8010 was significantly higher than that of the wild type. Intriguingly, the gut bacteria Enterobacter sp. EbPXG5 enhanced the lethality of Bt8010 to the mutant P. xylostella. Our findings clarify that PxSpätzle3 activates the Toll pathway by binding with PxToll6, regulates AMP production, and affects the susceptibility of P. xylostella to Bt8010. Additionally, our study uncovers the role of gut bacteria in this process. These insights provide new ideas for the sustainable control of pests.
Collapse
Affiliation(s)
- Yan Sun
- State Key Laboratory of Agricultural and Forestry Biosecurity, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, People's Republic of China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, People's Republic of China
- Youxi-Yangzhong Vegetable Pest Prevention and Control, Fujian Observation and Research Station, Fuzhou 350002, People's Republic of China
| | - Ji Yuan
- State Key Laboratory of Agricultural and Forestry Biosecurity, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, People's Republic of China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, People's Republic of China
- Youxi-Yangzhong Vegetable Pest Prevention and Control, Fujian Observation and Research Station, Fuzhou 350002, People's Republic of China
| | - Shuncai Han
- State Key Laboratory of Agricultural and Forestry Biosecurity, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, People's Republic of China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, People's Republic of China
- Youxi-Yangzhong Vegetable Pest Prevention and Control, Fujian Observation and Research Station, Fuzhou 350002, People's Republic of China
| | - Qiuping Wang
- State Key Laboratory of Agricultural and Forestry Biosecurity, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, People's Republic of China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, People's Republic of China
- Youxi-Yangzhong Vegetable Pest Prevention and Control, Fujian Observation and Research Station, Fuzhou 350002, People's Republic of China
| | - Muhammad Rehan Akhtar
- State Key Laboratory of Agricultural and Forestry Biosecurity, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, People's Republic of China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, People's Republic of China
- Youxi-Yangzhong Vegetable Pest Prevention and Control, Fujian Observation and Research Station, Fuzhou 350002, People's Republic of China
| | - Xiaofeng Xia
- State Key Laboratory of Agricultural and Forestry Biosecurity, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, People's Republic of China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, People's Republic of China
- Youxi-Yangzhong Vegetable Pest Prevention and Control, Fujian Observation and Research Station, Fuzhou 350002, People's Republic of China
| |
Collapse
|
2
|
Haider K, Abbas D, Galian J, Ghafar MA, Kabir K, Ijaz M, Hussain M, Khan KA, Ghramh HA, Raza A. The multifaceted roles of gut microbiota in insect physiology, metabolism, and environmental adaptation: implications for pest management strategies. World J Microbiol Biotechnol 2025; 41:75. [PMID: 40011281 DOI: 10.1007/s11274-025-04288-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/05/2025] [Indexed: 02/28/2025]
Abstract
Similar to many other organisms, insects like Drosophila melanogaster, Hypothenemus hampei, and Cockroaches harbor diverse bacterial communities in their gastrointestinal systems. These bacteria, along with other microorganisms like fungi and archaea, are essential to the physiology of their insect hosts, forming intricate symbiotic relationships. These gut-associated microorganisms contribute to various vital functions, including digestion, nutrient absorption, immune regulation, and behavioral modulation. Notably, gut microbiota facilitates the breakdown of complex plant materials, synthesizes essential vitamins and amino acids, and detoxifies harmful substances, including pesticides. Furthermore, these microorganisms are integral to modulating host immune responses and enhancing disease resistance. This review examines the multifaceted roles of gut microbiota in insect physiology, with particular emphasis on their contributions to digestion, detoxification, reproduction, and environmental adaptability. The potential applications of gut microbiota in integrated pest management (IPM) are also explored. Understanding the microbial dynamics within insect pest species opens new avenues for pest control, including developing microbial biocontrol agents, microbial modifications to reduce pesticide resistance, and implementing microbiome-based genetic strategies. In particular, manipulating gut microbiota presents a promising approach to pest management, offering a sustainable and eco-friendly alternative to conventional chemical pesticides.
Collapse
Affiliation(s)
- Kamran Haider
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| | - Dilawar Abbas
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jose Galian
- Department of Zoology and Physical Anthropology, University of Murcia, Campus Mare Nostrum, 30100, Murcia, Spain.
- ArthropoTech S.L, Ed. Vitalis, 2ª Floor, Office 2.15, Campus de Espinardo, 30100, Murcia, Spain.
| | - Muhammad Adeel Ghafar
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Bio Pesticide and Chemical Biology, MOE, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Kamil Kabir
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Muhammad Ijaz
- Department of Zoology and Physical Anthropology, University of Murcia, Campus Mare Nostrum, 30100, Murcia, Spain
- ArthropoTech S.L, Ed. Vitalis, 2ª Floor, Office 2.15, Campus de Espinardo, 30100, Murcia, Spain
| | - Mehboob Hussain
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
| | - Khalid Ali Khan
- Center of Bee Research and Its Products (CBRP), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
- Applied College, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Hamed A Ghramh
- Center of Bee Research and Its Products (CBRP), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
- Biology Department, College of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Abbas Raza
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
| |
Collapse
|
3
|
Sun Y, Wen H, Xue W, Xia X. PxDorsal Regulates the Expression of Antimicrobial Peptides and Affects the Bt Susceptibility of Plutella xylostella. INSECTS 2025; 16:163. [PMID: 40003793 PMCID: PMC11855926 DOI: 10.3390/insects16020163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/24/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025]
Abstract
The insect NF-κB pathway is primarily constituted by nuclear factor κB (NF-κB) and the inhibitor of κB (IκB), which plays a crucial role in the innate immune response. Dorsal and Cactus, as NF-κB and IκB factors, are important downstream regulators of the Toll pathway in Plutella xylostella. In this study, the PxDorsal and PxCactus genes of P. xylostella were cloned, and the molecular docking demonstrated that PxDorsal and PxCactus can interact with each other. RT-qPCR results indicated that PxDorsal and PxCactus were expressed in all stages, and the expression of PxDorsal, PxCactus, and antimicrobial peptides PxGloverin2, PxMoricin3, and PxLysozyme2 were significantly down-regulated under Bacillus thuringiensis (Bt8010) infection. Interestingly, silencing the PxDorsal gene by RNA interference (RNAi) significantly down-regulated the expression of PxGloverin2 and PxMoricin3 and increased the epidermis melanization of P. xylostella larvae fed with Bt8010. Our findings indicate that PxDorsal and PxCactus may interact with each other, and silencing PxDorsal inhibits the expression of downstream antimicrobial peptides, thereby enhance the susceptibility of P. xylostella to Bt8010. This study contributes a theoretical basis for further research on the Toll pathway of P. xylostella to pathogens and offers insights for screening effective biological control targets from the perspective of the immune system.
Collapse
Affiliation(s)
- Yan Sun
- State Key Laboratory of Agricultural and Forestry Biosecurity, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.S.); (H.W.); (W.X.)
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Youxi-Yangzhong Vegetable Pest Prevention and Control, Fujian Observation and Research Station, Fuzhou 350002, China
| | - Haoqi Wen
- State Key Laboratory of Agricultural and Forestry Biosecurity, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.S.); (H.W.); (W.X.)
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Youxi-Yangzhong Vegetable Pest Prevention and Control, Fujian Observation and Research Station, Fuzhou 350002, China
| | - Wenrui Xue
- State Key Laboratory of Agricultural and Forestry Biosecurity, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.S.); (H.W.); (W.X.)
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Youxi-Yangzhong Vegetable Pest Prevention and Control, Fujian Observation and Research Station, Fuzhou 350002, China
| | - Xiaofeng Xia
- State Key Laboratory of Agricultural and Forestry Biosecurity, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.S.); (H.W.); (W.X.)
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Youxi-Yangzhong Vegetable Pest Prevention and Control, Fujian Observation and Research Station, Fuzhou 350002, China
| |
Collapse
|
4
|
Han S, Akhtar MR, Xia X. Functions and regulations of insect gut bacteria. PEST MANAGEMENT SCIENCE 2024; 80:4828-4840. [PMID: 38884497 DOI: 10.1002/ps.8261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/18/2024]
Abstract
The insect gut is a complicated ecosystem that inhabits a large number of symbiotic bacteria. As an important organ of the host insect, the symbiotic bacteria of the insect gut play very important roles in regulating physiological and metabolic processes. Recently, much progress has been made in the study of symbiotic bacteria in insect guts with the development of high-throughput sequencing technology and molecular biology. This review summarizes the primary functions of symbiotic bacteria in insect guts, such as enhancing insecticide resistance, facilitating food digestion, promoting detoxification, and regulating mating behavior and egg hatching. It also addresses some possible pathways of gut bacteria symbiont regulation governed by external habitats, physiological conditions and immunity of the host insect. This review provides solid foundations for further studies on novel theories, new technologies and practical applications of symbiotic bacteria in insect guts. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shuncai Han
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Youxi-Yangzhong Vegetable Pest Prevention and Control, Fujian Observation and Research Station, Fuzhou, China
| | - Muhammad Rehan Akhtar
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Youxi-Yangzhong Vegetable Pest Prevention and Control, Fujian Observation and Research Station, Fuzhou, China
| | - Xiaofeng Xia
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Youxi-Yangzhong Vegetable Pest Prevention and Control, Fujian Observation and Research Station, Fuzhou, China
| |
Collapse
|
5
|
Muhammad A, Sun C, Shao Y. The humoral immune response of the lepidopteran model insect, silkworm Bombyx mori L., to microbial pathogens. CURRENT RESEARCH IN INSECT SCIENCE 2024; 6:100097. [PMID: 39364346 PMCID: PMC11447326 DOI: 10.1016/j.cris.2024.100097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/10/2024] [Accepted: 09/16/2024] [Indexed: 10/05/2024]
Abstract
Insects are valuable models for studying innate immunity and its role in combating infections. The silkworm Bombyx mori L., a well-studied insect model, is susceptible to a range of pathogens, including bacteria, fungi, viruses, and microsporidia. Their susceptibility makes it a suitable model for investigating host-pathogen interactions and immune responses against infections and diseases. This review focuses on the humoral immune response and the production of antimicrobial peptides (AMPs), the phenoloxidase (PO) system, and other soluble factors that constitute the primary defense of silkworms against microbial pathogens. The innate immune system of silkworms relies on pattern recognition receptors (PRRs) to recognize pathogen-associated molecular patterns (PAMPs), which then activate various immune pathways including Imd, Toll, JAK/STAT, and RNA interference (RNAi). Their activation triggers the secretion of AMPs, enzymatic defenses (lysozyme and PO), and the generation of reactive oxygen species (ROS). Collectively, these pathways work together to neutralize and eliminate pathogens, thereby contributing to the defense mechanism of silkworms. Understanding the innate immunity of silkworms can uncover conserved molecular pathways and key immune components shared between insects and vertebrates. Additionally, it can provide valuable insights for improving sericulture practices, developing strategies to control diseases affecting silk production, and providing a theoretical foundation for developing pest control measures.
Collapse
Affiliation(s)
- Abrar Muhammad
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Chao Sun
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Yongqi Shao
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, China
- Key Laboratory for Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| |
Collapse
|
6
|
Guo R, Zhang K, Zang H, Guo S, Liu X, Jing X, Song Y, Li K, Wu Y, Jiang H, Fu Z, Chen D. Dynamics and regulatory role of circRNAs in Asian honey bee larvae following fungal infection. Appl Microbiol Biotechnol 2024; 108:261. [PMID: 38472661 DOI: 10.1007/s00253-024-13102-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/19/2024] [Accepted: 03/03/2024] [Indexed: 03/14/2024]
Abstract
Non-coding RNA (ncRNA) plays a vital part in the regulation of immune responses, growth, and development in plants and animals. Here, the identification, characteristic analysis, and molecular verification of circRNAs in Apis cerana cerana worker larval guts were conducted, followed by in-depth investigation of the expression pattern of larval circRNAs during Ascosphaera apis infection and exploration of the potential regulatory part of differentially expressed circRNAs (DEcircRNAs) in host immune responses. A total of 3178 circRNAs in the larval guts of A. c. cerana were identified, with a length distribution ranging from 15 to 96,007 nt. Additionally, 155, 95, and 86 DEcircRNAs were identified in the in the 4-, 5-, and 6-day-old larval guts following A. apis infection. These DEcircRNAs were predicted to target 29, 25, and 18 parental genes relevant to 12, 20, and 17 GO terms as well as 144, 114, and 61 KEGG pathways, including 5 cellular and 4 humoral immune pathways. Complex competing endogenous RNA (ceRNA) regulatory networks were detected as being formed among DEcircRNAs, DEmiRNAs, and DEmRNAs. The target DEmRNAs were engaged in 36, 47, and 47 GO terms as well as 331, 332, and 331 pathways, including 6 cellular and 6 humoral immune pathways. Further, 19 DEcircRNAs, 5 DEmiRNAs, and 3 mRNAs were included in the sub-networks relative to 3 antioxidant enzymes. Finally, back-splicing sites within 15 circRNAs and the difference in the 15 DEcircRNAs' expression between uninoculated and A. apis-inoculated larval guts were confirmed based on molecular methods. These findings not only enrich our understanding of bee host-fungal pathogen interactions but also lay a foundation for illuminating the mechanism underlying the DEcircRNA-mediated immune defense of A. c. cerana larvae against A. apis invasion. KEY POINTS: • The expression pattern of circRNAs was altered in the A. cerana worker larval guts following A. apis infection. • Back-splicing sites within 15 A. cerana circRNAs were verified using molecular approaches. DEcircRNAs potentially modulated immune responses and antioxidant enzymes in A. apis-challenged host guts.
Collapse
Affiliation(s)
- Rui Guo
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- National & Local United Engineering Laboratory of Natural Biotoxin, Fuzhou, 350002, China.
- Apitherapy Research Institute of Fujian Province, Fuzhou, 350002, China.
| | - Kaiyao Zhang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - He Zang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Sijia Guo
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaoyu Liu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xin Jing
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuxuan Song
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Kunze Li
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ying Wu
- Apiculture Science Institute of Jilin Province, Jilin, Jilin, 132000, China
| | - Haibing Jiang
- Apiculture Science Institute of Jilin Province, Jilin, Jilin, 132000, China
| | - Zhongmin Fu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- National & Local United Engineering Laboratory of Natural Biotoxin, Fuzhou, 350002, China
- Apitherapy Research Institute of Fujian Province, Fuzhou, 350002, China
| | - Dafu Chen
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- National & Local United Engineering Laboratory of Natural Biotoxin, Fuzhou, 350002, China
- Apitherapy Research Institute of Fujian Province, Fuzhou, 350002, China
| |
Collapse
|
7
|
Zeng T, Jaffar S, Xu Y, Qi Y. The Intestinal Immune Defense System in Insects. Int J Mol Sci 2022; 23:ijms232315132. [PMID: 36499457 PMCID: PMC9740067 DOI: 10.3390/ijms232315132] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Over a long period of evolution, insects have developed unique intestinal defenses against invasion by foreign microorganisms, including physical defenses and immune responses. The physical defenses of the insect gut consist mainly of the peritrophic matrix (PM) and mucus layer, which are the first barriers to pathogens. Gut microbes also prevent the colonization of pathogens. Importantly, the immune-deficiency (Imd) pathways produce antimicrobial peptides to eliminate pathogens; mechanisms related to reactive oxygen species are another important pathway for insect intestinal immunity. The janus kinase/STAT signaling pathway is involved in intestinal immunity by producing bactericidal substances and regulating tissue repair. Melanization can produce many bactericidal active substances into the intestine; meanwhile, there are multiple responses in the intestine to fight against viral and parasitic infections. Furthermore, intestinal stem cells (ISCs) are also indispensable in intestinal immunity. Only the coordinated combination of the intestinal immune defense system and intestinal tissue renewal can effectively defend against pathogenic microorganisms.
Collapse
|
8
|
Ko HJ, Patnaik BB, Park KB, Kim CE, Baliarsingh S, Jang HA, Lee YS, Han YS, Jo YH. TmIKKε Is Required to Confer Protection Against Gram-Negative Bacteria, E. coli by the Regulation of Antimicrobial Peptide Production in the Tenebrio molitor Fat Body. Front Physiol 2022; 12:758862. [PMID: 35069235 PMCID: PMC8777057 DOI: 10.3389/fphys.2021.758862] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 12/01/2021] [Indexed: 12/23/2022] Open
Abstract
The inhibitor of nuclear factor-kappa B (NF-κB) kinase (IKK) is the core regulator of the NF-κB pathway against pathogenic invasion in vertebrates or invertebrates. IKKβ, -ε and -γ have pivotal roles in the Toll and immune deficiency (IMD) pathways. In this study, a homolog of IKKε (TmIKKε) was identified from Tenebrio molitor RNA sequence database and functionally characterized for its role in regulating immune signaling pathways in insects. The TmIKKε gene is characterized by two exons and one intron comprising an open reading frame (ORF) of 2,196 bp that putatively encodes a polypeptide of 731 amino acid residues. TmIKKε contains a serine/threonine protein kinases catalytic domain. Phylogenetic analysis established the close homology of TmIKKε to Tribolium castaneum IKKε (TcIKKε) and its proximity with other IKK-related kinases. The expression of TmIKKε mRNA was elevated in the gut, integument, and hemocytes of the last-instar larva and the fat body, Malpighian tubules, and testis of 5-day-old adults. TmIKKε expression was significantly induced by Escherichia coli, Staphylococcus aureus, and Candida albicans challenge in whole larvae and tissues, such as hemocytes, gut, and fat body. The knockdown of the TmIKKε messenger RNA (mRNA) expression significantly reduced the survival of the larvae against microbial challenges. Further, we investigated the induction patterns of 14 T. molitor antimicrobial peptides (AMPs) genes in TmIKKε gene-silencing model after microbial challenges. While in hemocytes, the transcriptional regulation of most AMPs was negatively regulated in the gut and fat body tissue of T. molitor, AMPs, such as TmTenecin 1, TmTenecin 4, TmDefensin, TmColeoptericin A, TmColeoptericin B, TmAttacin 1a, and TmAttacin 2, were positively regulated in TmIKKε-silenced individuals after microbial challenge. Collectively, the results implicate TmIKKε as an important factor in antimicrobial innate immune responses in T. molitor.
Collapse
Affiliation(s)
- Hye Jin Ko
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Bharat Bhusan Patnaik
- Department of Biosciences and Biotechnology, Fakir Mohan University, Balasore, India
| | - Ki Beom Park
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Chang Eun Kim
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Snigdha Baliarsingh
- Department of Biosciences and Biotechnology, Fakir Mohan University, Balasore, India
| | - Ho Am Jang
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Yong Seok Lee
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, South Korea
| | - Yeon Soo Han
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Yong Hun Jo
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
9
|
Wang ZL, Pan HB, Li MY, Wu W, Yu XP. Comprehensive insights into host-pathogen interaction between brown planthopper and a fungal entomopathogen by dual RNA sequencing. PEST MANAGEMENT SCIENCE 2021; 77:4903-4914. [PMID: 34171165 DOI: 10.1002/ps.6529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/20/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The brown planthopper (BPH) is one of the most destructive pests of rice, causing tremendous yield and economic losses every year. The fungal entomopathogen Metarhizium anisopliae was previously proved to have great potential for BPH biocontrol. Genome-wide insight into the insect-fungus interaction is crucial for genetic improvement of M. anisopliae to enhance its virulence to BPH but still has been poorly explored. RESULTS Using dual RNA-seq approach, we present here a global view of host and fungal gene expressions in BPH adults during the fungal infection. The results revealed that BPH could initiate strong defense responses against the fungal attack by upregulating the expressions of a large number of genes, including genes involved in cuticle formation, immune response, cell detoxification and biomacromolecule metabolism. Correspondingly, the fungal entomopathogen could induce a series of genes to infect and modulate BPH, including genes involved in fungal penetration, invasive growth, stress resistance and virulence. Three host defense-related genes (NlPCE4, NlPOD1 and NlCYP4DE1) were chosen for further function analysis. RNAi-mediated knockdown of NlPCE4 caused a significant decrease in BPH survival, but no obvious effects on the survival rates were detected by the suppression of NlPOD1 and NlCYP4DE1. Combination of dsRNA injection and fungal infection could significantly enhance the BPH-killing speed, as synergistic mortalities were observed in co-treatments of RNAi and M. anisopliae infection. CONCLUSION Our study provides a comprehensive insight into molecular mechanisms of host-pathogen interaction between BPH and M. anisopliae and contributes to future development of new efficient biocontrol strategies for BPH biocontrol.
Collapse
Affiliation(s)
- Zheng-Liang Wang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Zhejiang, China
| | - Hai-Bo Pan
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Zhejiang, China
| | - Mu-Yu Li
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Zhejiang, China
| | - Wei Wu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Zhejiang, China
| | - Xiao-Ping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Zhejiang, China
| |
Collapse
|
10
|
Galarza JA, Murphy L, Mappes J. Antibiotics accelerate growth at the expense of immunity. Proc Biol Sci 2021; 288:20211819. [PMID: 34666517 PMCID: PMC8527196 DOI: 10.1098/rspb.2021.1819] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022] Open
Abstract
Antibiotics have long been used in the raising of animals for agricultural, industrial or laboratory use. The use of subtherapeutic doses in diets of terrestrial and aquatic animals to promote growth is common and highly debated. Despite their vast application in animal husbandry, knowledge about the mechanisms behind growth promotion is minimal, particularly at the molecular level. Evidence from evolutionary research shows that immunocompetence is resource-limited, and hence expected to trade off with other resource-demanding processes, such as growth. Here, we ask if accelerated growth caused by antibiotics can be explained by genome-wide trade-offs between growth and costly immunocompetence. We explored this idea by injecting broad-spectrum antibiotics into wood tiger moth (Arctia plantaginis) larvae during development. We follow several life-history traits and analyse gene expression (RNA-seq) and bacterial (r16S) profiles. Moths treated with antibiotics show a substantial depletion of bacterial taxa, faster growth rate, a significant downregulation of genes involved in immunity and significant upregulation of growth-related genes. These results suggest that the presence of antibiotics may aid in up-keeping the immune system. Hence, by reducing the resource load of this costly process, bodily resources may be reallocated to other key processes such as growth.
Collapse
Affiliation(s)
- Juan A. Galarza
- Department of Biological and Environmental Sciences, University of Jyväskylä, Survontie, 9, P.C. 40500, Jyväskylä, Finland
| | - Liam Murphy
- Department of Biological and Environmental Sciences, University of Jyväskylä, Survontie, 9, P.C. 40500, Jyväskylä, Finland
| | - Johanna Mappes
- Department of Biological and Environmental Sciences, University of Jyväskylä, Survontie, 9, P.C. 40500, Jyväskylä, Finland
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, Viikki Biocenter 3, FIN-00014, University of Helsinki, Finland
| |
Collapse
|
11
|
Xie Y, Xu C, Gao M, Zhang X, Lu L, Hu X, Chen W, Jurat-Fuentes JL, Zhu Q, Liu Y, Lin M, Zhong J, Liu X. Docking-based generation of antibodies mimicking Cry1A/1B protein binding sites as potential insecticidal agents against diamondback moth (Plutella xylostella). PEST MANAGEMENT SCIENCE 2021; 77:4593-4606. [PMID: 34092019 DOI: 10.1002/ps.6499] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 05/19/2021] [Accepted: 06/06/2021] [Indexed: 05/26/2023]
Abstract
BACKGROUND Broad use of insecticidal Cry proteins from Bacillus thuringiensis in biopesticides and transgenic crops has resulted in cases of practical field resistance, highlighting the need for novel approaches to insect control. Previously we described an anti-Cry1Ab idiotypic-antibody (B12-scFv) displaying toxicity against rice leafroller (Cnaphalocrocis medinalis) larvae, supporting the potential of antibodies for pest control. The goal of the present study was to generate insecticidal antibodies against diamondback moth (Plutella xylostella) larvae. RESULTS Four genetically engineered antibodies (GEAbs) were designed in silico from B12-scFv using three-dimensional (3D) structure and docking predictions to alkaline phosphatase (ALP) as a Cry1Ac receptor in P. xylostella. Among these GEAbs, the GEAb-dVL antibody consisting of two light chains had overlapping binding sites with Cry1A and Cry1B proteins and displayed high binding affinity to P. xylostella midgut brush border membrane (BBM) proteins. Proteins in BBM identified by pull-down assays as binding to GEAb-dVL included an ABC transporter and V-ATPase subunit A protein. Despite lacking the α-helical structures in Cry1A that are responsible for pore formation, ingestion of GEAb-dVL disrupted the P. xylostella larval midgut epithelium and resulted in toxicity. Apoptotic genes were activated in gut cells upon treatment with GEAb-dVL . CONCLUSION This study describes the first insecticidal GEAb targeting P. xylostella by mimicking Cry proteins. Data support that GEAb-dVL toxicity is associated to activation of intracellular cell death pathways, in contrast to pore-formation associated toxicity of Cry proteins. This work provides a foundation for the design of novel insecticidal antibodies for insect control. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yajing Xie
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, P. R. China
| | - Chongxin Xu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, P. R. China
| | - Meijing Gao
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, P. R. China
| | - Xiao Zhang
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, P. R. China
| | - Lina Lu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, P. R. China
| | - Xiaodan Hu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, P. R. China
| | - Wei Chen
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, P. R. China
| | - Juan L Jurat-Fuentes
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, USA
| | - Qing Zhu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, P. R. China
| | - Yuan Liu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, P. R. China
| | - Manman Lin
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, P. R. China
| | - Jianfeng Zhong
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, P. R. China
| | - Xianjin Liu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, P. R. China
| |
Collapse
|
12
|
Malassigné S, Minard G, Vallon L, Martin E, Valiente Moro C, Luis P. Diversity and Functions of Yeast Communities Associated with Insects. Microorganisms 2021; 9:microorganisms9081552. [PMID: 34442634 PMCID: PMC8399037 DOI: 10.3390/microorganisms9081552] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 12/28/2022] Open
Abstract
Following the concept of the holobiont, insect-microbiota interactions play an important role in insect biology. Many examples of host-associated microorganisms have been reported to drastically influence insect biological processes such as development, physiology, nutrition, survival, immunity, or even vector competence. While a huge number of studies on insect-associated microbiota have focused on bacteria, other microbial partners including fungi have been comparatively neglected. Yeasts, which establish mostly commensal or symbiotic relationships with their host, can dominate the mycobiota of certain insects. This review presents key advances and progress in the research field highlighting the diversity of yeast communities associated with insects, as well as their impact on insect life-history traits, immunity, and behavior.
Collapse
|
13
|
Wang Y, Zhou Q, Zhang H, Qin L, Huang B. Immunotranscriptome analysis of Plutella xylostella reveals differences in innate immune responses to low- and high-virulence Beauveria bassiana strain challenges. PEST MANAGEMENT SCIENCE 2021; 77:1070-1080. [PMID: 33015931 DOI: 10.1002/ps.6124] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Entomopathogenic fungi have developed multiple strategies to overcome the immune defenses of their target insects, whereas insect pests have devised various defense mechanisms to combat fungal infection. However, differences in the molecular mechanisms of the innate immune defense strategies of insects upon infection with different fungal strains from the same species have not been reported. RESULTS Two Beauveria bassiana strains were obtained that significantly varied in their pathogenicity but were comparable in terms of growth, conidial yield, and cuticle penetration. To investigate the molecular mechanisms underlying the immune response of Plutella xylostella infected with these two strains, RNA-Seq was performed 48 h after infection. A total of 1027 differentially expressed genes (DEGs) were identified, and more than 200 DEGs were enriched in Kyoto Encyclopedia of Genes and Genome (KEGG) pathways involved in disease response, revealing differences in the immune response of P. xylostella to different B. bassiana infections at 48 h. Twenty-eight of the DEGs were related to innate immune functions, such as pathogen recognition, immune system activation and antimicrobial reactions. RNA interference (RNAi)-mediated gene silencing assays showed that PxApoLIII and PxCSP played critical roles in the P. xylostella immune response. PxApoLIII was expressed at higher levels during infection with the high-virulence strain, whereas PxCSP showed the opposite expression pattern during infection with the low-virulence strain, indicating that PxApoLIII and PxCSP might participate in P. xylostella innate immune defense against high- and low-virulence B. bassiana strains. CONCLUSION The present findings demonstrate that strains of a single species of pathogenic fungi that differ in virulence can induce the expression of different genes in P. xylostella. These results advance our knowledge of the molecular mechanisms underlying fungi-pest interactions.
Collapse
Affiliation(s)
- Yulong Wang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| | - Qiumei Zhou
- Experimental Center of Clinical Research, The First Affliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Hanghang Zhang
- Nanling Forestry Technology Center, Nanling Forestry Bureau, Nanling, China
| | - Li Qin
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| | - Bo Huang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| |
Collapse
|
14
|
Miao Z, Cao X, Jiang H. Digestion-related proteins in the tobacco hornworm, Manduca sexta. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 126:103457. [PMID: 32860882 PMCID: PMC7554134 DOI: 10.1016/j.ibmb.2020.103457] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/26/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Food digestion is vital for the survival and prosperity of insects. Research on insect digestive enzymes yields knowledge of their structure and function, and potential targets of antifeedants to control agricultural pests. While such enzymes from pest species are more relevant for inhibitor screening, a systematic analysis of their counterparts in a model insect has broader impacts. In this context, we identified a set of 122 digestive enzyme genes from the genome of Manduca sexta, a lepidopteran model related to some major agricultural pests. These genes encode hydrolases of proteins (85), lipids (20), carbohydrates (16), and nucleic acids (1). Gut serine proteases (62) and their noncatalytic homologs (11) in the S1A subfamily are encoded by abundant transcripts whose levels correlate well with larval feeding stages. Aminopeptidases (10), carboxypeptidases (10), and other proteases (3) also participate in dietary protein digestion. A large group of 11 lipases as well as 9 esterases are probably responsible for digesting lipids in diets. The repertoire of carbohydrate hydrolases (16) is relatively small, including two amylases, three maltases, two sucrases, two α-glucosidases, and others. Lysozymes, peptidoglycan amidases, and β-1,3-glucanase may hydrolyze peptidoglycans and glucans to harvest energy and defend the host from microbes on plant leaves. One alkaline nuclease is associated with larval feeding, which is likely responsible for hydrolyzing denatured DNA and RNA undergoing autolysis at a high pH of midgut. Proteomic analysis of the ectoperitrophic fluid from feeding larvae validated at least 131 or 89% of the digestive enzymes and their homologs. In summary, this study provides for the first time a holistic view of the digestion-related proteins in a lepidopteran model insect and clues for comparative research in lepidopteran pests and beyond.
Collapse
Affiliation(s)
- Zelong Miao
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Xiaolong Cao
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
15
|
The Tripartite Interaction of Host Immunity- Bacillus thuringiensis Infection-Gut Microbiota. Toxins (Basel) 2020; 12:toxins12080514. [PMID: 32806491 PMCID: PMC7472377 DOI: 10.3390/toxins12080514] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
Bacillus thuringiensis (Bt) is an important cosmopolitan bacterial entomopathogen, which produces various protein toxins that have been expressed in transgenic crops. The evolved molecular interaction between the insect immune system and gut microbiota is changed during the Bt infection process. The host immune response, such as the expression of induced antimicrobial peptides (AMPs), the melanization response, and the production of reactive oxygen species (ROS), varies with different doses of Bt infection. Moreover, B. thuringiensis infection changes the abundance and structural composition of the intestinal bacteria community. The activated immune response, together with dysbiosis of the gut microbiota, also has an important effect on Bt pathogenicity and insect resistance to Bt. In this review, we attempt to clarify this tripartite interaction of host immunity, Bt infection, and gut microbiota, especially the important role of key immune regulators and symbiotic bacteria in the Bt killing activity. Increasing the effectiveness of biocontrol agents by interfering with insect resistance and controlling symbiotic bacteria can be important steps for the successful application of microbial biopesticides.
Collapse
|
16
|
Lin Z, Wang JL, Cheng Y, Wang JX, Zou Z. Pattern recognition receptors from lepidopteran insects and their biological functions. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 108:103688. [PMID: 32222357 DOI: 10.1016/j.dci.2020.103688] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 03/03/2020] [Accepted: 03/20/2020] [Indexed: 05/08/2023]
Abstract
Lepidopteran insects have potent innate immunity to fight against the invading pathogens. As the initiation step, pattern recognition receptors (PRRs) recognize and bind microbial surface configurations known as pathogen-associated molecular patterns (PAMPs). Aftermath, they initiate both cellular and humoral immune responses, including phagocytosis, agglutination, nodulation, encapsulation, prophenoloxidase activation, and synthesis of antimicrobial peptides. In this review, we summarize the recent findings concerning PRRs in lepidoptaeran insects, mostly agriculture pests including Helicoverpa armigera, Plutella xylostella, and Spodoptera exigua. We mainly focus on the function and phylogeny of C-type lectins (CTLs), peptidoglycan recognition proteins (PGRPs), β-1,3-glucan recognition proteins (βGRPs), and galectins (GALEs). It enriches our understanding of the immune system of lepidopteran insects and provides directions in the future research.
Collapse
Affiliation(s)
- Zhe Lin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jia-Lin Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan, 430079, China
| | - Yang Cheng
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, 311300, China.
| |
Collapse
|
17
|
Lin J, Yu XQ, Wang Q, Tao X, Li J, Zhang S, Xia X, You M. Immune responses to Bacillus thuringiensis in the midgut of the diamondback moth, Plutella xylostella. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 107:103661. [PMID: 32097696 DOI: 10.1016/j.dci.2020.103661] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 06/10/2023]
Abstract
The diamondback moth, Plutella xylostella, is the first insect to develop resistance to Bacillus thuringiensis (Bt) in the field. To date, little is known about the molecular mechanism of the interaction between Bt and midgut immunity in P. xylostella. Here, we report immune responses in the P. xylostella midgut to Bt strain Bt8010 using a combined approach of transcriptomics and quantitative proteomics. Many genes in the Toll, IMD, JNK and JAK-STAT pathways and antimicrobial peptide genes were activated at 18 h post-infection. In the prophenoloxidase (PPO) cascade, four serpin genes were activated, and the PPO1 gene was suppressed by Bt8010. Inhibition of the two PPO proteins was observed at 18 h post-infection. Feeding Bt8010-infected larvae recombinant PPOs enhanced their survival. These results revealed that the Toll, IMD, JNK and JAK-STAT pathways were triggered and participated in the immune defence of the midgut against Bt8010, while the PPO cascade was inhibited and played an important role in this process.
Collapse
Affiliation(s)
- Junhan Lin
- State Key Laboratory of Ecological Pest Control for Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China; Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China; Fujian Vocational College of Bioengineering, Fuzhou, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
| | - Xiao-Qiang Yu
- State Key Laboratory of Ecological Pest Control for Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China; Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China; Institute of Insect Science and Technology, South China Normal University, Guangzhou, China
| | - Qian Wang
- State Key Laboratory of Ecological Pest Control for Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China; Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
| | - Xinping Tao
- State Key Laboratory of Ecological Pest Control for Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China; Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
| | - Jinyang Li
- State Key Laboratory of Ecological Pest Control for Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China; Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
| | - Shanshan Zhang
- State Key Laboratory of Ecological Pest Control for Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China; Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
| | - Xiaofeng Xia
- State Key Laboratory of Ecological Pest Control for Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China; Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China.
| | - Minsheng You
- State Key Laboratory of Ecological Pest Control for Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China; Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China.
| |
Collapse
|
18
|
Muhammad A, Habineza P, Wang X, Xiao R, Ji T, Hou Y, Shi Z. Spätzle Homolog-Mediated Toll-Like Pathway Regulates Innate Immune Responses to Maintain the Homeostasis of Gut Microbiota in the Red Palm Weevil, Rhynchophorus ferrugineus Olivier (Coleoptera: Dryophthoridae). Front Microbiol 2020; 11:846. [PMID: 32523559 PMCID: PMC7261851 DOI: 10.3389/fmicb.2020.00846] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 04/08/2020] [Indexed: 11/13/2022] Open
Abstract
Spätzle (Spz) is a dimeric ligand that responds to the Gram-positive bacterial or fungal infection by binding Toll receptors to induce the secretion of antimicrobial peptides. However, whether the Toll-like signaling pathway mediates the innate immunity of Rhynchophorus ferrugineus to modulate the homeostasis of gut microbiota has not been determined. In this study, we found that a Spz homolog, RfSpätzle, is a secretory protein comprising a signal peptide and a conservative Spz domain. RT-qPCR analysis revealed that RfSpätzle was significantly induced to be expressed in the fat body and gut by the systemic and oral infection with pathogenic microbes. The expression levels of two antimicrobial peptide genes, RfColeoptericin and RfCecropin, were downregulated significantly by RfSpätzle knockdown, indicating that their secretion is under the regulation of the RfSpätzle-mediated signaling pathway. After being challenged by pathogenic microbes, the cumulative mortality rate of RfSpätzle-silenced individuals was drastically increased as compared to that of the controls. Further analysis indicated that these larvae possessed the diminished antibacterial activity. Moreover, RfSpätzle knockdown altered the relative abundance of gut bacteria at the phylum and family levels. Taken together, these findings suggest that RfSpätzle is involved in RPW immunity to confer protection and maintain the homeostasis of gut microbiota by mediating the production of antimicrobial peptides.
Collapse
Affiliation(s)
- Abrar Muhammad
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Prosper Habineza
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xinghong Wang
- Guizhou Institute of Biology, Guizhou Academy of Sciences, Guiyang, China
| | - Rong Xiao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tianliang Ji
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Youming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhanghong Shi
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
19
|
JNK-dependent intestinal barrier failure disrupts host-microbe homeostasis during tumorigenesis. Proc Natl Acad Sci U S A 2020; 117:9401-9412. [PMID: 32277031 PMCID: PMC7196803 DOI: 10.1073/pnas.1913976117] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The intestinal epithelium forms a tight barrier to the environment and is constantly regenerated. Precise control of barrier function and tissue renewal is important to maintain homeostasis. Using an inducible tumor model in the Drosophila intestine, this study shows that tumor progression disrupts the intestinal barrier and leads to commensal dysbiosis, thereby further fueling tumor growth. This reenforcing feedback loop can be interrupted by treatments with JNK inhibitor or antibiotics. In all animals, the intestinal epithelium forms a tight barrier to the environment. The epithelium regulates the absorption of nutrients, mounts immune responses, and prevents systemic infections. Here, we investigate the consequences of tumorigenesis on the microbiome using a Drosophila intestinal tumor model. We show that upon loss of BMP signaling, tumors lead to aberrant activation of JNK/Mmp2 signaling, followed by intestinal barrier dysfunction and commensal imbalance. In turn, the dysbiotic microbiome triggers a regenerative response and stimulates tumor growth. We find that inhibiting JNK signaling or depletion of the microbiome restores barrier function of the intestinal epithelium, leading to a reestablishment of host–microbe homeostasis, and organismic lifespan extension. Our experiments identify a JNK-dependent feedback amplification loop between intestinal tumors and the microbiome. They also highlight the importance of controlling the activity level of JNK signaling to maintain epithelial barrier function and host–microbe homeostasis.
Collapse
|
20
|
Wei D, Xu HQ, Chen D, Zhang SY, Li WJ, Smagghe G, Wang JJ. Genome-wide gene expression profiling of the melon fly, Zeugodacus cucurbitae, during thirteen life stages. Sci Data 2020; 7:45. [PMID: 32047161 PMCID: PMC7012831 DOI: 10.1038/s41597-020-0387-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/21/2020] [Indexed: 01/15/2023] Open
Abstract
The melon fly, Zeugodacus cucurbitae (Coquillett), is an important destructive pest worldwide. Functional studies of the genes associated with development and reproduction during different life stages are limited in Z. cucurbitae. There have yet to be comprehensive transcriptomic resources for genetic and functional genomic studies to identify the molecular mechanisms related to its development and reproduction. In this study, we comprehensively sequenced the transcriptomes of four different developmental stages: egg, larva, pupa, and adults. Using the Illumina RNA-Seq technology, we constructed 52 libraries from 13 stages with four biological replicates in each and generated 435.61 Gb clean reads. We comprehensively characterized the transcriptomes with high-coverage mapping to the reference genome. A total of 13,760 genes were mapped to the reference genome, and another 4481 genes were characterized as new genes. Finally, 14,931 genes (81.85%) were functionally annotated against six annotation databases. This study provides the first comprehensive transcriptome data of all developmental stages of Z. cucurbitae, and will serve as a valuable resource for future genetic and functional studies.
Collapse
Affiliation(s)
- Dong Wei
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Hui-Qian Xu
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Dong Chen
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Su-Yun Zhang
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Wei-Jun Li
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Guy Smagghe
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China.
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China.
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China.
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, 9000, Belgium.
| | - Jin-Jun Wang
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China.
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China.
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
21
|
Liu FH, Lin XL, Kang ZW, Tian HG, Liu TX. Isolation and characterization of Pseudomonas cedrina infecting Plutella xylostella (Lepidoptera: Plutellidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 102:e21593. [PMID: 31612553 DOI: 10.1002/arch.21593] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The diamondback moth, Plutella xylostella, is one of the most destructive pests worldwide and its management relies exclusively on frequent application of chemical insecticides. Resistance to common insecticides is now widespread, and novel classes of insecticides are needed. Entomopathogenic bacteria and their related products play an important role in the management of this pest. In the present work, one bacterial strain was separated from infected pupae of P. xylostella collected from field and its pathogenicity was evaluated. On the basis of the 16S ribosomal RNA sequencing, BLASTN, and phylogenetic analysis, this bacterial isolate was identified as Pseudomonas cedrina. Oral administration of P. cedrina at levels above 10,000 CFU/ml gave significant mortality to P. xylostella larvae. The pathogenicity was also observed by reduced longevity and fecundity in adult females. However, when live bacterial cells were removed, the cultured broth lost any pathogenicity. In response to the bacterial infection, P. xylostella expressed antimicrobial and stress-associated genes. A mixture treatment of P. cedrina and Bacillus thuringiensis showed an additive effect on larval mortality of P. xylostella. These results indicated that P. cedrina is an opportunistic entomopathogen without secretion of toxins. Furthermore, the additive effect of P. cedrina and B. thuringiensis provide a new insight to develop new strategy for controlling P. xylostella.
Collapse
Affiliation(s)
- Fang-Hua Liu
- State Key Laboratory of Crop Stress Biology for the Arid Areas and Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
- State Key Laboratory of Integrated Management of Pest and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiao-Li Lin
- State Key Laboratory of Crop Stress Biology for the Arid Areas and Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
- Zibo Agro-Tech Extension Center, Zibo, Shandong, China
| | - Zhi-Wei Kang
- State Key Laboratory of Crop Stress Biology for the Arid Areas and Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Hong-Gang Tian
- State Key Laboratory of Crop Stress Biology for the Arid Areas and Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Tong-Xian Liu
- State Key Laboratory of Crop Stress Biology for the Arid Areas and Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
22
|
Wu G, Yi Y. Transcriptome analysis of differentially expressed genes involved in innate immunity following Bacillus thuringiensis challenge in Bombyx mori larvae. Mol Immunol 2018; 103:220-228. [DOI: 10.1016/j.molimm.2018.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 09/24/2018] [Accepted: 10/01/2018] [Indexed: 02/07/2023]
|