1
|
Zhang J, Shahbaz M, Ijaz M, Zhang H. Bibliometric analysis of antimalarial drug resistance. Front Cell Infect Microbiol 2024; 14:1270060. [PMID: 38410722 PMCID: PMC10895045 DOI: 10.3389/fcimb.2024.1270060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/02/2024] [Indexed: 02/28/2024] Open
Abstract
Background Malaria has always been a serious infectious disease prevalent in the world. Antimalarial drugs such as chloroquine and artemisinin have been the main compounds used to treat malaria. However, the massive use of this type of drugs accelerates the evolution and spread of malaria parasites, leading to the development of resistance. A large number of related data have been published by researchers in recent years. CiteSpace software has gained popularity among us researchers in recent years, because of its ability to help us obtain the core information we want in a mass of articles. In order to analyze the hotspots and develop trends in this field through visual analysis, this study used CiteSpace software to summarize the available data in the literature to provide insights. Method Relevant literature was collected from the Web of Science Core Collection (WOSCC) from 1 January 2015 to 29 March 2023. CiteSpace software and Microsoft Excel were used to analyze and present the data, respectively. Results A total of 2,561 literatures were retrieved and 2,559 literatures were included in the analysis after the removal of duplicates. An irrefutable witness of the ever-growing interest in the topic of antimalarial drug resistance could be expressed by the exponentially increased number of publications and related citations from 2015 to 2022, and its sustained growth trend by 2023. During the past 7 years, USA, Oxford University, and David A Fidock are the country, institution, and author with the most publications in this field of research, respectively. We focused on the references and keywords from literature and found that the research and development of new drugs is the newest hotspot in this field. A growing number of scientists are devoted to finding new antimalarial drugs. Conclusion This study is the first visual metrological analysis of antimalarial drug resistance, using bibliometric methods. As a baseline information, it is important to analyze research output published globally on antimalarial drug resistance. In order to better understand the current research situation and future research plan agenda, such baseline data are needed accordingly.
Collapse
Affiliation(s)
- Jialu Zhang
- Shandong University of Traditional Chinese Medicine, College of Pharmacy, Jinan, China
- Shandong Academy of Chinese Medicine, Institute of Chinese medicine analysis, Jinan, China
| | - Muhammad Shahbaz
- Shandong Academy of Chinese Medicine, Institute of Chinese medicine analysis, Jinan, China
- Department of Radiology, Qilu Hospital Affiliated to Shandong University, Jinan, China
- Research Center for Sectional and Imaging Anatomy, Digital Human Institute, School of Basic Medical Science, Shandong University, Jinan, Shandong, China
| | - Muhammad Ijaz
- The Faculty of Medicine, Qilu Institute of Technology, Jinan, China
- Department of Pharmacology, School of Pharmaceutical Science, Shandong University, Jinan, China
| | - Huimin Zhang
- Shandong Academy of Chinese Medicine, Institute of Chinese medicine analysis, Jinan, China
| |
Collapse
|
2
|
Cheuka PM, Njaria P, Mayoka G, Funjika E. Emerging Drug Targets for Antimalarial Drug Discovery: Validation and Insights into Molecular Mechanisms of Function. J Med Chem 2024; 67:838-863. [PMID: 38198596 DOI: 10.1021/acs.jmedchem.3c01828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Approximately 619,000 malaria deaths were reported in 2021, and resistance to recommended drugs, including artemisinin-combination therapies (ACTs), threatens malaria control. Treatment failure with ACTs has been found to be as high as 93% in northeastern Thailand, and parasite mutations responsible for artemisinin resistance have already been reported in some African countries. Therefore, there is an urgent need to identify alternative treatments with novel targets. In this Perspective, we discuss some promising antimalarial drug targets, including enzymes involved in proteolysis, DNA and RNA metabolism, protein synthesis, and isoprenoid metabolism. Other targets discussed are transporters, Plasmodium falciparum acetyl-coenzyme A synthetase, N-myristoyltransferase, and the cyclic guanosine monophosphate-dependent protein kinase G. We have outlined mechanistic details, where these are understood, underpinning the biological roles and hence druggability of such targets. We believe that having a clear understanding of the underlying chemical interactions is valuable to medicinal chemists in their quest to design appropriate inhibitors.
Collapse
Affiliation(s)
- Peter Mubanga Cheuka
- Department of Chemistry, School of Natural Sciences, University of Zambia, P.O. Box 32379, Lusaka 10101, Zambia
| | - Paul Njaria
- Department of Pharmacognosy and Pharmaceutical Chemistry, Kenyatta University, P.O. Box 14548-00400, Nairobi 00100, Kenya
| | - Godfrey Mayoka
- Department of Pharmacology and Pharmacognosy, School of Pharmacy, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi 00100, Kenya
| | - Evelyn Funjika
- Department of Chemistry, School of Natural Sciences, University of Zambia, P.O. Box 32379, Lusaka 10101, Zambia
| |
Collapse
|
3
|
Elahi R, Prigge ST. New insights into apicoplast metabolism in blood-stage malaria parasites. Curr Opin Microbiol 2023; 71:102255. [PMID: 36563485 PMCID: PMC9852000 DOI: 10.1016/j.mib.2022.102255] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022]
Abstract
The apicoplast of Plasmodium falciparum is the only source of essential isoprenoid precursors and Coenzyme A (CoA) in the parasite. Isoprenoid precursor synthesis relies on the iron-sulfur cluster (FeS) cofactors produced within the apicoplast, rendering FeS synthesis an essential function of this organelle. Recent reports provide important insights into the roles of FeS cofactors and the use of isoprenoid precursors and CoA both inside and outside the apicoplast. Here, we review the recent insights into the roles of these metabolites in blood-stage malaria parasites and discuss new questions that have been raised in light of these discoveries.
Collapse
Affiliation(s)
- Rubayet Elahi
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD, USA; The Johns Hopkins Malaria Research Institute, Baltimore, MD, USA
| | - Sean T Prigge
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD, USA; The Johns Hopkins Malaria Research Institute, Baltimore, MD, USA.
| |
Collapse
|
4
|
Characterization of Domiphen Bromide as a New Fast-Acting Antiplasmodial Agent Inhibiting the Apicoplastidic Methyl Erythritol Phosphate Pathway. Pharmaceutics 2022; 14:pharmaceutics14071320. [PMID: 35890216 PMCID: PMC9319574 DOI: 10.3390/pharmaceutics14071320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 11/17/2022] Open
Abstract
The evolution of resistance by the malaria parasite to artemisinin, the key component of the combination therapy strategies that are at the core of current antimalarial treatments, calls for the urgent identification of new fast-acting antimalarials. The apicoplast organelle is a preferred target of antimalarial drugs because it contains biochemical processes absent from the human host. Fosmidomycin is the only drug in clinical trials targeting the apicoplast, where it inhibits the methyl erythritol phosphate (MEP) pathway. Here, we characterized the antiplasmodial activity of domiphen bromide (DB), another MEP pathway inhibitor with a rapid mode of action that arrests the in vitro growth of Plasmodium falciparum at the early trophozoite stage. Metabolomic analysis of the MEP pathway and Krebs cycle intermediates in 20 µM DB-treated parasites suggested a rapid activation of glycolysis with a concomitant decrease in mitochondrial activity, consistent with a rapid killing of the pathogen. These results present DB as a model compound for the development of new, potentially interesting drugs for future antimalarial combination therapies.
Collapse
|
5
|
Saggu GS. Apicoplast Journey and Its Essentiality as a Compartment for Malaria Parasite Survival. Front Cell Infect Microbiol 2022; 12:881825. [PMID: 35463632 PMCID: PMC9022174 DOI: 10.3389/fcimb.2022.881825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
|
6
|
Biosca A, Dirscherl L, Moles E, Imperial S, Fernàndez-Busquets X. An ImmunoPEGliposome for Targeted Antimalarial Combination Therapy at the Nanoscale. Pharmaceutics 2019; 11:pharmaceutics11070341. [PMID: 31315185 PMCID: PMC6680488 DOI: 10.3390/pharmaceutics11070341] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/27/2019] [Accepted: 07/11/2019] [Indexed: 12/15/2022] Open
Abstract
Combination therapies, where two drugs acting through different mechanisms are administered simultaneously, are one of the most efficient approaches currently used to treat malaria infections. However, the different pharmacokinetic profiles often exhibited by the combined drugs tend to decrease treatment efficacy as the compounds are usually eliminated from the circulation at different rates. To circumvent this obstacle, we have engineered an immunoliposomal nanovector encapsulating hydrophilic and lipophilic compounds in its lumen and lipid bilayer, respectively. The antimalarial domiphen bromide has been encapsulated in the liposome membrane with good efficiency, although its high IC50 of ca. 1 µM for living parasites complicates its use as immunoliposomal therapy due to erythrocyte agglutination. The conjugation of antibodies against glycophorin A targeted the nanocarriers to Plasmodium-infected red blood cells and to gametocytes, the sole malaria parasite stage responsible for the transmission from the human to the mosquito vector. The antimalarials pyronaridine and atovaquone, which block the development of gametocytes, have been co-encapsulated in glycophorin A-targeted immunoliposomes. The co-immunoliposomized drugs have activities significantly higher than their free forms when tested in in vitro Plasmodium falciparum cultures: Pyronaridine and atovaquone concentrations that, when encapsulated in immunoliposomes, resulted in a 50% inhibition of parasite growth had no effect on the viability of the pathogen when used as free drugs.
Collapse
Affiliation(s)
- Arnau Biosca
- Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Rosselló 149-153, ES-08036 Barcelona, Spain
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, ES-08028 Barcelona, Spain
- Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Martí i Franquès 1, ES-08028 Barcelona, Spain
| | - Lorin Dirscherl
- Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Rosselló 149-153, ES-08036 Barcelona, Spain
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, ES-08028 Barcelona, Spain
- Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Martí i Franquès 1, ES-08028 Barcelona, Spain
| | - Ernest Moles
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, PO Box 81, Randwick, NSW 2031, Australia
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Santiago Imperial
- Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Martí i Franquès 1, ES-08028 Barcelona, Spain
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Avda. Diagonal 643, ES-08028 Barcelona, Spain
| | - Xavier Fernàndez-Busquets
- Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Rosselló 149-153, ES-08036 Barcelona, Spain.
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, ES-08028 Barcelona, Spain.
- Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Martí i Franquès 1, ES-08028 Barcelona, Spain.
| |
Collapse
|
7
|
Roth A, Adapa SR, Zhang M, Liao X, Saxena V, Goffe R, Li S, Ubalee R, Saggu GS, Pala ZR, Garg S, Davidson S, Jiang RHY, Adams JH. Unraveling the Plasmodium vivax sporozoite transcriptional journey from mosquito vector to human host. Sci Rep 2018; 8:12183. [PMID: 30111801 PMCID: PMC6093925 DOI: 10.1038/s41598-018-30713-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 08/03/2018] [Indexed: 02/07/2023] Open
Abstract
Malaria parasites transmitted by mosquito bite are remarkably efficient in establishing human infections. The infection process requires roughly 30 minutes and is highly complex as quiescent sporozoites injected with mosquito saliva must be rapidly activated in the skin, migrate through the body, and infect the liver. This process is poorly understood for Plasmodium vivax due to low infectivity in the in vitro models. To study this skin-to-liver-stage of malaria, we used quantitative bioassays coupled with transcriptomics to evaluate parasite changes linked with mammalian microenvironmental factors. Our in vitro phenotyping and RNA-seq analyses revealed key microenvironmental relationships with distinct biological functions. Most notable, preservation of sporozoite quiescence by exposure to insect-like factors coupled with strategic activation limits untimely activation of invasion-associated genes to dramatically increase hepatocyte invasion rates. We also report the first transcriptomic analysis of the P. vivax sporozoite interaction in salivary glands identifying 118 infection-related differentially-regulated Anopheles dirus genes. These results provide important new insights in malaria parasite biology and identify priority targets for antimalarial therapeutic interventions to block P. vivax infection.
Collapse
Affiliation(s)
- Alison Roth
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Swamy R Adapa
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Min Zhang
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Xiangyun Liao
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Vishal Saxena
- Molecular Parasitology and System Biology Lab, Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Raaven Goffe
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Suzanne Li
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Ratawan Ubalee
- Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Gagandeep S Saggu
- Laboratory of Malaria and Vector Research, National Institute of Allergic and Infectious Diseases, National Institute of Health, Rockville, Maryland, USA
| | - Zarna R Pala
- Molecular Parasitology and System Biology Lab, Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Shilpi Garg
- Molecular Parasitology and System Biology Lab, Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Silas Davidson
- Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Rays H Y Jiang
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA.
| | - John H Adams
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA.
| |
Collapse
|