1
|
Yang Y, Wang X, Liu J, Wang M, Yu L, Wang D, Li J, Lu Y, Zhang J, Zhang H. Identification and role of CmLhcb2.1 in regulating low-light stress resistance in Chinese chestnut ( Castanea mollissima). FRONTIERS IN PLANT SCIENCE 2025; 16:1552618. [PMID: 40129734 PMCID: PMC11931040 DOI: 10.3389/fpls.2025.1552618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 02/13/2025] [Indexed: 03/26/2025]
Abstract
Chinese chestnut (Castanea mollissima) is a significant woody food plant that has garnered increasing attention due to its potential role in addressing food security challenges. However, low yield remains a critical issue facing the Chinese chestnut industry. One contributing factor to this low yield is insufficient light, particularly since Chinese chestnuts predominantly grow in mountainous regions. Therefore, the present study aims to investigate the intrinsic mechanisms underlying chestnut resistance to light stress, identify and validate genes associated with low light stress tolerance, and provide a foundation for targeted breeding of chestnut varieties that can withstand light stress. Studies have demonstrated that the light-harvesting chlorophyll a/b (Lhca/b) proteins play key roles in regulating the adaptation of plants to low-light stress. However, there have been no reports on the role of the Lhca/b gene family in the chestnut under light stress. We initially identified 17 CmLhca/b gene members across the chestnut genome and constructed a phylogenetic tree that divided them into five subgroups: the Lhca, the Lhcb, the CP24, the CP26, and the CP29 groups. CmLhcb2.1 and CmLhcb2.2 were grouped on the same branch with GhLhcb2.3 of upland cotton that involved in chlorophyll synthesis.The chestnut leaves exhibited phenotypic and transcriptomic differences under low and normal light conditions. By the 10th day of shading treatment, the leaves showed signs of damage, with the extent of damage intensifying as shading intensity increased. Additionally, the leaf color darkened due to the gradual increase in chlorophyll b content, which was correlated with increased shading intensity. The gene CmLhcb2.1 was upregulated across all shading intensities. Specifically, quantitative reverse transcription PCR (qRT-PCR) confirmed the upregulation of CmLhcb2.1 in chestnut under low-light stress. Overexpression studies in tobacco indicated that CmLhcb2.1 enhances chestnut resistance to low-light stress by promoting chlorophyll b synthesis. Finally, yeast one-hybrid and dual-luciferase reporter assays confirmed that the transcription factor CmGLK positively regulated CmLhcb2.1. These findings lay a theoretical foundation for exploring how CmLhcb2.1 regulates chestnut resistance to low-light stress.
Collapse
Affiliation(s)
- Yong Yang
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Changli, Hebei, China
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| | - Xuan Wang
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Changli, Hebei, China
| | - Jing Liu
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| | - Meng Wang
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| | - Liyang Yu
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| | - Dongsheng Wang
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| | - Jingshi Li
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| | - Yi Lu
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| | - Jingzheng Zhang
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| | - Haie Zhang
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Changli, Hebei, China
| |
Collapse
|
2
|
Wang P, Li Z, Zhu L, Mo F, Li F, Lv R, Meng F, Zhang H, Zou Y, Qi H, Yu L, Yu T, Ran S, Xu Y, Cheng M, Liu Y, Chen X, Zhang X, Wang A. Four-Dimensional Data-Independent Acquisition-Based Proteomic Profiling Combined with Transcriptomic Analysis Reveals the Involvement of the Slym1-SlFHY3-CAB3C Module in Regulating Tomato Leaf Color. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:890-907. [PMID: 39688468 DOI: 10.1021/acs.jafc.4c07614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
In green plants, the chloroplast is responsible for light energy transition and organic assimilation. However, the molecular mechanisms underlying chloroplast development in horticultural crops remain unclear. Here, four-dimensional data-independent acquisition-based proteomic profiling identified 1,727 differentially expressed proteins between "Zhongshu 4" (ZS4) and yellowing mutant (ym) leaves, a considerable proportion of which were down-regulated chloroplast proteins. Functional analysis revealed that light harvesting and chlorophyll biosynthesis were correlated with ym leaf yellowing, validated by RNA sequencing. Quantitative PCR confirmed that chlorophyll a/b-binding protein 3C (CAB3C) related to light harvesting and NADPH:protochlorophyllide oxidoreductase 3 (POR3) involved in chlorophyll biosynthesis were repressed in ym leaves. Virus-induced gene silencing showed that suppressing CAB3C and POR3 decreased the net photosynthetic rate and chlorophyll content. Additionally, the F-box protein Slym1 negatively regulated the expression of CAB3C by depressing transcription factor SlFHY3 levels. Our findings offer insights into the regulatory mechanisms of chloroplast development in tomato.
Collapse
Affiliation(s)
- Peiwen Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Ziheng Li
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Lin Zhu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Fulei Mo
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Fengshuo Li
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Rui Lv
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Fanyue Meng
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Huixin Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yuxin Zou
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Haonan Qi
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Lei Yu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Tianyue Yu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Siyu Ran
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Yuanhang Xu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Mozhen Cheng
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Yang Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Xiuling Chen
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoxuan Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Aoxue Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
3
|
Ye JJ, Lin XY, Yang ZX, Wang YQ, Liang YR, Wang KR, Lu JL, Lu P, Zheng XQ. The light-harvesting chlorophyll a/b-binding proteins of photosystem II family members are responsible for temperature sensitivity and leaf color phenotype in albino tea plant. J Adv Res 2024; 66:87-104. [PMID: 38151116 PMCID: PMC11674787 DOI: 10.1016/j.jare.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/11/2023] [Accepted: 12/24/2023] [Indexed: 12/29/2023] Open
Abstract
INTRODUCTION Light-harvesting chlorophyll a/b-binding (LHCB) protein complexes of photosystem II are integral to the formation of thylakoid structure and the photosynthetic process. They play an important role in photoprotection, a crucial process in leaf development under low-temperature stress. Nonetheless, potential key genes directly related to low-temperature response and albino phenotype have not been precisely identified in tea plant. Moreover, there are no studies simultaneously investigating multiple albino tea cultivars with different temperature sensitivity. OBJECTIVES The study aimed to clarify the basic characteristics of CsLHCB gene family members, and identify critical CsLHCB genes potentially influential in leaf color phenotypic variation and low-temperature stress response by contrasting green and albino tea cultivars. Concurrently, exploring the differential expression of the CsLHCB gene family across diverse temperature-sensitive albino tea cultivars. METHODS We identified 20 putative CsLHCB genes according to phylogenetic analysis. Evolutionary relationships, gene duplication, chromosomal localization, and structures were analyzed by TBtools; the physiological and biochemical characteristics were analyzed by protein analysis websites; the differences in coding sequences and protein accumulation in green and albino tea cultivars, gene expression with maturity were tested by molecular biology technology; and protein interaction was analyzed in the STRING database. RESULTS All genes were categorized into seven groups, mapping onto 7 chromosomes, including three tandem and one segmental duplications. They all own a conserved chlorophyll A/B binding protein domain. The expression of CsLHCB genes was tissue-specific, predominantly in leaves. CsLHCB5 may play a key role in the process of leaf maturation and senescence. In contrast to CsLHCB5, CsLHCB1.1, CsLHCB2, and CsLHCB3.2 were highly conserved in amino acid sequence between green and albino tea cultivars. In albino tea cultivars, unlike in green cultivars, the expression of CsLHCB1.1, CsLHCB1.2, and CsLHCB2 was down-regulated under low-temperature stress. The accumulation of CsLHCB1 and CsLHCB5 proteins was lower in albino tea cultivars. Greater accumulation of CsLHCB2 protein was detected in RX1 and RX2 compared to other albino cultivars. CONCLUSIONS CsLHCB1.1, CsLHCB1.2, and CsLHCB2 played a role in the response to low-temperature stress. The amino acid sequence site mutation of CsLHCB5 would distinguish the green and albino tea cultivars. The less accumulation of CsLHCB1 and CsLHCB5 had a Chl influence on albino leaves. Albino cultivars more sensitive to temperature exhibited lower CsLHCB gene expression. CsLHCB2 may serve as an indicator of temperature sensitivity differences in albino tea cultivars. This study could provide a reference for further studies of the functions of the CsLHCB family and contribute to research on the mechanism of the albino in tea plant.
Collapse
Affiliation(s)
- Jing-Jing Ye
- Zhejiang University Tea Research Institute, Hangzhou, Zhejiang 310058, China
| | - Xin-Yi Lin
- Zhejiang University Tea Research Institute, Hangzhou, Zhejiang 310058, China
| | - Zi-Xian Yang
- Zhejiang University Tea Research Institute, Hangzhou, Zhejiang 310058, China
| | - Ying-Qi Wang
- Zhejiang A&F University College of Tea Science and Tea Culture, Hangzhou, Zhejiang 311300, China
| | - Yue-Rong Liang
- Zhejiang University Tea Research Institute, Hangzhou, Zhejiang 310058, China
| | - Kai-Rong Wang
- General Agrotechnical Extension Station of Ningbo City, Ningbo, Zhejiang 315000, China
| | - Jian-Liang Lu
- Zhejiang University Tea Research Institute, Hangzhou, Zhejiang 310058, China
| | - Peng Lu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Xin-Qiang Zheng
- Zhejiang University Tea Research Institute, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
4
|
Salehinia S, Didaran F, Aliniaeifard S, Zohrabi S, MacPherson S, Lefsrud M. Green light enhances the phytochemical preservation of lettuce during postharvest cold storage. PLoS One 2024; 19:e0311100. [PMID: 39546455 PMCID: PMC11567635 DOI: 10.1371/journal.pone.0311100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/12/2024] [Indexed: 11/17/2024] Open
Abstract
The postharvest lighting environment is a main factor that influences quality preservation for harvested biomass. The objective of this study was to evaluate postharvest changes in bioactive compounds of lettuce with different storage light spectra. The effects of green LEDs with peaks at 500 nm and 530 nm, white LEDs (400-700 nm), and dark storage were evaluated, where light intensity (10 μmol m-2 s-1) and photoperiod (12 h per day) were constant with air temperature at 5°C over the 14 d treatment period. Lettuce stored with 500 nm and 530 nm green LEDs exhibited 1474.5% and 1451.8% (approximately 15.7 and 15.5 times) higher antioxidant activity, respectively, compared to dark storage. Significant improvements in total phenolic content, and 67.5% and 64.8% increases in total soluble solids with 530 nm and 500 nm green LEDs over dark storage were discerned. Exposure to 530 nm green LEDs led to 128.2% (approximately 2.28 times) higher anthocyanin content, a 26.2% increase in carotenoids, and a 95% rise in flavonoid content compared to dark storage. Increases of 26.4% and 16.0% in chlorophyll a content in lettuce stored under 500 nm and 530 nm green LEDs, respectively, and 65.6% and 46.6% rises in the Chlorophyll a/b ratio were observed. Compared to dark storage, green LEDs (500 nm) resulted in a 13.5% higher total chlorophyll content. Findings underscore the positive impact of green LEDs on the nutritional quality of lettuce, providing insight for postharvest practices.
Collapse
Affiliation(s)
- Shafieh Salehinia
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Montreal, Quebec, Canada
| | - Fardad Didaran
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Montreal, Quebec, Canada
| | - Sasan Aliniaeifard
- Controlled Environment Agriculture Center, College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran
| | - Saman Zohrabi
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Montreal, Quebec, Canada
| | - Sarah MacPherson
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Montreal, Quebec, Canada
| | - Mark Lefsrud
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
5
|
Shuo H, Xiaowen H, Lu H, Junliang Y. Comprehensive analysis of Capsicum annuum CaLhcs uncovered the roles of CaLhca5.1 and CaLhcb1.7 in photosynthesis and stress tolerance. Int J Biol Macromol 2024; 282:137548. [PMID: 39537061 DOI: 10.1016/j.ijbiomac.2024.137548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/08/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
The light-harvesting chlorophyll a/b-binding proteins (Lhcs) are integral to plants' capture and transfer of light energy during photosynthesis. However, the Lhc gene family remains unexplored in pepper. In this study, 37 CaLhcs (Capsicum annuum Lhc) were identified from the reference genome and classified into five subfamilies (Lhca, Lhcb, CP24, CP26, and CP29) based on phylogenetic relationships and conserved domains, with members of each subfamily displaying similar conserved motifs and gene structures. Cis-element analysis revealed an enrichment of light-responsive elements within CaLhcs (46.1%). Transcriptome analysis showed that most CaLhcs are specifically expressed in leaves, flowers, and pericarp and are responsive to stressors, including NaCl, cold, heat, H2O2, and d-mannitol. Post-transcriptional regulation analysis identified 11 miRNAs that target nine CaLhcs through cleavage. RT-qPCR analysis validated the involvement of CaLhcs in response to NaCl stress. Localization studies confirmed that CaLhca4.1, CaLhcb1.1, CaLhca1.7, CaLhcb1.11, and CaLhcb6.1 are chloroplast-localized, whereas CaLhca5.1 localizes in the nucleus. Overexpression of CaLhcb1.7 and CaLhca5.1 increased chlorophyll content and net photosynthetic rate, enhancing photosynthesis. Additionally, CaLhcb1.7 and CaLhca5.1 reduced ROS accumulation, bolstering the plant's resistance to pathogens and salt stress. These findings provide a foundation for further exploration of CaLhcs in photosynthesis and stress tolerance mechanisms.
Collapse
Affiliation(s)
- Han Shuo
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province) /Hubei Engineering Research Center for Pest Forewarning and Management/College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
| | - Han Xiaowen
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province) /Hubei Engineering Research Center for Pest Forewarning and Management/College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
| | - Hou Lu
- Qinghai Academy of Agriculture and Forestry Science, Qinghai University/Key Laboratory of Agricultural Integrated Pest Management, Qinghai Province/State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Yin Junliang
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province) /Hubei Engineering Research Center for Pest Forewarning and Management/College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China.
| |
Collapse
|
6
|
Raza A, Li Y, Rizwan HM, Khan A, Peng Y, Guo C, Hu Z. Harnessing light-harvesting chlorophyll a/b-binding proteins for multiple abiotic stress tolerance in Chlamydomonas reinhardtii: Insights from genomic and physiological analysis. PHYSIOLOGIA PLANTARUM 2024; 176:e14653. [PMID: 39663819 DOI: 10.1111/ppl.14653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 12/13/2024]
Abstract
Light-harvesting chlorophyll a/b-binding proteins (LHC) of photosystem II perform key functions in various processes, e.g., photosynthesis, development, and abiotic stress responses. Nonetheless, comprehensive genome-wide investigation of LHC family genes (CrLHCs) has not been well-reported in single-cell alga (Chlamydomonas reinhardtii). Here, we discovered 61 putative CrLHC genes in the C. reinhardtii genome and observed that most genes demonstrate stable exon-intron and motif configurations. We predicted five phytohormones- and six abiotic stress-interrelated cis-regulatory elements in promoter regions of CrLHC. Likewise, 19 miRNAs targeting 42 CrLHC genes from 16 unique families were discovered. Besides, we identified 400 transcription factors from 13 families, including ERF, GATA, CPP, bZIP, C3H, MYB, SBP, Dof, bHLH, C2H2, G2-like, etc. Protein-protein interactions and 3D structures provided insight into CrLHC proteins. Gene ontology and KEGG-based enrichment advocated their role in light responses, photosynthesis, and energy metabolisms. Expression analysis highlighted the shared and unique roles of many CrLHC genes against different abiotic stresses (UV-C, green light, heat, nitric oxide, cadmium, nitrogen starvation, and salinity). Under salinity stress, antioxidant enzyme activity, reactive oxygen species markers, photosynthesis-related traits and pigments were significantly affected. Briefly, this comprehensive genomic and physiological study shed light on the impact of CrLHC genes in abiotic stress tolerance and set the path for future genetic engineering experiments.
Collapse
Affiliation(s)
- Ali Raza
- Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Technology Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
- Shenzhen Collaborative Innovation Public Service Platform for Marine Algae Industry, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Yiran Li
- Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Technology Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
- Shenzhen Collaborative Innovation Public Service Platform for Marine Algae Industry, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Hafiz Muhammad Rizwan
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Asadullah Khan
- Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Technology Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
- Shenzhen Collaborative Innovation Public Service Platform for Marine Algae Industry, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Yuqi Peng
- Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Technology Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Shenzhen Collaborative Innovation Public Service Platform for Marine Algae Industry, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Chunli Guo
- Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Technology Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Shenzhen Collaborative Innovation Public Service Platform for Marine Algae Industry, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zhangli Hu
- Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Technology Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Shenzhen Collaborative Innovation Public Service Platform for Marine Algae Industry, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
7
|
Tang X, Liu Y, Li S, Pei Y, Wei Q, Zhang L, Shi Y. Expression pattern of Stlhcb gene family in potato and effects of overexpression of Stcp24 gene on potato photosynthesis. PLoS One 2024; 19:e0305781. [PMID: 39178225 PMCID: PMC11343382 DOI: 10.1371/journal.pone.0305781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/04/2024] [Indexed: 08/25/2024] Open
Abstract
Potato is one of the four staple food crops in the world. It has a wide range of cultivation, high yield, and high nutritional value. Enhancing the photosynthesis of potato is particularly important as it leads to an increase in the potato yield. The light-harvesting pigment-binding protein complex is very important for plant photosynthesis. We identified 12 Stlhcb gene family members from the potato variety "Atlantic" using transcriptome sequencing and bioinformatics. The proteins encoded by the Stlhcb gene family have between 3358 and 4852 atomic number, a relative molecular weight between 24060.16 and 34624.54 Da, and an isoelectric point between 4.99 and 8.65. The RT-qPCR results showed that the 12 Stlhcb genes were expressed in a tissue-specific and time-dependent fashion under low light. The relative expression of the Stlhcb genes in the leaves was significantly higher than that in the stems and roots, and the relative expression of these genes first increased and then decreased with the prolongation of light exposure time. The Stcp24 gene with the highest expression was cloned, and an expression vector was constructed. A subcellular localization analysis was performed in tobacco and an overexpression experiment was performed in potato using an Agrobacterium-mediated method. The subcellular localization analysis showed that the protein encoded by Stcp24 was located in chloroplasts as expected. Overexpression of Stcp24 in transgenic potato increased the yield of potatoes and the content of chlorophyll a and b; increased the net photosynthetic rate, transpiration rate, stomatal conductance, electron transport efficiency, and semi-saturated light intensity; and promoted photosynthesis and plant growth. This study provides a reference for the study of the function of the potato light-harvesting pigment-binding protein gene family. It lays a foundation for further study of the mechanism of the photosynthesis of potato, improvement of the light energy utilization of potato, and molecular breeding of potato.
Collapse
Affiliation(s)
- Xinhua Tang
- College of Agriculture, Northeast Agricultural University, Harbin, China
- National Research Center of Soybean Engineering and Technology, Harbin, China
- Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education, Harbin, China
| | - Yulin Liu
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Shiwei Li
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Yating Pei
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Qiaorong Wei
- College of Agriculture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education, Harbin, China
| | - Lili Zhang
- College of Agriculture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education, Harbin, China
| | - Ying Shi
- College of Agriculture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education, Harbin, China
| |
Collapse
|
8
|
Zaib P, Ahmad HM, Attacha S, Rahman MU, Shafiq MR, Parveen K, Fiaz S, Attia KA, Ishaq S, Arif S, Abushady AM, Umer MJ. Comparative genomics of light harvesting chlorophyll (LHC) gene family and impact of chlorophyll-A contents under drought stress in Helianthus annuus. JOURNAL OF PLANT PHYSIOLOGY 2023; 291:154136. [PMID: 38007968 DOI: 10.1016/j.jplph.2023.154136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 11/28/2023]
Abstract
Drought is one of the main environmental stressors that can alter the water status of plants; negatively affect growth, assimilation, and photosynthesis; and eventually reduce crop yield. We explored the dependence of drought tolerance traits on chlorophyll-A content. Local sunflower cultivars (FH-01, FH-628, FH-633, FH-572, and FH-653) were grown in pots and subjected to drought by withholding water for 10, 15, or 20 d. One month after germination, the leaves of the treated and non-treated plants were collected and subjected to biochemical analyses. Under different water stress levels, the levels of peroxidase (POD), superoxide dismutase (SOD), catalase (CAT), and proline increased, whereas those of chlorophyll-A decreased. Regression analysis clearly found that proline (-0.442), POD (-0.528), SOD (-0.532), and CAT (-0.814) have negative beta coefficient values. Phylogenetic analysis revealed that the LHC gene family is divided into six clades. Subcellular locations indicated that most LHC genes were located in the chloroplast; however, only few genes were present in the peroxisomes and endoplasmic reticulum. Our research found that Arabidopsis thaliana LHC genes were highly homologous to the LHC genes of Helianthus annuus. Furthermore, the LHC genes of both species are located in the chloroplasts; therefore, they play a role in photosynthesis and renewable energy production. This study opens a new horizon for discussing the role of chlorophyll-A in the drought-related traits of sunflowers.
Collapse
Affiliation(s)
- Parwsha Zaib
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan.
| | - Hafiz Muhammad Ahmad
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan.
| | - Safira Attacha
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Pakistan.
| | - Mahmood-Ur Rahman
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan.
| | - Muhammad Rizwan Shafiq
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Sub-Campus Depalpur, Okara, Punjab, Pakistan.
| | - Kousar Parveen
- Deptarment of Environmental Sciences, The Women University Multan, Multan, 66000, Pakistan.
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, The University of Haripur, 22620, Haripur, Pakistan.
| | - Kotb A Attia
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Saira Ishaq
- Department of Food Science and Technology, University of Poonch, Rawalakot, Pakistan.
| | - Shazia Arif
- Department of Plant Breeding and Molecular Genetics, University of Poonch, Rawalakot, Pakistan.
| | - Asmaa M Abushady
- Biotechnology School, Nile University, 26th July Corridor, Sheikh Zayed City, Giza, 12588, Egypt; Department of Genetics, Agriculture College, Ain Shams University, Cairo, Egypt.
| | - Muhammad Jawad Umer
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan, 455000, China.
| |
Collapse
|
9
|
Lv H, Liang C, Liu W, Chen N, Li X, Wang Q, Yao X, Wang J, Zhu L, Wang J. Multi-level biological effects of diverse alkyl chains phthalate esters on cotton seedlings (Gossypium hirsutum L.): Insights into individual, physiological-biochemical and molecular perspectives. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132352. [PMID: 37619280 DOI: 10.1016/j.jhazmat.2023.132352] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 08/26/2023]
Abstract
Phthalate esters (PAEs) are organic contaminants that pose environmental threat and safety risks to soil health and crop production. However, the ecological toxicity of different PAEs to cotton and the underlying mechanisms are not clear. This study investigated the ecotoxic effects and potential mechanisms of different alkyl-chain PAEs, including dioctyl phthalate (DOP), dibutyl phthalate (DBP), and diethyl phthalate (DEP) on cotton seedlings at multiple levels. The results showed that PAEs significantly hindered the growth and development of cotton. The chlorophyll content decreased by 1.87-31.66 %, accompanied by non-stomatal photosynthetic inhibition. The antioxidant system was activated by the three PAEs in cotton seedlings, while the osmotic potential was boosted intracellularly. Additionally, PAEs significantly interfered with functional gene expression and exhibited genotoxicity. Risk assessment results indicated that the ecotoxicity was DOP >DBP >DEP, with a "dose-response" relationship. The affinity between the three PAEs and catalase increased as the alkyl chain length increased, further supporting the toxicity sequence. Surprisingly, the bioconcentration factors of short-chain DEP were 8.07 ± 5.89 times and 1837.49 ± 826.83 times higher than those of long-chain DBP and DOP, respectively. These results support the ecological risk assessment of PAEs in cotton and provide new insights into determining the toxicity levels of different PAEs.
Collapse
Affiliation(s)
- Huijuan Lv
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, China
| | - Chunliu Liang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, China
| | - Wenrong Liu
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, China
| | - Na Chen
- Ningyang Environmental Monitoring Centre, Ningyang, Tai'an, Shandong 271400, China
| | - Xianxu Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, China
| | - Qian Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, China
| | - Xiangfeng Yao
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, China
| | - Jinhua Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, China
| | - Lusheng Zhu
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, China.
| |
Collapse
|
10
|
Li X, Jiang Z, Zhang C, Cai K, Wang H, Pan W, Sun X, Gao Y, Xu K. Comparative genomics analysis provide insights into evolution and stress responses of Lhcb genes in Rosaceae fruit crops. BMC PLANT BIOLOGY 2023; 23:484. [PMID: 37817059 PMCID: PMC10566169 DOI: 10.1186/s12870-023-04438-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/04/2023] [Indexed: 10/12/2023]
Abstract
BACKGROUND Light-harvesting chlorophyll a/b b evelopment of higher plants and in response to abiotic stress. Previous works has demonstrated that that Lhcb genes were involved in the phytochrome regulation and responded to the different light and temperature conditions in Poaceae (such as maize). However, the evolution and functions of Lhcb genes remains poorly characterized in important Rosaceae species. RESULTS In this investigation, we conducted a genome-wide analysis and identified a total of 212 Lhcb genes across nine Rosaceae species. Specifically, we found 23 Lhcb genes in Fragaria vesca, 20 in Prunus armeniaca, 33 in Malus domestica 'Gala', 21 in Prunus persica, 33 in Rosa chinensis, 29 in Pyrus bretschneideri, 18 in Rubus occidentalis, 20 in Prunus mume, and 15 in Prunus salicina. Phylogenetic analysis revealed that the Lhcb gene family could be classified into seven major subfamilies, with members of each subfamily sharing similar conserved motifs. And, the functions of each subfamily was predicted based on the previous reports from other species. The Lhcb proteins were highly conserved within their respective subfamilies, suggesting similar functions. Interestingly, we observed similar peaks in Ks values (0.1-0.2) for Lhcb genes in apple and pear, indicating a recent whole genome duplication event (about 30 to 45 million years ago). Additionally, a few Lhcb genes underwent tandem duplication and were located across all chromosomes of nine species of Rosaceae. Furthermore, the analysis of the cis-acting elements in the 2000 bp promoter region upstream of the pear Lhcb gene revealed four main categories: light response correlation, stress response correlation, hormone response correlation, and plant growth. Quantitative expression analysis demonstrated that Lhcb genes exhibited tissue-specific expression patterns and responded differently to low-temperature stress in Rosaceae species. CONCLUSIONS These findings shed light on the evolution and phylogeny of Lhcb genes in Rosaceae and highlight the critical role of Lhcb in pear's response to low temperatures. The results obtained provide valuable insights for further investigations into the functions of Lhcb genes in Rosaceae, and these functional genes will be used for further fruit tree breeding and improvement to cope with the current climate changes.
Collapse
Affiliation(s)
- Xiaolong Li
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Zeyu Jiang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Chaofan Zhang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Kefan Cai
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Hui Wang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Weiyi Pan
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Xuepeng Sun
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Yongbin Gao
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| | - Kai Xu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
11
|
Wang L, Wei J, Shi X, Qian W, Mehmood J, Yin Y, Jia H. Identification of the Light-Harvesting Chlorophyll a/b Binding Protein Gene Family in Peach ( Prunus persica L.) and Their Expression under Drought Stress. Genes (Basel) 2023; 14:1475. [PMID: 37510379 PMCID: PMC10378835 DOI: 10.3390/genes14071475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
In higher plants, light-harvesting chlorophyll a/b binding (Lhc) proteins play a vital role in photosynthetic processes and are widely involved in the regulation of plant growth, development, and response to abiotic stress. However, the Lhc gene family has not been well identified in peaches (Prunus persica L.). In this study, 19 PpLhc genes were identified in the peach genome database, which were unevenly distributed on all chromosomes. Phylogenetic analysis demonstrated that PpLhc proteins could be divided into three major subfamilies, each of whose members had different exon-intron structures but shared similar conserved motifs. A total of 17 different kinds of cis-regulatory elements were identified in the promoter regions of all PpLhc genes, which could be classified into three categories: plant growth and development, stress response, and phytohormone response. In addition, transcriptomic data analysis and RT-qPCR results revealed that the expression profiles of some PpLhc genes changed under drought treatment, suggesting the crucial roles of Lhc genes in the regulation of plant tolerance to drought stress. Taken together, these findings will provide valuable information for future functional studies of PpLhc genes, especially in response to drought stress.
Collapse
Affiliation(s)
- Li Wang
- Huzhou Academy of Agricultural Sciences, Huzhou 313000, China
| | - Jia Wei
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xingyun Shi
- Huzhou Academy of Agricultural Sciences, Huzhou 313000, China
| | - Weihong Qian
- Huzhou Academy of Agricultural Sciences, Huzhou 313000, China
| | - Jan Mehmood
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yiming Yin
- Huzhou Academy of Agricultural Sciences, Huzhou 313000, China
| | - Huijuan Jia
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
12
|
Chen L, Yang W, Liu S, Meng Y, Zhu Z, Liang R, Cao K, Xie Y, Li X. Genome-wide analysis and identification of light-harvesting chlorophyll a/b binding (LHC) gene family and BSMV-VIGS silencing TaLHC86 reduced salt tolerance in wheat. Int J Biol Macromol 2023; 242:124930. [PMID: 37236564 DOI: 10.1016/j.ijbiomac.2023.124930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 04/24/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023]
Abstract
The discovery and identification of gene families by using wide-genome and public databases is an effective way to gain initial insight into gene function, which also is one of the current hot spots of research. Chlorophyll ab-binding proteins (LHC) are important for photosynthesis and widely involved in plant adversity stress. However, the study in wheat has not been reported. In this study, we identified 127 TaLHC members from common wheat which were unevenly distributed on all chromosomes except 3B and 3D. All members divided into three subfamilies, LHC a, LHC b and the LHC t which was only discovered in wheat. All of them had maximum expression in leaves and contained multiple light-responsive cis-acting element, which were evidence of the extensive involvement of LHC families in photosynthesis. In addition, we also analyzed their collinear relationship, targeting relationship with miRNA and their responses under different stresses. Based on these analyses, it was found that TaLHC86 was an excellent candidate gene for stress resistance. The full-length ORF of TaLHC86 was 792 bp and was localized on the chloroplasts. The salt tolerance of wheat was reduced when BSMV-VIGS silenced TaLHC86, and the photosynthetic rate and electron transport were also seriously affected. This study made a comprehensive analysis of the TaLHC family and found that TaLHC86 was a good gene for salt tolerance.
Collapse
Affiliation(s)
- Liuping Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Weibing Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Shuqing Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ying Meng
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhanhua Zhu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rui Liang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kaiyan Cao
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanzhou Xie
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xuejun Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
13
|
Cui J, Qiu T, Li L, Cui S. De novo full-length transcriptome analysis of two ecotypes of Phragmites australis (swamp reed and dune reed) provides new insights into the transcriptomic complexity of dune reed and its long-term adaptation to desert environments. BMC Genomics 2023; 24:180. [PMID: 37020272 PMCID: PMC10077656 DOI: 10.1186/s12864-023-09271-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/23/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND The extremely harsh environment of the desert is changing dramatically every moment, and the rapid adaptive stress response in the short term requires enormous energy expenditure to mobilize widespread regulatory networks, which is all the more detrimental to the survival of the desert plants themselves. The dune reed, which has adapted to desert environments with complex and variable ecological factors, is an ideal type of plant for studying the molecular mechanisms by which Gramineae plants respond to combinatorial stress of the desert in their natural state. But so far, the data on the genetic resources of reeds is still scarce, therefore most of their research has focused on ecological and physiological studies. RESULTS In this study, we obtained the first De novo non-redundant Full-Length Non-Chimeric (FLNC) transcriptome databases for swamp reeds (SR), dune reeds (DR) and the All of Phragmites australis (merged of iso-seq data from SR and DR), using PacBio Iso-Seq technology and combining tools such as Iso-Seq3 and Cogent. We then identified and described long non-coding RNAs (LncRNA), transcription factor (TF) and alternative splicing (AS) events in reeds based on a transcriptome database. Meanwhile, we have identified and developed for the first time a large number of candidates expressed sequence tag-SSR (EST-SSRs) markers in reeds based on UniTransModels. In addition, through differential gene expression analysis of wild-type and homogenous cultures, we found a large number of transcription factors that may be associated with desert stress tolerance in the dune reed, and revealed that members of the Lhc family have an important role in the long-term adaptation of dune reeds to desert environments. CONCLUSIONS Our results provide a positive and usable genetic resource for Phragmites australis with a widespread adaptability and resistance, and provide a genetic database for subsequent reeds genome annotation and functional genomic studies.
Collapse
Affiliation(s)
- Jipeng Cui
- College of Life Sciences, Capital Normal University, Haidian District, Beijing, 100048, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Haidian District, Beijing, 100048, China
| | - Tianhang Qiu
- College of Life Sciences, Capital Normal University, Haidian District, Beijing, 100048, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Haidian District, Beijing, 100048, China
| | - Li Li
- College of Life Sciences, Capital Normal University, Haidian District, Beijing, 100048, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Haidian District, Beijing, 100048, China
| | - Suxia Cui
- College of Life Sciences, Capital Normal University, Haidian District, Beijing, 100048, China.
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Haidian District, Beijing, 100048, China.
| |
Collapse
|
14
|
Zou Z, Xiao Y, Zhang L, Zhao Y. Analysis of Lhc family genes reveals development regulation and diurnal fluctuation expression patterns in Cyperus esculentus, a Cyperaceae plant. PLANTA 2023; 257:59. [PMID: 36807540 DOI: 10.1007/s00425-023-04092-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Sixteen Lhc genes representing 13 phylogenetic groups were identified from the full-length transcriptome of tigernut, exhibiting development regulation and diurnal fluctuation expression patterns in leaves. Nuclear encoded light-harvesting chlorophyll a/b-binding (Lhc) proteins play indispensable roles in oxygenic photosynthesis. In this study, we present the first transcriptome-based characterization of Lhc family genes in tigernut (Cyperus esculentus L.), a Cyperaceae C4 plant producing oil in underground tubers. A number of 16 Lhc genes representing 13 phylogenetic groups identified from the full-length tigernut transcriptome are equal to that found in both Carex littledalei (another Cyperaceae plant) and papaya, slightly more than 15 members present in both rice and jatropha, but relatively less than 18, 20, and 21 members present in sorghum, cassava, and Arabidopsis, respectively. Nevertheless, nearly one-vs-one orthologous relationship was observed in most groups, though some of them are no longer located in syntenic blocks and species-specific expansion was frequently found in Lhcb1. Comparative genomics analysis revealed that the loss of two groups (i.e., Lhca2 and Lhca5) in C. littledalei is species-specific, sometime after the split with tigernut, and the expansion of Lhcb1 was mainly contributed by tandem duplication as observed in most species. Interestingly, a transposed duplication, which appears to be shared by monocots, was also identified in Lhcb1. Further transcriptome profiling revealed a predominant expression pattern of most CeLhc family genes in photosynthetic tissues and enhanced transcription during leaf maturation, reflecting their key roles in light absorption. Moreover, qRT-PCR analysis revealed an apparent diurnal fluctuation expression pattern of 11 dominant CeLhc genes. These findings not only highlight species-specific evolution of Lhc genes in the Cyperaceae family as well as the monocot lineage, but also provide valuable information for further functional analysis and genetic improvement in tigernut.
Collapse
Affiliation(s)
- Zhi Zou
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Biosciences and Biotechnology/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, People's Republic of China.
| | - Yanhua Xiao
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Biosciences and Biotechnology/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, People's Republic of China
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Science, South-Central Minzu University, Wuhan, 430074, Hubei, People's Republic of China
| | - Li Zhang
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Biosciences and Biotechnology/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, People's Republic of China
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Science, South-Central Minzu University, Wuhan, 430074, Hubei, People's Republic of China
| | - Yongguo Zhao
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Biosciences and Biotechnology/Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, People's Republic of China.
- Guangdong University of Petrochemical Technology, Maoming, 525000, Guangdong, People's Republic of China.
| |
Collapse
|
15
|
Phylogenetic, Structural and Functional Evolution of the LHC Gene Family in Plant Species. Int J Mol Sci 2022; 24:ijms24010488. [PMID: 36613939 PMCID: PMC9820578 DOI: 10.3390/ijms24010488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/13/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022] Open
Abstract
Light-harvesting chlorophyll a/b-binding (LHC) superfamily proteins play a vital role in photosynthesis. Although the physiological and biochemical functions of LHC genes have been well-characterized, the structural evolution and functional differentiation of the products need to be further studied. In this paper, we report the genome-wide identification and phylogenetic analysis of LHC genes in photosynthetic organisms. A total of 1222 non-redundant members of the LHC family were identified from 42 species. According to the phylogenetic clustering of their homologues with Arabidopsis thaliana, they can be divided into four subfamilies. In the subsequent evolution of land plants, a whole-genome replication (WGD) event was the driving force for the evolution and expansion of the LHC superfamily, with its copy numbers rapidly increasing in angiosperms. The selection pressure of photosystem II sub-unit S (PsbS) and ferrochelatase (FCII) families were higher than other subfamilies. In addition, the transcriptional expression profiles of LHC gene family members in different tissues and their expression patterns under exogenous abiotic stress conditions significantly differed, and the LHC genes are highly expressed in mature leaves, which is consistent with the conclusion that LHC is mainly involved in the capture and transmission of light energy in photosynthesis. According to the expression pattern and copy number of LHC genes in land plants, we propose different evolutionary trajectories in this gene family. This study provides a basis for understanding the molecular evolutionary characteristics and evolution patterns of plant LHCs.
Collapse
|
16
|
Luo J, Abid M, Tu J, Gao P, Wang Z, Huang H. Genome-Wide Identification of the LHC Gene Family in Kiwifruit and Regulatory Role of AcLhcb3.1/3.2 for Chlorophyll a Content. Int J Mol Sci 2022; 23:ijms23126528. [PMID: 35742967 PMCID: PMC9224368 DOI: 10.3390/ijms23126528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/29/2022] [Accepted: 06/09/2022] [Indexed: 02/04/2023] Open
Abstract
Light-harvesting chlorophyll a/b-binding (LHC) protein is a superfamily that plays a vital role in photosynthesis. However, the reported knowledge of LHCs in kiwifruit is inadequate and poorly understood. In this study, we identified 42 and 45 LHC genes in Actinidia chinensis (Ac) and A. eriantha (Ae) genomes. Phylogenetic analysis showed that the kiwifruit LHCs of both species were grouped into four subfamilies (Lhc, Lil, PsbS, and FCII). Expression profiles and qRT-PCR results revealed expression levels of LHC genes closely related to the light, temperature fluctuations, color changes during fruit ripening, and kiwifruit responses to Pseudomonas syringae pv. actinidiae (Psa). Subcellular localization analysis showed that AcLhcb1.5/3.1/3.2 were localized in the chloroplast while transient overexpression of AcLhcb3.1/3.2 in tobacco leaves confirmed a significantly increased content of chlorophyll a. Our findings provide evidence of the characters and evolution patterns of kiwifruit LHCs genes in kiwifruit and verify the AcLhcb3.1/3.2 genes controlling the chlorophyll a content.
Collapse
Affiliation(s)
- Juan Luo
- College of Life Science, Nanchang University, Nanchang 330031, China; (J.L.); (J.T.)
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (M.A.); (P.G.)
| | - Muhammad Abid
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (M.A.); (P.G.)
| | - Jing Tu
- College of Life Science, Nanchang University, Nanchang 330031, China; (J.L.); (J.T.)
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (M.A.); (P.G.)
| | - Puxing Gao
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (M.A.); (P.G.)
| | - Zupeng Wang
- Engineering Laboratory for Kiwifruit Industrial Technology, Chinese Academy of Sciences, Wuhan 430074, China
- Correspondence: (Z.W.); (H.H.)
| | - Hongwen Huang
- College of Life Science, Nanchang University, Nanchang 330031, China; (J.L.); (J.T.)
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (M.A.); (P.G.)
- Correspondence: (Z.W.); (H.H.)
| |
Collapse
|
17
|
Wei Y, Lu X, Bao J, Zhang C, Yan H, Li K, Gong M, Li S, Ma S. Identification and expression analysis of chlorophyll a/b binding protein gene family in grape ( Vitis vinifera). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1147-1158. [PMID: 35910436 PMCID: PMC9334500 DOI: 10.1007/s12298-022-01204-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 06/01/2023]
Abstract
UNLABELLED In higher plants, light capture of chlorophyll a/b binding protein (Lhc) plays a crucial role in the plant's response to adverse environment. So far, the family has not been systematically identified in grapes. In this study, 20 VvLhcs were identified in the grape genome, which were distributed in 13 of 19 grape chromosomes and divided into 7 developing branches. The results of gene duplication analysis showed that 6 VvLhcs formed fragment duplication events, while there was no tandem duplication in VvLhcs. Exon-intron structure analysis showed that they had a wide number of exons. Protein conserved motif analysis showed that VvLhcs contained more similar motif structures in the same phylogenetic branch. The cis-acting elements in the VvLhcs promoter region mainly respond to light, plant hormones and abiotic stresses. In addition, qRT-PCR results showed that different proportions of salt stress and red-blue light affected the expression of VvLhcs and the expression patterns of genes in different grape varieties were different. The results for further study on different grape varieties in different combinations of red and blue light of the Lhc provide a theoretical basis. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-022-01204-5.
Collapse
Affiliation(s)
- Yunchun Wei
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 China
| | - Xu Lu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - Jinyu Bao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - Congcong Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - Haokai Yan
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - Kang Li
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 China
| | - Meishuang Gong
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 China
| | - Sheng Li
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 China
- Gansu Provincial Key Lab of Arid Land Crop Science, Gansu Agricultural University, Lanzhou, 730070 China
| | - Shaoying Ma
- Basical Experimental Teaching Center, Gansu Agricultural University, Lanzhou, 730070 China
| |
Collapse
|
18
|
Liang D, Qi Z, Du Y, Yu J, Yu M, Zhang R, Cao H, Pan X, Qiao J, Song T, Liu Y, Chen Z, Liu Y. Identification of Differentially Expressed Genes Reveal Conserved Mechanisms in the Rice- Magnaporthe oryzae Interaction. FRONTIERS IN PLANT SCIENCE 2022; 13:723356. [PMID: 35449886 PMCID: PMC9016282 DOI: 10.3389/fpls.2022.723356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Magnaporthe oryzae causes rice blast disease and is responsible for major losses in rice production worldwide. Although numerous studies have focused on the interactions between Oryza sativa and M. oryzae, to date, the conserved mechanisms remain in part unclear. In this study, a comparative analysis of transcriptomes of O. sativa L. ssp. japonica cv. 'Nipponbare' interacting with three M. oryzae strains (248, 235, and 163) were performed to explore the conserved molecular mechanisms. Differentially expressed genes with similar expression patterns in the interactions between cultivar 'Nipponbare' and three M. oryzae strains were defined as Conserved Differentially Expressed Genes (CDEGs). These included 3,647 O. sativa CDEGs and 3,655 M. oryzae CDEGs. Four rice CDEGs (LOC_Os03g19270, LOC_Os07g36600, LOC_Os05g28740, and LOC_Os01g32780) encoding universal stress protein (USP) were induced within 24 h post-inoculation (hpi) by three M. oryzae strains. Meanwhile, overexpression of LOC_Os07g36600 resulted in enhanced rice resistance against M. oryzae. Furthermore, four rice genes coding light-harvesting chlorophyll a/b-binding (LHC) protein (LOC_Os02g52650, LOC_Os09g12540, LOC_Os11g13850, LOC_Os05g22730) were also identified as CDEGs and were induced at 48 hpi, which might contribute to blast resistance through reactive oxygen species (ROS) accumulation. MoCDIP4 is M. oryzae effector inducing rice cell death and were verified that include AA9 CAZy domain (namely GH61 domain). In this study, we found seven MoCDIP4-homologous genes coding proteins with signal peptides and AA9 CAZy domains, which were continuously up-regulated across all infection stages relative to uninoculated control. This study uncovered that genes are required for conserved mechanisms of rice-M. oryzae interaction, which includes rice genes encoding USP proteins and LHC proteins, as well as M. oryzae genes encoding AA9 proteins. This study will help us to understand how O. sativa responds to M. oryzae infections and the molecular mechanisms of M. oryzae pathogenicity.
Collapse
|
19
|
Jaramillo AM, Sierra S, Chavarriaga-Aguirre P, Castillo DK, Gkanogiannis A, López-Lavalle LAB, Arciniegas JP, Sun T, Li L, Welsch R, Boy E, Álvarez D. Characterization of cassava ORANGE proteins and their capability to increase provitamin A carotenoids accumulation. PLoS One 2022; 17:e0262412. [PMID: 34995328 PMCID: PMC8741059 DOI: 10.1371/journal.pone.0262412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 12/23/2021] [Indexed: 11/19/2022] Open
Abstract
Cassava (Manihot esculenta Crantz) biofortification with provitamin A carotenoids is an ongoing process that aims to alleviate vitamin A deficiency. The moderate content of provitamin A carotenoids achieved so far limits the contribution to providing adequate dietary vitamin A levels. Strategies to increase carotenoid content focused on genes from the carotenoids biosynthesis pathway. In recent years, special emphasis was given to ORANGE protein (OR), which promotes the accumulation of carotenoids and their stability in several plants. The aim of this work was to identify, characterize and investigate the role of OR in the biosynthesis and stabilization of carotenoids in cassava and its relationship with phytoene synthase (PSY), the rate-limiting enzyme of the carotenoids biosynthesis pathway. Gene and protein characterization of OR, expression levels, protein amounts and carotenoids levels were evaluated in roots of one white (60444) and two yellow cassava cultivars (GM5309-57 and GM3736-37). Four OR variants were found in yellow cassava roots. Although comparable expression was found for three variants, significantly higher OR protein amounts were observed in the yellow varieties. In contrast, cassava PSY1 expression was significantly higher in the yellow cultivars, but PSY protein amount did not vary. Furthermore, we evaluated whether expression of one of the variants, MeOR_X1, affected carotenoid accumulation in cassava Friable Embryogenic Callus (FEC). Overexpression of maize PSY1 alone resulted in carotenoids accumulation and induced crystal formation. Co-expression with MeOR_X1 led to greatly increase of carotenoids although PSY1 expression was high in the co-expressed FEC. Our data suggest that posttranslational mechanisms controlling OR and PSY protein stability contribute to higher carotenoid levels in yellow cassava. Moreover, we showed that cassava FEC can be used to study the efficiency of single and combinatorial gene expression in increasing the carotenoid content prior to its application for the generation of biofortified cassava with enhanced carotenoids levels.
Collapse
Affiliation(s)
- Angélica M. Jaramillo
- HarvestPlus, c/o The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Santiago Sierra
- The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Paul Chavarriaga-Aguirre
- The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Diana Katherine Castillo
- The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Anestis Gkanogiannis
- The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | | | - Juan Pablo Arciniegas
- The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Tianhu Sun
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, New York, United States of America
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, New York, United States of America
| | - Ralf Welsch
- Faculty of Biology II, University of Freiburg, Freiburg, Germany
| | - Erick Boy
- HarvestPlus, International Food Policy Research Institute, Washington, DC, United States of America
| | - Daniel Álvarez
- HarvestPlus, c/o The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| |
Collapse
|
20
|
Zhang Q, Ma C, Wang X, Ma Q, Fan S, Zhang C. Genome-wide identification of the light-harvesting chlorophyll a/b binding (Lhc) family in Gossypium hirsutum reveals the influence of GhLhcb2.3 on chlorophyll a synthesis. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:831-842. [PMID: 34263979 DOI: 10.1111/plb.13294] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 05/04/2021] [Indexed: 06/13/2023]
Abstract
Light-harvesting chlorophyll a/b binding (Lhc) family proteins play a significant role in photosynthetic processes. Our objective was systematic identification and analysis of the Lhc family in cotton, as well as the relationship between Lhc family genes and chlorophyll synthesis during photosynthetic processes. We used genome-wide identification, phylogenetic analysis, chromosomal distribution and collinearity to examine potential functions of Lhc superfamily genes in upland cotton. Subcellular localization, qRT-PCR, a yeast two hybrid (Y2H) , and Virus-induced gene silencing (VIGS) experiment were used to explore function of GhLhcb2.3. Focusing on GhLhc family, gene structural analysis of G. hirsutum Lhc family genes (GhLhc) indicated the conservation of selected Lhc family members. The expression pattern of GhLhc proteins shows that Lhc family proteins are important for photosynthetic processes in leaves. Results of subcellular localization and qRT-PCR in different cotton varieties showed that GhLhcb2.3 is closely related to chloroplast chlorophyll. Y2H found extensive heteromeric interactions between the GhLhcb2.3 and GhLhcb1.4. Subcellular localization revealed that GhLhcb1.4 is located in chloroplasts. VIGS showed that GhLhcb2.3 influenced chlorophyll a synthesis. We comprehensively identified Lhc family genes in cotton, characterized these genes and reveal the influence of GhLhcb2.3 on chlorophyll a synthesis.
Collapse
Affiliation(s)
- Q Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450000, China
| | - C Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, Henan, 455000, China
| | - X Wang
- Anyang Institute of Technology, College of Biology and Food Engineering, Anyang, Henan, 455000, China
| | - Q Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, Henan, 455000, China
| | - S Fan
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450000, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, Henan, 455000, China
| | - C Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450000, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, Henan, 455000, China
| |
Collapse
|
21
|
Comparative physiological and transcriptomic analysis of pear leaves under distinct training systems. Sci Rep 2020; 10:18892. [PMID: 33144674 PMCID: PMC7641215 DOI: 10.1038/s41598-020-75794-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 10/19/2020] [Indexed: 12/21/2022] Open
Abstract
Canopy architecture is critical in determining the light interception and distribution, and subsequently the photosynthetic efficiency and productivity. However, the physiological responses and molecular mechanisms by which pear canopy architectural traits impact on photosynthesis remain poorly understood. Here, physiological investigations coupled with comparative transcriptomic analyses were performed in pear leaves under distinct training systems. Compared with traditional freestanding system, flat-type trellis system (DP) showed higher net photosynthetic rate (PN) levels at the most time points throughout the entire monitored period, especially for the interior of the canopy in sunny side. Gene ontology analysis revealed that photosynthesis, carbohydrate derivative catabolic process and fatty acid metabolic process were over-represented in leaves of DP system with open-canopy characteristics. Weighted gene co-expression network analysis uncovered a significant network module positive correlated with PN value. The hub genes (PpFKF1 and PpPRR5) of the module were enriched in circadian rhythm pathway, suggesting a functional role for circadian clock genes in mediating photosynthetic performance under distinct training systems. These results draw a link between pear photosynthetic response and specific canopy architectural traits, and highlight light harvesting and circadian clock network as potential targets for the input signals from the fluctuating light availability under distinct training systems.
Collapse
|
22
|
Zhao S, Gao H, Luo J, Wang H, Dong Q, Wang Y, Yang K, Mao K, Ma F. Genome-wide analysis of the light-harvesting chlorophyll a/b-binding gene family in apple (Malus domestica) and functional characterization of MdLhcb4.3, which confers tolerance to drought and osmotic stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:517-529. [PMID: 32688296 DOI: 10.1016/j.plaphy.2020.06.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 05/27/2023]
Abstract
In higher plants, the light-harvesting chlorophyll a/b-binding (Lhc) proteins function in multiple processes that are critical to plant growth, development, and abiotic stress response. However, the Lhc gene family has not been well characterized in the important fruit crop, apple (Malus × domestica Borkh.). In this study, we identified 27 Lhc genes in the apple genome. Phylogenetic analysis showed that the Lhc gene family could be classified into three major subfamilies, each of whose members shared similar conserved motifs. Evolutionary analysis indicated that duplicated MdLhc genes were primarily under purifying selection. MdLhcs were expressed at varying levels in all tissues examined and showed different expression patterns under drought stress. The overexpression of MdLhcb4.3 in transgenic Arabidopsis and apple callus enhanced their tolerance to drought and osmotic stress. Taken together, these results demonstrate the important role of Lhc proteins in the regulation of plant resistance to drought and osmotic stress and provide valuable information for further study of Lhc functions in apple.
Collapse
Affiliation(s)
- Shuang Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, China.
| | - Hanbing Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, China.
| | - Jiawei Luo
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, China.
| | - Haibo Wang
- Shandong Institute of Pomology, Tai'an, 271000, China.
| | - Qinglong Dong
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, China.
| | - Yanpeng Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, China.
| | - Kaiyan Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, China.
| | - Ke Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, China.
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, China.
| |
Collapse
|
23
|
Genes encoding light-harvesting chlorophyll a/b-binding proteins in papaya (Carica papaya L.) and insight into lineage-specific evolution in Brassicaceae. Gene 2020; 748:144685. [PMID: 32334024 DOI: 10.1016/j.gene.2020.144685] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 11/23/2022]
Abstract
Light-harvesting chlorophyll a/b-binding (Lhc) proteins comprise a plant-specific superfamily involved in photosynthesis and stress responses. Despite their importance, little is known in papaya (Carica papaya), an economically important tree fruit crop as well as a species close to the model plant arabidopsis (Arabidopsis thaliana). This study reports a first genome-wide analysis of Lhc superfamily genes in papaya, and a total of 28 members that represent four defined families or 26 orthologous groups were identified from the papaya genome. The superfamily number is comparable to 28 or 27 reported in castor (Ricinus communis) and jatropha (Jatropha curcas), respectively, two Euphorbiaceous plants also without any recent whole-genome duplication (WGD), but relatively less than 35, 34, 32, 32, 37, 30 or 32 present in cassava (Manihot esculenta), arabidopsis, A. lyrata, A. halleri, Capsella rubella, C. grandiflora, and Eutrema salsugineum, respectively, representative species having experienced one or two recent WGDs. Local duplication was shown to play a predominant role in gene expansion in papaya, castor, and jatropha, which is only confined to the Lhcb1 group. By contrast, WGD plays a relatively more important role in cassava, arabidopsis, and other Brassicaceous plants. Further comparison of Brassicaceous plants revealed that loss of the SEP6 group in arabidopsis is lineage-specific, occurring sometime after papaya-arabidopsis divergence but before the radiation of Brassicaceous plants. Transcriptional profiling revealed a leaf-preferential expression pattern of most CpLhc superfamily genes and their transcript levels were markedly regulated by three abiotic stresses, i.e., mimicking drought, cold, and high salt. These findings not only facilitate further functional studies in papaya, but also improve our knowledge on lineage-specific evolution of this special gene superfamily in Brassicaceae.
Collapse
|
24
|
Zhao Y, Kong H, Guo Y, Zou Z. Light-harvesting chlorophyll a/b-binding protein-coding genes in jatropha and the comparison with castor, cassava and arabidopsis. PeerJ 2020; 8:e8465. [PMID: 32025382 PMCID: PMC6993755 DOI: 10.7717/peerj.8465] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/27/2019] [Indexed: 12/27/2022] Open
Abstract
The Lhc (light-harvesting chlorophyll a/b-binding protein) superfamily represents a class of antennae proteins that play indispensable roles in capture of solar energy as well as photoprotection under stress conditions. Despite their importance, little information has been available beyond model plants. In this study, we presents a first genome-wide analysis of Lhc superfamily genes in jatropha (Jatropha curcas L., Euphorbiaceae), an oil-bearing plant for biodiesel purpose. A total of 27 members were identified from the jatropha genome, which were shown to distribute over nine out of the 11 chromosomes. The superfamily number is comparable to 28 present in castor (Ricinus communis, Euphorbiaceae), but relatively less than 35 in cassava (Manihot esculenta, Euphorbiaceae) and 34 in arabidopsis (Arabidopsis thaliana) that experienced one or two recent whole-genome duplications (WGDs), respectively. In contrast to a high number of paralogs present in cassava and arabidopsis, few duplicates were found in jatropha as observed in castor, corresponding to no recent WGD occurred in these two species. Nevertheless, 26 orthologous groups representing four defined families were found in jatropha, and nearly one-to-one orthologous relationship was observed between jatropha and castor. By contrast, a novel group named SEP6 was shown to have been lost in arabidopsis. Global transcriptome profiling revealed a predominant expression pattern of most JcLhc superfamily genes in green tissues, reflecting their key roles in photosynthesis. Moreover, their expression profiles upon hormones, drought, and salt stresses were also investigated. These findings not only improve our knowledge on species-specific evolution of the Lhc supergene family, but also provide valuable information for further studies in jatropha.
Collapse
Affiliation(s)
- Yongguo Zhao
- Guangdong University of Petrochemical Technology, Maoming, China.,Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs, Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Science, Haikou, China
| | - Hua Kong
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs, Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Science, Haikou, China
| | - Yunling Guo
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs, Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Science, Haikou, China
| | - Zhi Zou
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs, Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Science, Haikou, China
| |
Collapse
|
25
|
Zhao Y, Zou Z. Genomics analysis of genes encoding respiratory burst oxidase homologs (RBOHs) in jatropha and the comparison with castor bean. PeerJ 2019; 7:e7263. [PMID: 31338257 PMCID: PMC6626655 DOI: 10.7717/peerj.7263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/31/2019] [Indexed: 11/20/2022] Open
Abstract
Respiratory burst oxidase homologs (RBOHs), which catalyze the production of superoxide from oxygen and NADPH, play key roles in plant growth and development, hormone signaling, and stress responses. Compared with extensive studies in model plants arabidopsis and rice, little is known about RBOHs in other species. This study presents a genome-wide analysis of Rboh family genes in jatropha (Jatropha curcas) as well as the comparison with castor bean (Ricinus communis), another economically important non-food oilseed crop of the Euphorbiaceae family. The family number of seven members identified from the jatropha genome is equal to that present in castor bean, and further phylogenetic analysis assigned these genes into seven groups named RBOHD, -C, -B, -E, -F, -N, and -H. In contrast to a high number of paralogs present in arabidopsis and rice that experienced several rounds of recent whole-genome duplications, no duplicate was identified in both jatropha and castor bean. Conserved synteny and one-to-one orthologous relationship were observed between jatropha and castor bean Rboh genes. Although exon-intron structures are usually highly conserved between orthologs, loss of certain introns was observed for JcRbohB, JcRbohD, and RcRbohN, supporting their divergence. Global gene expression profiling revealed diverse patterns of JcRbohs over various tissues. Moreover, expression patterns of JcRbohs during flower development as well as various stresses were also investigated. These findings will not only improve our knowledge on species-specific evolution of the Rboh gene family, but also provide valuable information for further functional analysis of Rboh genes in jatropha.
Collapse
Affiliation(s)
- Yongguo Zhao
- Guangdong University of Petrochemical Technology, Maoming, Guangdong, China.,Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Zhi Zou
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| |
Collapse
|
26
|
Zou Z, Yang J. Genome-wide comparison reveals divergence of cassava and rubber aquaporin family genes after the recent whole-genome duplication. BMC Genomics 2019; 20:380. [PMID: 31092186 PMCID: PMC6521647 DOI: 10.1186/s12864-019-5780-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/07/2019] [Indexed: 12/19/2022] Open
Abstract
Background Aquaporins (AQPs) are a class of integral membrane proteins that facilitate the passive transport of water and other small solutes across biological membranes. Despite their importance, little information is available in cassava (Manihot esculenta), a perennial shrub of the Euphorbiaceae family that serves the sixth major staple crop in the world. Results This study presents a genome-wide analysis of the AQP gene family in cassava. The family of 42 members in this species could be divided into five subfamilies based on phylogenetic analysis, i.e., 14 plasma membrane intrinsic proteins (PIPs), 13 tonoplast intrinsic proteins (TIPs), nine NOD26-like intrinsic proteins (NIPs), four X intrinsic proteins (XIPs), and two small basic intrinsic proteins (SIPs). Best-reciprocal-hit-based sequence comparison and synteny analysis revealed 34 orthologous groups (OGs) present in the Euphorbiaceae ancestor, and nearly one-to-one or two-to-one orthologous relationships were observed between cassava with rubber/physic nut, reflecting the occurrence of one so-called ρ recent whole-genome duplication (WGD) in the last common ancestor of cassava and rubber. In contrast to a predominant role of the ρ WGD on family expansion in rubber, cassava AQP duplicates were derived from the WGD as well as local duplication. Species-specific gene loss was also observed in cassava, which includes the entire NIP4 group and/or six OGs. Comparison of conserved motifs and gene expression profiles revealed divergence of paralogs in cassava as observed in rubber. Conclusions Our findings will not only improve our knowledge on family evolution in Euphorbiaceae, but also provide valuable information for further functional analysis of AQP genes in cassava and rubber. Electronic supplementary material The online version of this article (10.1186/s12864-019-5780-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhi Zou
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, People's Republic of China.
| | - Jianghua Yang
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, People's Republic of China
| |
Collapse
|