1
|
Shi L, Zhang P, Yu B, Cheng L, Liu S, Liu Q, Zhou Y, Xiang M, Zhao P, Chen H. Genomic Analysis of Indel and SV Reveals Functional and Adaptive Signatures in Hubei Indigenous Cattle Breeds. Animals (Basel) 2025; 15:1755. [PMID: 40564307 DOI: 10.3390/ani15121755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2025] [Revised: 06/08/2025] [Accepted: 06/10/2025] [Indexed: 06/28/2025] Open
Abstract
The genetic diversity of cattle plays a crucial role in adapting to environmental challenges and enhancing production traits. While research has predominantly focused on single nucleotide polymorphisms (SNPs), small indel and structural variants (SVs) also significantly contribute to genetic variation. This study investigates the distribution and functional impact of insertions and deletions in five Hubei indigenous cattle breeds. A total of 3,208,816 deletions and 2,082,604 insertions were identified, with the majority found in intergenic and intronic regions. Hotspot regions enriched in immune-related genes were identified, underscoring the role of these variants in disease resistance and environmental adaptation. Our analysis revealed a strong influence of transposable elements (TEs), particularly LINEs and SINEs, on genomic rearrangements. The variants were also found to overlap with economically important traits, such as meat quality, reproduction, and immune response. Population structure analysis revealed genetic differentiation among the breeds, with Wuling cattle showing the highest differentiation. Notably, the NOTCH2 gene was identified as a candidate for regional adaptation due to its significant differentiation across populations. These findings provide valuable genomic resources for enhancing breeding programs, aiming at improving the productivity and resilience of indigenous cattle breeds in China.
Collapse
Affiliation(s)
- Liangyu Shi
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming & Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Pu Zhang
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming & Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Bo Yu
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming & Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Lei Cheng
- Institute of Animal Science and Veterinary Medicine, Wuhan Academy of Agricultural Sciences, Wuhan 430208, China
| | - Sha Liu
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming & Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qing Liu
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming & Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yuan Zhou
- Institute of Animal Science and Veterinary Medicine, Wuhan Academy of Agricultural Sciences, Wuhan 430208, China
| | - Min Xiang
- Institute of Animal Science and Veterinary Medicine, Wuhan Academy of Agricultural Sciences, Wuhan 430208, China
| | - Pengju Zhao
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya 572000, China
| | - Hongbo Chen
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming & Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
2
|
Wang N, Li Y, Li X, Li H, Bian C, Chen X, Jafari H, Chen N, Lei C. Genome-wide analysis of genetic diversity and selection signatures in Fuzhou cattle. Anim Genet 2025; 56:e70015. [PMID: 40324879 DOI: 10.1111/age.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 05/07/2025]
Abstract
The Fuzhou cattle breed, native to northeast China, is widely recognized for its adaptability, disease resistance, and docility. Despite being known for these qualities, its population has declined recently, and there is a significant lack of genomic studies on this species. We sequenced 21 samples from a primary breeding farm to determine the genetic structure, diversity, and selection signature to address this. Additionally, we combined 100 published genomic datasets from diverse geographical regions to characterize the genomic variation of Fuzhou cattle. There were 53 752 978 bi-allelic SNPs retained for downstream analysis. In population structure analysis, Fuzhou cattle show a predominantly East Asian taurine ancestry, with strong genetic affinities to Hanwoo and Yanbian cattle. Despite high nucleotide diversity within the Bos taurine lineage, genetic diversity analysis also revealed significant levels of inbreeding in Fuzhou cattle populations, indicating the need for conservation. Utilizing various methods such as θπ, iHS, FST, π-ratio, and XP-EHH, we identified genes associated with traits like growth, meat quality, energy metabolism, and immunity. Several genes related to cold adaptation were identified, including PLIN5, PLB1, and CPT2. These findings provide a basis for conservation strategies to safeguard the genetic resources of Fuzhou cattle.
Collapse
Affiliation(s)
- Nan Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yushan Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xinyi Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Hao Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Chenqi Bian
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xinyu Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Halima Jafari
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Ningbo Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
3
|
Liu D, Li X, Wang L, Pei Q, Zhao J, Sun D, Ren Q, Han B, Jiang H, Zhang W, Li R, Bao G, Wang S, Tian F, Liu S, Zhao K, Tian D. Transcriptomic and proteomic studies of body size and carcass traits and the longest dorsal muscle in Tibetan sheep. BMC Genomics 2025; 26:543. [PMID: 40442591 PMCID: PMC12121134 DOI: 10.1186/s12864-025-11738-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 05/21/2025] [Indexed: 06/02/2025] Open
Abstract
BACKGROUND Tibetan sheep represent valuable genetic resources on the Tibetan Plateau, and their body size and carcass traits serve as crucial foundations for breeding program development and breeding effects evaluation. The study of body size and carcass characteristics of Tibetan sheep helps to understand their process of genetic regulation. RESULT The body size traits, carcass traits, and muscle fiber structure of plateau-type Tibetan and Zhashijia sheep were compared. Zhashijia ewes displayed considerably higher carcass weight and body size than plateau-type ewes. Additionally, it was observed that Zhashijia rams exhibited significantly greater eye muscle area, chest width, and muscle fiber perimeter in comparison to plateau-type rams. And Glycogen staining results showed that the glycogen content of the plateau-type Tibetan sheep was significantly higher than that of the Zhashijia sheep. Through transcriptomic and proteomic analyses, we identified 366 genes that showed differential expression in the ram group and 248 proteins with differential expression. In the ewe group, we found 623 differentially expressed genes (DEGs) and 624 differentially expressed proteins (DEPs). Among these, eleven genes and fourteen proteins were associated with body size and carcass quality. These genes and proteins showed significant enrichment in the PPAR signaling pathway and protein digestion and absorption. Furthermore, employing weighted gene co-expression network analysis (WGCNA) allowed us to identify twelve genes that are pivotal in regulating body size and carcass. Finally, RT-qPCR validation confirmed the reliability of our RNA-Seq results. CONCLUSION The findings of this study contribute to a deeper comprehension of the morphological characteristics and carcass traits of Tibetan sheep, thereby establishing a robust scientific basis for the selective breeding of novel sheep breeds with enhanced growth performance and superior meat production capacity.
Collapse
Affiliation(s)
- Dehui Liu
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xining Road, Xining, Qinghai, 810001, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar, 161005, China
| | - Xue Li
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xining Road, Xining, Qinghai, 810001, China
| | - Lei Wang
- Qinghai Sheep Breeding and Promotion Service Center, Gangcha, Qinghai, 812300, China
| | - Quanbang Pei
- Qinghai Sheep Breeding and Promotion Service Center, Gangcha, Qinghai, 812300, China
| | - Jincai Zhao
- Qinghai Sheep Breeding and Promotion Service Center, Gangcha, Qinghai, 812300, China
| | - De Sun
- Animal Husbandry and Veterinary Station of Huzhu County of Qinghai Province, Huzhu, 810500, Qinghai, China
| | - Qianben Ren
- Qinghai Sheep Breeding and Promotion Service Center, Gangcha, Qinghai, 812300, China
| | - Buying Han
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xining Road, Xining, Qinghai, 810001, China
| | - Hanjing Jiang
- Qinghai Livestock and Poultry Genetic Resources Protection and Utilization Center, Xining, 810000, China
| | - Wenkui Zhang
- Qinghai Sheep Breeding and Promotion Service Center, Gangcha, Qinghai, 812300, China
| | - Rong Li
- Minhe County Zongbao Township Animal Husbandry and Veterinary Station, Minhe, Qinghai, 810800, China
| | - Guoxiang Bao
- Minhe County Machangyuan Township Animal Husbandry and Veterinary Station, Minhe, Qinghai, 810800, China
| | - Song Wang
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xining Road, Xining, Qinghai, 810001, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei Tian
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xining Road, Xining, Qinghai, 810001, China
| | - Sijia Liu
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xining Road, Xining, Qinghai, 810001, China
| | - Kai Zhao
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xining Road, Xining, Qinghai, 810001, China
| | - Dehong Tian
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xining Road, Xining, Qinghai, 810001, China.
| |
Collapse
|
4
|
Marcuzzi O, Cecco PÁ, Olivera LH, Pereira Rico JA, Calcaterra F, Vega AL, Peral-García P, Fernández ME, Muñoz AR, Giovambattista G. Divergent adaptation to highland and tropical environments in Bolivian Creole cattle. Gene 2025; 949:149354. [PMID: 40015466 DOI: 10.1016/j.gene.2025.149354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/29/2025] [Accepted: 02/22/2025] [Indexed: 03/01/2025]
Abstract
Bolivian Creole cattle populations evolved under low levels of breeding management and, during more than 500 years of natural selection, became adapted to various environments such as the contrasting highland and subtropical environments. Recently, highland Creole cattle were crossbred with Holstein to improve dairy production. The aim of this research was to evaluate the divergent adaptation through selection footprints of Bolivian Creole cattle from Andean highland and tropical lowlands, and to evaluate the effect of Holstein introgression in highland Creole. For this purpose, 130 Creole cattle (75 highland, 55 lowland) and 88 Holstein were genotyped using a microarray. The database was used to determine population structure and admixture and detect selection sweeps using FST, Rsb, XP-EHH, and ROH. Ancestry inference suggested that selection peaks were not due to Holstein introgression. The NCBI database was used to retrieve genes from the common regions and then perform gene ontology analysis. The most prominent selection peaks were on BTA20 and BTA23 and included the PRLR (slick phenotype) and Class I and IIa BoLA genes. Other windows contained candidate genes for hypoxia (ANXA2, NDUFA4L2), angiogenesis and haematological parameters (ANXA2, CPLANE1, NRP1, NRP2), immune response (IL7R, IL6ST, IL31RA, C6, C7, STAT6, NKG2A, IRAK4, KLR, CLEC), oxidative stress (GSTA, HSD17B6) and morphological traits (PLAG1, CHCHD7, CAP2, ARL15). GO analysis revealed enrichment terms and pathways related to immune response, glutathione and retinol metabolism and reported QTLs for coat characteristics, immune response and tick resistance. The results suggest the complex mechanism in the adaptation of Bolivian Creole cattle to the contrasting highland and subtropical environments.
Collapse
Affiliation(s)
- Olivia Marcuzzi
- Instituto de Genética Veterinaria (IGEVET, CONICET), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, 60 Y 118 S/N, 1900 La Plata, Argentina
| | - Paulo Álvarez Cecco
- Instituto de Genética Veterinaria (IGEVET, CONICET), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, 60 Y 118 S/N, 1900 La Plata, Argentina
| | - Leónidas H Olivera
- Instituto de Genética Veterinaria (IGEVET, CONICET), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, 60 Y 118 S/N, 1900 La Plata, Argentina
| | - Juan A Pereira Rico
- Facultad de Ciencias Veterinarias, Universidad Autónoma Gabriel René Moreno, Santa Cruz de la Sierra, Bolivia
| | - Francisco Calcaterra
- Instituto de Genética Veterinaria (IGEVET, CONICET), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, 60 Y 118 S/N, 1900 La Plata, Argentina
| | - Ariel Loza Vega
- Facultad de Ciencias Veterinarias, Universidad Autónoma Gabriel René Moreno, Santa Cruz de la Sierra, Bolivia
| | - Pilar Peral-García
- Instituto de Genética Veterinaria (IGEVET, CONICET), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, 60 Y 118 S/N, 1900 La Plata, Argentina
| | - María E Fernández
- Instituto de Genética Veterinaria (IGEVET, CONICET), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, 60 Y 118 S/N, 1900 La Plata, Argentina
| | | | - Guillermo Giovambattista
- Instituto de Genética Veterinaria (IGEVET, CONICET), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, 60 Y 118 S/N, 1900 La Plata, Argentina.
| |
Collapse
|
5
|
Wang Y, Lv G, Liu Z, Cheng Y, Ding R, Yang G, Yu T. Whole genome and transcriptome analyses identify genetic markers associated with growth traits in Qinchuan black pig. BMC Genomics 2025; 26:469. [PMID: 40355827 PMCID: PMC12067757 DOI: 10.1186/s12864-025-11627-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Growth traits are economically important traits in pig breeding. However, the genetic mechanism of growth traits is still unclear. Qinchuan Black (QCB) pigs are crossbred and produced by hybridizing Guanzhong Black (GZB) pigs and Large White (LW) pigs, its characteristics include fast growth and excellent meat quality. In this study, whole genome and transcriptome analyses revealed the candidate genes associated with growth traits in QCB pigs based on imputed low-coverage whole-genome resequencing data. RESULTS In total, we used 197 low-depth whole-genome resequencing data with an average depth of 3.5X, and then the data were imputed to resequencing data using SWIM reference panel, the imputation accuracy parameters, allele frequency r2 and concordance rate were 0.86 and 95.83%, respectively. We used two methods to investigate the candidate genes affecting the growth traits of QCB pigs, a total of 371 PSGs were identified, which related to muscle tissue development, tissue development and system development. A total of 30,489,782 SNPs were retained. A GWAS of ten growth traits by using fixed and random model circulating probability unification (FarmCPU) model, was performed in QCB pigs. We discovered seven genome wide significant SNPs and eight genome wide suggestive significant SNPs associated with body weight at 2 months (2-BW), body length at 2 months (2-BL), body height at 2 months (2-BH) and body height at 4 months (4-BH), and eighteen potential candidate genes were discovered. Transcriptomic data revealed that 18 differentially expression genes related to muscle and growth and development. Additionally, whole genome and transcriptome analyses found six genes (TENM3, CTNND2, RIMS1, PCDH7, ADGRL3 and CTNNA3) may affect the growth traits in Qinchuan Black pigs. CONCLUSION Our study shows that more candidate genes associated with pig growth traits can be identified by whole genome and transcriptome analyses. We found that six genes may be new key candidate genes affecting pig growth traits. In conclusion, this study elucidated the molecular genetic mechanisms of growth traits and identified new molecular breeding targets, offering a robust scientific basis for advancing breeding strategies and genetic investigations within this breed.
Collapse
Affiliation(s)
- Yaxin Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Guangquan Lv
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhe Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ye Cheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Rongrong Ding
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Gongshe Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Taiyong Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
6
|
Cai B, Kang Y, Ding Z, Guo S, Cao M, Hu L, Zhang B, Wang X, Pei J, Ge Q, Xiong L, Wu X, Guo X. Genomic Characterization of Crossbred-Driven Adaptation in the Endangered Yangba Cattle of China. Animals (Basel) 2025; 15:1065. [PMID: 40218458 PMCID: PMC11987921 DOI: 10.3390/ani15071065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/26/2025] [Accepted: 04/04/2025] [Indexed: 04/14/2025] Open
Abstract
This study unveils the unique origins, evolution, and genetic variations of the Yangba cattle, an endangered breed in China, through a comparative genomic analysis involving 202 individuals from 21 domestic and international breeds. Genetic component analysis revealed that the Yangba cattle comprise four ancestral lineages: Eurasian taurine (18%), East Asian taurine (26%), Chinese indicine (39%), and Indian indicine (17%). Their high genetic diversity and low inbreeding coefficient set them apart significantly from mainstream commercial breeds. Gene introgression analysis indicated that the influx of genetic material from East Asian taurine has enhanced the Yangba cattle's adaptability to environmental stress, while the introgression from Chinese indicine has endowed them with unique advantages in muscle development and tissue repair. A genome-wide selection scan identified strong positive selection signals for genes such as ABCC2, which is involved in immune regulation, and NCOA3, which plays a role in growth regulation, in the Yangba cattle. This study systematically elucidates, for the first time, the composite ancestral composition and mechanisms of adaptive evolution in Yangba cattle. These findings offer critical insights into the conservation and sustainable utilization of endangered cattle resources and underscore the importance of implementing effective breeding programs.
Collapse
Affiliation(s)
- Bao Cai
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (B.C.); (Y.K.); (Z.D.); (S.G.); (M.C.); (L.H.); (B.Z.); (X.W.); (J.P.); (Q.G.); (L.X.)
| | - Yandong Kang
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (B.C.); (Y.K.); (Z.D.); (S.G.); (M.C.); (L.H.); (B.Z.); (X.W.); (J.P.); (Q.G.); (L.X.)
| | - Ziqiang Ding
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (B.C.); (Y.K.); (Z.D.); (S.G.); (M.C.); (L.H.); (B.Z.); (X.W.); (J.P.); (Q.G.); (L.X.)
| | - Shaoke Guo
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (B.C.); (Y.K.); (Z.D.); (S.G.); (M.C.); (L.H.); (B.Z.); (X.W.); (J.P.); (Q.G.); (L.X.)
| | - Mengli Cao
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (B.C.); (Y.K.); (Z.D.); (S.G.); (M.C.); (L.H.); (B.Z.); (X.W.); (J.P.); (Q.G.); (L.X.)
| | - Liyan Hu
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (B.C.); (Y.K.); (Z.D.); (S.G.); (M.C.); (L.H.); (B.Z.); (X.W.); (J.P.); (Q.G.); (L.X.)
| | - Ben Zhang
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (B.C.); (Y.K.); (Z.D.); (S.G.); (M.C.); (L.H.); (B.Z.); (X.W.); (J.P.); (Q.G.); (L.X.)
| | - Xingdong Wang
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (B.C.); (Y.K.); (Z.D.); (S.G.); (M.C.); (L.H.); (B.Z.); (X.W.); (J.P.); (Q.G.); (L.X.)
| | - Jie Pei
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (B.C.); (Y.K.); (Z.D.); (S.G.); (M.C.); (L.H.); (B.Z.); (X.W.); (J.P.); (Q.G.); (L.X.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Qianyun Ge
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (B.C.); (Y.K.); (Z.D.); (S.G.); (M.C.); (L.H.); (B.Z.); (X.W.); (J.P.); (Q.G.); (L.X.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Lin Xiong
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (B.C.); (Y.K.); (Z.D.); (S.G.); (M.C.); (L.H.); (B.Z.); (X.W.); (J.P.); (Q.G.); (L.X.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xiaoyun Wu
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (B.C.); (Y.K.); (Z.D.); (S.G.); (M.C.); (L.H.); (B.Z.); (X.W.); (J.P.); (Q.G.); (L.X.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xian Guo
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (B.C.); (Y.K.); (Z.D.); (S.G.); (M.C.); (L.H.); (B.Z.); (X.W.); (J.P.); (Q.G.); (L.X.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| |
Collapse
|
7
|
Ahmad SF, Gangwar M, Kumar A, Kumar A, Dige MS, Jha GK, Gaur GK, Dutt T. Dissecting genomes of multiple yak populations: unveiling ancestry and high-altitude adaptation through whole-genome resequencing analysis. BMC Genomics 2025; 26:214. [PMID: 40033180 PMCID: PMC11877770 DOI: 10.1186/s12864-025-11387-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 02/19/2025] [Indexed: 03/05/2025] Open
Abstract
The present study was undertaken to elucidate the population structure and differentiation of Indian yak from Chinese and wild cohorts on genome-wide scale by identifying the selection sweeps and genomic basis of their adaptation across different comparisons while analyzing whole genome sequencing (WGS) data using latest bioinformatics tools. The study included 105 individuals from three distinct yak populations i.e., Indian yak (n = 29); Chinese yak (n = 61) and wild yak (n = 15), hypothesized to be related along the evolutionary timescale. Efficient variant calling and quality control in GATK and PLINK programs resulted in around 1 million (1,002,970) high-quality (LD-independent) SNPs with an average genotyping rate of 96.55%. The PCA, ADMIXTURE and TREEMIX analysis revealed stratification of the yak groups into three distinct clusters. The empirical distribution pattern of minor allele frequency (MAF) of SNPs on genome-wide scale was also elucidated for three yak cohorts revealing unique distribution across five different bins. The selection signature analysis revealed candidate genes that are important for the adaptation of Indian yak against harsh environmental conditions in their habitats. Under iHS analysis, several genes were identified to be under selection pressure in Indian yak including ABCA12, EXOC1, JUNB, KLF1, PRDX2, NANOS3, RFX1, RFX2, and CACNG7. On the other hand, across population analysis revealed the genes like NR2F2, OSBPL10, CIDEC, WFIKKN2, ADCY, THSD7A, ADGRB3, TRPC1, VASH2, and ABHD5 to be part of selective sweeps under these comparisons. A total of 53 genes were found common between intra- and inter-population selection signature analysis of Indian yak. Notably, the genes harbouring the SNPs under selection pressure were significant for adaptation traits including lipidogenesis, energy metabolism, thermogenesis, hair follicle formation, oxidation-reduction reactions, hypoxia and reproduction. These genes may be evaluated as candidate genes for livestock adaptation to harsh environmental conditions and to further the research and application in the present era of climate change.
Collapse
Affiliation(s)
- Sheikh Firdous Ahmad
- ICAR-Indian Veterinary Research Institute, Uttar Pradesh, Izatnagar, Bareilly, 243 122, India.
| | - Munish Gangwar
- ICAR-Indian Veterinary Research Institute, Uttar Pradesh, Izatnagar, Bareilly, 243 122, India
| | - Amit Kumar
- ICAR-Indian Veterinary Research Institute, Uttar Pradesh, Izatnagar, Bareilly, 243 122, India.
| | - Amod Kumar
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, 132 001, India
| | | | - Girish Kumar Jha
- ICAR-Indian Agricultural Statistics Research Institute, Pusa, New Delhi, 110 012, India
| | - Gyanendra Kumar Gaur
- ICAR-Indian Veterinary Research Institute, Uttar Pradesh, Izatnagar, Bareilly, 243 122, India
- Assistant Director General (Animal Production and Breeding), Indian Council of Agricultural Research, Krishi Bhawan, New Delhi, 110 001, India
| | - Triveni Dutt
- ICAR-Indian Veterinary Research Institute, Uttar Pradesh, Izatnagar, Bareilly, 243 122, India
| |
Collapse
|
8
|
Rahman JU, Kumar D, Singh SP, Shahi BN, Ghosh AK, Dar AH, Togla O. Genome-wide association studies of milk composition traits in indicine Badri cattle using ddRAD sequencing approach. Trop Anim Health Prod 2024; 57:10. [PMID: 39715884 DOI: 10.1007/s11250-024-04266-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 12/12/2024] [Indexed: 12/25/2024]
Abstract
Genome-wide association studies (GWAS) offer potential for discovering genomic regions that can be exploited to increase milk production. However, available GWAS and single nucleotide polymorphism (SNP) datasets are heavily skewed towards taurine breeds, which restricts their utility for genomic research in indicine cattle breeds. This study conducts a GWAS on the Badri breed of Indicine cattle to estimate variance components and identify significant variants associated with milk composition traits, utilizing double digest restriction-site associated DNA (ddRAD) sequencing data. A total of 65,483 high-confidence SNPs were identified and utilized to conduct GWAS on various milk composition traits, including fat percent (FP), protein percent (PP), casein percent (CP), lactose percent (LP), glucose percent (GP), galactose percent (GLP), total solids percent (TS), and solids-not-fat percent (SNF), each analysed separately. The heritability estimates for the studied milk composition traits were 0.386 for fat percent (FP), 0.427 for protein percent (PP), 0.469 for casein percent (CP), 0.567 for lactose percent (LP), 0.547 for glucose percent (GP), 0.590 for galactose percent (GLP), 0.437 for total solids percent (TS), and 0.476 for solids-not-fat percent (SNF). Several genomic regions and candidate genes, including SLC9A9, LPP, C2H2orf76, LGSN, HMGCS2, Bv1, SCYL2, PLAC8, SRGAP2, CR2, ZNF787, OTUB2, DSC2, SYNPO2, and CTNNA3 which may have a potential role in regulating milk production in indicine cattle were identified. The high confidence SNPs and candidate genes will be an important inclusion into commercial genotyping arrays for the early and best selection of breeding animals for desired milk composition and improved production.
Collapse
Affiliation(s)
- Javid Ur Rahman
- Dapartment of Animal Genetics and Breeding, College of Veterinary & Animal Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, 263145, India.
- Silkworm Breeding and Genetics, CSRTI, Central Silk Board, Berhampore, West Bengal, 742101, India.
| | - Devendra Kumar
- Dapartment of Animal Genetics and Breeding, College of Veterinary & Animal Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, 263145, India
| | - Satya Pal Singh
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary & Animal Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, 263145, India
| | - Bijendra Narayan Shahi
- Dapartment of Animal Genetics and Breeding, College of Veterinary & Animal Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, 263145, India
| | - Ashis Kumar Ghosh
- Dapartment of Animal Genetics and Breeding, College of Veterinary & Animal Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, 263145, India
| | - Aashaq Hussain Dar
- Department of Livestock Production and Management, College of Veterinary & Animal Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, 263145, India
| | - Oshin Togla
- Division of Animal Genetics and Breeding, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
- Silkworm Breeding and Genetics, CSRTI, Central Silk Board, Berhampore, West Bengal, 742101, India
| |
Collapse
|
9
|
Ma Z, Wang W, Zhang D, Wang X, Li S, Zhao L, Zhang Y, Zhao Y, Li X, Lin C, Wang J, Cheng J, Xu D, Yang X, Huang Y, Cui P, Liu J, Zeng X, Zhai R, Huang Z, Weng X, Zhang X. Polymorphism in IGFALS gene and its association with scrotal circumference in Hu lambs. Anim Biotechnol 2024; 35:2295928. [PMID: 38174897 DOI: 10.1080/10495398.2023.2295928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Scrotal circumference is an important reproductive index of breeding rams, which has a high genetic correlation with ejaculation volume and semen quality. In this study, the scrotal circumference of 1353 male Hu sheep at different stages of development was measured and descriptive statistical analysis was performed. The results showed that the coefficient of variation of scrotal circumference at each stage was greater than 10%, and its heritability were moderately to high, ranging from 0.318 to 0.719. We used PCR amplification and Sanger sequencing to scan the polymorphisms of the IGFALS gene, and performed association analysis with the circumference of the scrotum at different stages. We identified a synonymous mutation g.918 G > C in exon 1 of the IGFALS gene, and this mutation was significantly associated with scrotal circumference at 100, 120, 140, 160 and 180 days (p < 0.05). Therefore, IGFALS gene polymorphism can be used as a molecular marker affecting scrotal circumference of Hu sheep, which can provide a reference for future molecular marker-assisted selection of scrotal circumference in sheep.
Collapse
Affiliation(s)
- Zongwu Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Weimin Wang
- The State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Deyin Zhang
- The State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Xinji Wang
- Minqin County Animal Husbandry and Veterinary Workstation, Minqin, Gansu, China
| | - Shirong Li
- Minqin County Animal Husbandry and Veterinary Workstation, Minqin, Gansu, China
| | - Liming Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yukun Zhang
- The State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Yuan Zhao
- The State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaolong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Changchun Lin
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Jianghui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Jiangbo Cheng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Dan Xu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xiaobin Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yongliang Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Panpan Cui
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Jia Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xiwen Zeng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Rui Zhai
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Zhiqiang Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xiuxiu Weng
- The State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaoxue Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| |
Collapse
|
10
|
Liu J, Zheng W, Wang W, Yang X, Huang Y, Cui P, Ma Z, Zeng X, Zhai R, Weng X, Wu W, Zhang X. Identification of AGO2 and PLEC genes polymorphisms in Hu sheep and their relationship with body size traits. Anim Biotechnol 2024; 35:2295926. [PMID: 38149679 DOI: 10.1080/10495398.2023.2295926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
The body size traits are major traits in livestock, which intuitively displays the development of the animal's bones and muscles. This study used PCR amplification, Sanger sequencing, KASPar genotyping, and quantitative real-time reverse transcription PCR (qRT-PCR) to analyze the Single-nucleotide polymorphism and expression characteristics of Argonaute RISC catalytic component 2 (AGO2) and Plectin (PLEC) genes in Hu sheep. Two intron mutations were found in Hu sheep, which were AGO2 g.51700 A > C and PLEC g.23157 C > T, respectively. Through association analysis of two mutation sites and body size traits, it was found that AGO2 g.51700 A > C mainly affects the chest and cannon circumference of Hu sheep of while PLEC g.23157 C mainly affects body height and body length. The combined genotypes of AGO2 and PLEC genes with body size traits showed SNPs at the AGO2 g.51700 A > C and PLEC g.23157 C > T loci significantly improved the body size traits of Hu sheep. In addition, the AGO2 gene has the highest expression levels in the heart, rumen, and tail fat, and the PLEC gene is highly expressed in the heart. These two loci can provide new research ideas for improving the body size traits of Hu sheep.
Collapse
Affiliation(s)
- Jia Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Wenxin Zheng
- Institute of Animal Husbandry Quality Standards, Xinjiang Academy of Animal Sciences, Urumqi, Xinjiang, China
| | - Weimin Wang
- The State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xiaobin Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yongliang Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Panpan Cui
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Zongwu Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiwen Zeng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Rui Zhai
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiuxiu Weng
- The State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Weiwei Wu
- Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, Xinjiang, China
| | - Xiaoxue Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
11
|
Vera B, Navajas EA, Peraza P, Carracelas B, Van Lier E, Ciappesoni G. Genomic Regions Associated with Resistance to Gastrointestinal Parasites in Australian Merino Sheep. Genes (Basel) 2024; 15:846. [PMID: 39062624 PMCID: PMC11276604 DOI: 10.3390/genes15070846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
The objective of this study was to identify genomic regions and genes associated with resistance to gastrointestinal nematodes in Australian Merino sheep in Uruguay, using the single-step GWAS methodology (ssGWAS), which is based on genomic estimated breeding values (GEBVs) obtained from a combination of pedigree, genomic, and phenotypic data. This methodology converts GEBVs into SNP effects. The analysis included 26,638 animals with fecal egg count (FEC) records obtained in two independent parasitic cycles (FEC1 and FEC2) and 1700 50K SNP genotypes. The comparison of genomic regions was based on genetic variances (gVar(%)) explained by non-overlapping regions of 20 SNPs. For FEC1 and FEC2, 18 and 22 genomic windows exceeded the significance threshold (gVar(%) ≥ 0.22%), respectively. The genomic regions with strong associations with FEC1 were located on chromosomes OAR 2, 6, 11, 21, and 25, and for FEC2 on OAR 5, 6, and 11. The proportion of genetic variance attributed to the top windows was 0.83% and 1.9% for FEC1 and FEC2, respectively. The 33 candidate genes shared between the two traits were subjected to enrichment analysis, revealing a marked enrichment in biological processes related to immune system functions. These results contribute to the understanding of the genetics underlying gastrointestinal parasite resistance and its implications for other productive and welfare traits in animal breeding programs.
Collapse
Affiliation(s)
- Brenda Vera
- Sistema Ganadero Extensivo, INIA Las Brujas, Canelones 90200, Uruguay; (B.V.); (E.A.N.); (P.P.); (B.C.)
| | - Elly A. Navajas
- Sistema Ganadero Extensivo, INIA Las Brujas, Canelones 90200, Uruguay; (B.V.); (E.A.N.); (P.P.); (B.C.)
| | - Pablo Peraza
- Sistema Ganadero Extensivo, INIA Las Brujas, Canelones 90200, Uruguay; (B.V.); (E.A.N.); (P.P.); (B.C.)
| | - Beatriz Carracelas
- Sistema Ganadero Extensivo, INIA Las Brujas, Canelones 90200, Uruguay; (B.V.); (E.A.N.); (P.P.); (B.C.)
| | - Elize Van Lier
- Departamento de Producción Animal y Pasturas, Facultad de Agronomía, Universidad de la República, Avda. Garzón 780, Montevideo 12900, Uruguay;
- Estación Experimental Facultad de Agronomía Salto, Salto 50000, Uruguay
| | - Gabriel Ciappesoni
- Sistema Ganadero Extensivo, INIA Las Brujas, Canelones 90200, Uruguay; (B.V.); (E.A.N.); (P.P.); (B.C.)
| |
Collapse
|
12
|
Ma Z, Wang W, Zhang D, Zhang Y, Zhao Y, Li X, Zhao L, Cheng J, Xu D, Yang X, Liu J, He L, Chen Z, Gong P, Zhang X. Polymorphisms of PLIN1 and MOGAT1 genes and their association with feed efficiency in Hu sheep. Gene 2024; 897:148072. [PMID: 38081333 DOI: 10.1016/j.gene.2023.148072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/22/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023]
Abstract
Feed cost accounts for a high proportion of sheep production, and improving sheep's utilization of feed will reduce production costs and improve economic benefits. The purpose of this study was to investigate the expression characteristics of PLIN1 and MOGAT1 genes and the relationship between their polymorphisms and feed efficiency traits in Hu sheep, and to find molecular Genetic marker that can be used in breeding. The expression levels of PLIN1 and MOGAT1 genes in various tissues were determined using quantitative real-time PCR (qRT-PCR). The results showed that PLIN1 and MOGAT1 genes were widely expressed in heart, liver, spleen, lungs, kidneys, rumen, duodenum, muscle, lymph, and tail fat. The PLIN1 gene had the highest expression level in in the tail fat compared to the other nine tissues. The expression levels of MOGAT1 gene in liver, tail fat, lung and heart was significantly higher than in kidney, muscle and lymph. The expression level of MOGAT1 was lowest in muscle compared to the other tissues (heart, liver, spleen, lung, rumen and tail fat). We recorded the body weight (BW80 and BW180) and feed intake (FI) information of 985 male Hu sheep at 80 and 180 days of age, and calculated the daily average feed intake (ADFI), average daily gain (ADG), and feed conversion rate (FCR) from 80 to 180 days of age. Two intronic mutations, g.18517910 A > G and g.224856118 G > C, were identified in PLIN1 and MOGAT1 genes by PCR amplification and Sanger sequencing. MassARRAY ® SNP detection technology was used to genotype the DNA of 985 Hu sheep and analyze its association with feed efficiency traits. The results showed that the SNP g.18517910 A > G was significantly associated with BW80, BW180, FI, ADFI and FCR (P < 0.05), while SNP g.2248561118 G > C was significantly associated with FCR (P < 0.05). Meanwhile, significant differences were also observed in different combinations of genotypes (P < 0.05). Therefore, these two polymorphic loci can serve as candidate molecular markers for improving feed utilization efficiency in Hu sheep.
Collapse
Affiliation(s)
- Zongwu Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Weimin Wang
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou Gansu 730020, China
| | - Deyin Zhang
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou Gansu 730020, China
| | - Yukun Zhang
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou Gansu 730020, China
| | - Yuan Zhao
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou Gansu 730020, China
| | - Xiaolong Li
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou Gansu 730020, China
| | - Liming Zhao
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou Gansu 730020, China
| | - Jiangbo Cheng
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou Gansu 730020, China
| | - Dan Xu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Xiaobin Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Jia Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Lijuan He
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Zhanyu Chen
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Ping Gong
- Institute of Animal Husbandry Quality Standards, Xinjiang Academy of Animal Science, Urumqi, 830057, China.
| | - Xiaoxue Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China.
| |
Collapse
|
13
|
Sun H, He Z, Zhao F, Hu J, Wang J, Liu X, Zhao Z, Li M, Luo Y, Li S. Molecular Genetic Characteristics of the Hoxc13 Gene and Association Analysis of Wool Traits. Int J Mol Sci 2024; 25:1594. [PMID: 38338874 PMCID: PMC10855228 DOI: 10.3390/ijms25031594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Homobox C13 (Hoxc13) is an important transcription factor in hair follicle cycle development, and its deletion had been found in a variety of animals leading to abnormal hair growth and disruption of the hair follicle system. In this study, we used immunofluorescence, immunohistochemistry, real-time fluorescence quantitative PCR (RT-qPCR), and Kompetitive Allele-Specific PCR (KASP) genotyping to investigate molecular genetic characteristics of the Hoxc13 gene in Gansu alpine fine-wool sheep. The results revealed that Hoxc13 was significantly expressed during both the anagen and catagen phases (p < 0.05). It was found to be highly expressed predominantly in the dermal papillae and the inner and outer root sheaths, showing a distinct spatiotemporal expression pattern. Two single nucleotide polymorphisms (SNPs) in the exon 1 of Hoxc13, both the individual locus genotypes and the combined haplotypes were found to be correlated with wool length (p < 0.05). It was determined the mutations led to changes in mRNA expression, in which higher expression of this gene was related with longer wool length. In summary, this unique spatiotemporal expression pattern of the Hoxc13 gene may regulate the wool length of Gansu alpine fine-wool sheep, which can be used as a molecular genetic marker for wool traits and thus improve the breed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Shaobin Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, International Wool Research Institute, Gansu Agricultural University, Lanzhou 730070, China; (H.S.); (Z.H.); (F.Z.); (J.H.); (J.W.); (X.L.); (Z.Z.); (M.L.); (Y.L.)
| |
Collapse
|
14
|
Braz CU, Passamonti MM, Khatib H. Characterization of genomic regions escaping epigenetic reprogramming in sheep. ENVIRONMENTAL EPIGENETICS 2023; 10:dvad010. [PMID: 38496251 PMCID: PMC10944287 DOI: 10.1093/eep/dvad010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 12/04/2023] [Accepted: 12/15/2023] [Indexed: 03/19/2024]
Abstract
The mammalian genome undergoes two global epigenetic reprogramming events during the establishment of primordial germ cells and in the pre-implantation embryo after fertilization. These events involve the erasure and re-establishment of DNA methylation marks. However, imprinted genes and transposable elements (TEs) maintain their DNA methylation signatures to ensure normal embryonic development and genome stability. Despite extensive research in mice and humans, there is limited knowledge regarding environmentally induced epigenetic marks that escape epigenetic reprogramming in other species. Therefore, the objective of this study was to examine the characteristics and locations of genomic regions that evade epigenetic reprogramming in sheep, as well as to explore the biological functions of the genes within these regions. In a previous study, we identified 107 transgenerationally inherited differentially methylated cytosines (DMCs) in the F1 and F2 generations in response to a paternal methionine-supplemented diet. These DMCs were found in TEs, non-repetitive regions, and imprinted and non-imprinted genes. Our findings suggest that genomic regions, rather than TEs and imprinted genes, have the propensity to escape reprogramming and serve as potential candidates for transgenerational epigenetic inheritance. Notably, 34 transgenerational methylated genes influenced by paternal nutrition escaped reprogramming, impacting growth, development, male fertility, cardiac disorders, and neurodevelopment. Intriguingly, among these genes, 21 have been associated with neural development and brain disorders, such as autism, schizophrenia, bipolar disease, and intellectual disability. This suggests a potential genetic overlap between brain and infertility disorders. Overall, our study supports the concept of transgenerational epigenetic inheritance of environmentally induced marks in mammals.
Collapse
Affiliation(s)
- Camila U Braz
- Department of Animal Sciences, University of Illinois Urbana–Champaign, Urbana, IL 61801, USA
| | - Matilde Maria Passamonti
- Department of Animal Science, Food and Nutrition, Universit’a Cattolica del Sacro Cuore, Piacenza, 29122, Italy
| | - Hasan Khatib
- Department of Animal and Dairy Sciences, University of Wisconsin–Madison, Madison, WI 53706, USA
| |
Collapse
|
15
|
Cheng J, Wang W, Zhang D, Zhang Y, Li X, Zhao Y, Xu D, Zhao L, Li W, Wang J, Zhou B, Lin C, Yang X, Zhang X. Identification of polymorphic loci in OSMR and GHR genes and analysis of their association with growth traits in sheep. Anim Biotechnol 2023; 34:2546-2553. [PMID: 35913774 DOI: 10.1080/10495398.2022.2105227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The aim of this study was to analyze the effect of OSMR and GHR genes polymorphisms on growth traits in sheep. The single nucleotide polymorphisms of sheep OSMR and GHR genes were identified by DNA sequencing technology. A total of two intronic mutations g.2443 T > C and g.170196 A > G were identified in OSMR and GHR, respectively. Correlation analysis was carried out between the obtained genotypes and the growth traits of sheep. The results showed that at the OSMR g.2443 T > C locus, the body weight, chest circumference and cannon circumference of the TT genotype sheep were significantly higher than those of the CC genotype sheep (p < .05). At the GHR g.170196 A > G locus, the body weight, body length, chest circumference and cannon circumference of the AA genotype sheep were significantly higher than those of the AG genotype and GG genotype sheep (p < .05). Moreover, the body weight of sheep of combination TTOSMR/AAGHR genotype was significantly higher than that of other combination genotypes (p < .05). Therefore, we believe that the polymorphic sites identified in the OSMR and GHR genes can be used as candidate molecular markers for breeding good traits in sheep.
Collapse
Affiliation(s)
- Jiangbo Cheng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Weimin Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Deyin Zhang
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Yukun Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaolong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yuan Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Dan Xu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Liming Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Wenxin Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jianghui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Bubo Zhou
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Changchun Lin
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaobin Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaoxue Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
16
|
Li W, Wang X, Zhang X, Li F, Zhang D, Li X, Zhang Y, Zhao Y, Zhao L, Xu D, Cheng J, Wang J, Zhou B, Lin C, Wang W. Polymorphism of sheep PRKAA2 gene and its association with growth traits. Anim Biotechnol 2023; 34:1324-1330. [PMID: 34971343 DOI: 10.1080/10495398.2021.2021215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Small ruminants farming plays an important role in the livelihood of a large part of the population. Herein we aimed to analyze the effects of single nucleotide polymorphisms in PRKAA2 gene on the growth-related traits of Hu sheep and Dorper sheep. The body weight and body type of 1254 sheep were measured at 80, 100, 120, 140, 160 and 180d, and 37620 phenotypic data were collected. RT-qPCR analysis was performed to test PRKAA2 gene expressed in different tissues of sheep, with the highest expression level in spleen, followed by kidney. In the present study, the PRKAA2 gene sequencing revealed one polymorphism located on Chr1 (Oar_rambouillet_v1.0), termed as chr1:32832382 G > A, and were significantly associated with growth traits of sheep (p < 0.05). The body weight, body length, chest circumference, and cannon circumference of individuals with AA genotype were significantly higher than those with the GG and GA genotypes (p < 0.05). Our findings reveal that PRKAA2 gene could be used as a marker-assisted selection to improve the growth-related traits of sheep.
Collapse
Affiliation(s)
- Wenxin Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaojuan Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaoxue Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Fadi Li
- The State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
- Engineering Laboratory of Sheep Breeding and Reproduction Biotechnology in Gansu Province, Minqin, China
| | - Deyin Zhang
- The State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xiaolong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yukun Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yuan Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Liming Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Dan Xu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiangbo Cheng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jianghui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Bubo Zhou
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Changchun Lin
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Weimin Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
17
|
Sun X, Niu Q, Jiang J, Wang G, Zhou P, Li J, Chen C, Liu L, Xu L, Ren H. Identifying Candidate Genes for Litter Size and Three Morphological Traits in Youzhou Dark Goats Based on Genome-Wide SNP Markers. Genes (Basel) 2023; 14:1183. [PMID: 37372363 DOI: 10.3390/genes14061183] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/25/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
This study aimed to reveal the potential genetic basis for litter size, coat colour, black middorsal stripe and skin colour by combining genome-wide association analysis (GWAS) and selection signature analysis and ROH detection within the Youzhou dark (YZD) goat population (n = 206) using the Illumina GoatSNP54 BeadChip. In the GWAS, we identified one SNP (snp54094-scaffold824-899720) on chromosome 11 for litter size, two SNPs on chromosome 26 (snp11508-scaffold142-1990450, SORCS3) and chromosome 12 (snp55048-scaffold842-324525, LOC102187779) for coat colour and one SNP on chromosome 18 (snp56013-scaffold873-22716, TCF25) for the black middorsal stripe. In contrast, no SNPs were identified for skin colour. In selection signature analysis, 295 significant iHS genomic regions with a mean |iHS| score > 2.66, containing selection signatures encompassing 232 candidate genes were detected. In particular, 43 GO terms and one KEGG pathway were significantly enriched in the selected genes, which may contribute to the excellent environmental adaptability and characteristic trait formation during the domestication of YZD goats. In ROH detection, we identified 4446 ROH segments and 282 consensus ROH regions, among which nine common genes overlapped with those detected using the iHS method. Some known candidate genes for economic traits such as reproduction (TSHR, ANGPT4, CENPF, PIBF1, DACH1, DIS3, CHST1, COL4A1, PRKD1 and DNMT3B) and development and growth (TNPO2, IFT80, UCP2, UCP3, GHRHR, SIM1, CCM2L, CTNNA3 and CTNNA1) were revealed by iHS and ROH detection. Overall, this study is limited by the small population size, which affects the results of GWAS to a certain extent. Nevertheless, our findings could provide the first overview of the genetic mechanism underlying these important traits and provide novel insights into the future conservation and utilisation of Chinese goat germplasm resources.
Collapse
Affiliation(s)
- Xiaoyan Sun
- Chongqing Academy of Animal Sciences, Rongchang 402460, China
| | - Qunhao Niu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jing Jiang
- Chongqing Academy of Animal Sciences, Rongchang 402460, China
| | - Gaofu Wang
- Chongqing Academy of Animal Sciences, Rongchang 402460, China
| | - Peng Zhou
- Chongqing Academy of Animal Sciences, Rongchang 402460, China
| | - Jie Li
- Chongqing Academy of Animal Sciences, Rongchang 402460, China
| | - Cancan Chen
- Chongqing Academy of Animal Sciences, Rongchang 402460, China
| | - Liangjia Liu
- Chongqing Academy of Animal Sciences, Rongchang 402460, China
| | - Lingyang Xu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hangxing Ren
- Chongqing Academy of Animal Sciences, Rongchang 402460, China
| |
Collapse
|
18
|
Lin C, Wang W, Zhang D, Huang K, Li X, Zhang Y, Zhao Y, Wang J, Zhou B, Cheng J, Xu D, Li W, Zhao L, Ma Z, Yang X, Huang Y, Cui P, Liu J, Zeng X, Zhai R, Sun L, Weng X, Wu W, Zhang X, Zheng W. Polymorphisms in SHISA3 and RFC3 genes and their association with feed conversion ratio in Hu sheep. Front Vet Sci 2023; 9:1010045. [PMID: 36686193 PMCID: PMC9850526 DOI: 10.3389/fvets.2022.1010045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/05/2022] [Indexed: 01/07/2023] Open
Abstract
In animal husbandry, feed efficiency is a crucial economic trait. In this study, the general linear model was used to perform association analysis for various genotypes and feed conversion ratio (FCR)-related traits. Reverse transcription-quantitative PCR (RT-qPCR) was used to detect the expression of SHISA3 and RFC3 mRNA levels in 10 tissues from 6 sheep. The results showed that SNPs in the NC_040257.1:c.625 T > C and NC_040261.1:g.9905 T > C were analyzed whether they were associated to feed efficiency parameters in Hu sheep (body weight, feed intake, average daily growth, and feed conversion ratio). NC_040257.1:c.625 T > C was shown to be significantly associated with body weight at 80, 100, and 120 days as well as feed conversion ratio (P < 0.05), whereas NC_040261.1:g.9905 T > C was found to be significantly associated with average daily weight gain from 80-140 days (ADG80-140) and FCR (P < 0.05). In Hu sheep, the CC genotypes of SHISA3 and RFC3 were the most common genotypes related to feed efficiency traits. Furthermore, the feed conversion ratio of the combined genotypes TT SHISA3-CC RFC3, TT SHISA3-CT RFC3, TT SHISA3-TT RFC3, CT SHISA3-CC RFC3 and CT SHISA3-CT RFC3 was significantly better than the FCR of CC SHISA3-TT RFC3. RT-qPCR results showed that the expression levels of SHISA3 were lower in the lung than in spleen, kidney, muscle and lymph (P < 0.05), and RFC3 was the lung had a highly significant higher expression level than the heart, liver, spleen, and muscle (P < 0.01). In conclusion, SHISA3 and RFC3 polymorphisms can be used as genetic markers for improving feed conversion efficiency in Hu sheep.
Collapse
Affiliation(s)
- Changchun Lin
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Weimin Wang
- The State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Deyin Zhang
- The State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Kai Huang
- The State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xiaolong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yukun Zhang
- The State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Yuan Zhao
- The State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Jianghui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Bubo Zhou
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiangbo Cheng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Dan Xu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Wenxin Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Liming Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Zongwu Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaobin Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yongliang Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Panpan Cui
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jia Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiwen Zeng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Rui Zhai
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Landi Sun
- The State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xiuxiu Weng
- The State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Weiwei Wu
- Institute of Animal Science, Xinjiang Academy of Animal Sciences, Ürümqi, Xinjiang, China
| | - Xiaoxue Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China,*Correspondence: Xiaoxue Zhang ✉
| | - Wenxin Zheng
- Institute of Animal Husbandry Quality Standards, Xinjiang Academy of Animal Sciences, Ürümqi, Xinjiang, China,Wenxin Zheng ✉
| |
Collapse
|
19
|
Expression and Polymorphisms of SMAD1, SMAD2 and SMAD3 Genes and Their Association with Litter Size in Tibetan Sheep ( Ovis aries). Genes (Basel) 2022; 13:genes13122307. [PMID: 36553573 PMCID: PMC9777977 DOI: 10.3390/genes13122307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
SMAD1, SMAD2, and SMAD3 are important transcription factors downstream of the TGF-β/SMAD signaling pathway that mediates several physiological processes. In the current study, we used cloning sequencing, RT-qPCR, bioinformatics methods and iMLDR technology to clone the coding region of Tibetan sheep genes, analyze the protein structure and detect the tissue expression characteristics of Tibetan sheep genes, and detect the polymorphisms of 433 Tibetan sheep and analyze their correlation with litter size. The results showed that the ORFs of the SMAD1, SMAD2 and SMAD3 genes were 1398 bp, 1404 bp and 1278 bp, respectively, and encoded 465, 467 and 425 amino acids, respectively. The SMAD1, SMAD2, and SMAD3 proteins were all unstable hydrophilic mixed proteins. SMAD1, SMAD2 and SMAD3 were widely expressed in Tibetan sheep tissues, and all were highly expressed in the uterus, spleen, ovary and lung tissues. Litter sizes of the genotype CC in the SMAD1 gene g.10729C>T locus were significantly higher than that of CT (p < 0.05). In the SMAD3 gene g.21447C>T locus, the genotype TT individuals showed a higher litter size than the CC and CT genotype individuals (p < 0.05). These results preliminarily demonstrated that SMAD1, SMAD2 and SMAD3 were the major candidate genes that affected litter size traits in Tibetan sheep and could be used as a molecular genetic marker for early auxiliary selection for improving reproductive traits during sheep breeding.
Collapse
|
20
|
Ma Z, Wang W, Zhang D, Zhang Y, Zhao Y, Li X, Zhao L, Lin C, Wang J, Zhou B, Cheng J, Xu D, Li W, Yang X, Huang Y, Cui P, Liu J, Zeng X, Zhai R, Zhang X. Ovine RAP1GAP and rBAT gene polymorphisms and their association with tail fat deposition in Hu sheep. Front Vet Sci 2022; 9:974513. [PMID: 36090178 PMCID: PMC9453205 DOI: 10.3389/fvets.2022.974513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Excessive fat deposition in the tail of sheep will affect its feed efficiency, which will increase the feeding cost. The purpose of this study was to identify the single nucleotide polymorphisms (SNPs) of RAP1GAP and rBAT genes by PCR amplification and Sanger sequencing, the SNPs were genotyped by KASP genotyping assays to evaluate their association with tail fat deposition traits. The results showed that two intronic mutations of g.13561 G > A and g.1460 T > C were found in RAP1GAP and rBAT, respectively. There were three genotypes of GG, AG, AA and CC, CT and TT at these two loci, respectively. Association analysis showed that g.13561 G > A of RAP1GAP was associated with tail width, tail fat weight and relative tail fat weight (P < 0.05). The g.1460 T > C of rBAT was associated with tail width and tail fat weight (P < 0.05). Different combinations of genotypes also differed significantly with tail fat deposition traits. In the tail fat tissue, the expression levels of RAP1GAP gene was significantly higher in small-tailed sheep than in big-tailed sheep, and the expression levels of rBAT gene was significantly higher in big-tailed sheep than in small-tailed sheep. In the liver, the expression levels of RAP1GAP and rBAT gene was significantly higher at 6 months than at 0 and 3 months. In conclusion, RAP1GAP and rBAT polymorphisms can be used as a candidate molecular marker to reduce tail fat deposition in sheep.
Collapse
Affiliation(s)
- Zongwu Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Weimin Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- The State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Deyin Zhang
- The State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Yukun Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yuan Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaolong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Liming Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Changchun Lin
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jianghui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Bubo Zhou
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiangbo Cheng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Dan Xu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Wenxin Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaobin Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yongliang Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Panpan Cui
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jia Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiwen Zeng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Rui Zhai
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaoxue Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- *Correspondence: Xiaoxue Zhang
| |
Collapse
|