1
|
Yousefi Z, Nourbakhsh M, Sahebghadam Lotfi A. Pirfenidone Downregulates eIF6, P311, and TGF-β Expression and Improves Liver Fibrosis Induced by Bile Duct Ligation in Wistar Rats: Evidence for Liver Regeneration. DNA Cell Biol 2025; 44:109-124. [PMID: 39681345 DOI: 10.1089/dna.2024.0194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024] Open
Abstract
Liver fibrosis (LF) is a clinical disorder characterized by inflammation and excessive accumulation of extracellular matrix (ECM). This study investigates the effects of the antifibrotic compound pirfenidone (PFD) on improving LF through histological changes and modulation of eukaryotic translation initiation factor 6 (eIF6), P311, and transforming growth factor beta (TGF-β) in rats with bile duct ligation (BDL)-induced LF. Rats received daily doses of PFD (200 and 500 mg/kg) for 4 weeks. The study encompassed biochemical, pathological, and immunohistochemical (IHC) analyses. mRNA levels of eIF6, P311, TGF-β, ECM deposition, hepatic stellate cell (HSC) activation, and inflammatory mediator genes were measured by RT-qPCR. Protein levels of eIF6, P311, and TGF-β were detected by western blotting. Compared with the BDL group, PFD dose-dependently reduced hydroxyproline content, liver index, biochemical parameters, fibrosis score, and fibrosis area. PFD also modulated BDL-induced hepatic inflammation, ECM accumulation, and HSC activation. IHC staining of Ki-67 and hepatocyte paraffin-1 revealed that PFD enhanced liver regeneration. The research confirmed that PFD gradually downregulated elevated eIF6, P311, and TGF-β levels in BDL-induced LF. These findings suggest that PFD could be a potential treatment for LF, as it may help attenuate fibrosis and enhance liver regeneration, possibly through the modulation of these specific markers.
Collapse
Affiliation(s)
- Zeynab Yousefi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mitra Nourbakhsh
- Department of Clinical Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abbas Sahebghadam Lotfi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
2
|
Niu C, Zhang J, Okolo PI. The possible pathogenesis of liver fibrosis: therapeutic potential of natural polyphenols. Pharmacol Rep 2024; 76:944-961. [PMID: 39162986 DOI: 10.1007/s43440-024-00638-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/21/2024]
Abstract
Liver fibrosis is the formation of a fibrous scar resulting from chronic liver injury, independently from etiology. Although many of the mechanical details remain unknown, activation of hepatic stellate cells (HSCs) is a central driver of liver fibrosis. Extracellular mechanisms such as apoptotic bodies, paracrine stimuli, inflammation, and oxidative stress are critical in activating HSCs. The potential for liver fibrosis to reverse after removing the causative agent has heightened interest in developing antifibrotic therapies. Polyphenols, the secondary plant metabolites, have gained attention because of their health-beneficial properties, including well-recognized antioxidant and anti-inflammatory activities, in the setting of liver fibrosis. In this review, we present an overview of the mechanisms underlying liver fibrosis with a specific focus on the activation of resident HSCs. We highlight the therapeutic potential and promising role of natural polyphenols to mitigate liver fibrosis pathogenesis, focusing on HSCs activation. We also discuss the translational gap from preclinical findings to clinical treatments involved in natural polyphenols in liver fibrosis.
Collapse
Affiliation(s)
- Chengu Niu
- Internal medicine residency program, Rochester General Hospital, 1425 Portland Avenue, Rochester, NY, 14621, USA.
| | - Jing Zhang
- Rainier Springs Behavioral Health Hospital, 2805 NE 129th St, Vancouver, WA, 98686, USA
| | - Patrick I Okolo
- Division of Gastroenterology, Rochester General Hospital, Rochester, NY, 14621, USA
| |
Collapse
|
3
|
Kung M, Yang T, Lin C, Ho J, Hung T, Chang C, Huang K, Chen C, Chen Y. ADAR2 deficiency ameliorates non-alcoholic fatty liver disease and muscle atrophy through modulating serum amyloid A1. J Cachexia Sarcopenia Muscle 2024; 15:949-962. [PMID: 38533529 PMCID: PMC11154747 DOI: 10.1002/jcsm.13460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/21/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease worldwide. Sarcopenia is a syndrome characterized by progressive and generalized loss of skeletal muscle mass and strength, which is commonly associated with NAFLD. Adenosine-to-inosine editing, catalysed by adenosine deaminase acting on RNA (ADAR), is an important post-transcriptional modification of genome-encoded RNA transcripts. Three ADAR gene family members, including ADAR1, ADAR2 and ADAR3, have been identified. However, the functional role of ADAR2 in obesity-associated NAFLD and sarcopenia remains unclear. METHODS ADAR2+/+/GluR-BR/R mice (wild type [WT]) and ADAR2-/-/GluR-BR/R mice (ADAR2 knockout [KO]) were subjected to feeding with standard chow or high-fat diet (HFD) for 20 weeks at the age of 5 weeks. The metabolic parameters, hepatic lipid droplet, grip strength test, rotarod test, muscle weight, fibre cross-sectional area (CSA), fibre types and protein associated with protein degradation were examined. Systemic and local tissues serum amyloid A1 (SAA1) were measured. The effects of SAA1 on C2C12 myotube atrophy were investigated. RESULTS ADAR2 KO mice fed with HFD exhibited lower body weight (-7.7%, P < 0.05), lower liver tissue weight (-20%, P < 0.05), reduced liver lipid droplets in concert with a decrease in hepatic triglyceride content (-24%, P < 0.001) and liver injury (P < 0.01). ADAR2 KO mice displayed protection against HFD-induced glucose intolerance, insulin resistance and dyslipidaemia. Skeletal muscle mass (P < 0.01), muscle strength (P < 0.05), muscle endurance (P < 0.001) and fibre size (CSA; P < 0.0001) were improved in ADAR2 KO mice fed with HFD compared with WT mice fed with HFD. Muscle atrophy-associated transcripts, such as forkhead box protein O1, muscle atrophy F-box/atrogin-1 and muscle RING finger 1/tripartite motif-containing 63, were decreased in ADAR2 KO mice fed with HFD compared with WT mice fed with HFD. ADAR2 deficiency attenuates HFD-induced local liver and skeletal muscle tissue inflammation. ADAR2 deficiency abolished HFD-induced systemic (P < 0.01), hepatic (P < 0.0001) and muscular (P < 0.001) SAA1 levels. C2C12 myotubes treated with recombinant SAA1 displayed a decrease in myotube length (-37%, P < 0.001), diameter (-20%, P < 0.01), number (-39%, P < 0.001) and fusion index (-46%, P < 0.01). Myogenic markers (myosin heavy chain and myogenin) were decreased in SAA1-treated myoblast C2C12 cells. CONCLUSIONS These results provide novel evidence that ADAR2 deficiency may be important in obesity-associated sarcopenia and NAFLD. Increased SAA1 might be involved as a regulatory factor in developing sarcopenia in NAFLD.
Collapse
Affiliation(s)
- Mei‐Lang Kung
- Department of Medical Education and ResearchKaohsiung Veterans General HospitalKaohsiungTaiwan
| | - Tai‐Hua Yang
- Department of Biomedical EngineeringCollege of Engineering, National Cheng Kung UniversityTainanTaiwan
- Department of Orthopedic SurgeryNational Cheng Kung University Hospital, College of Medicine, National Cheng Kung UniversityTainanTaiwan
| | - Chia‐Chi Lin
- Department of PharmacologyCollege of Medicine, National Cheng Kung UniversityTainanTaiwan
| | - Jia‐Yun Ho
- Department of PharmacologyCollege of Medicine, National Cheng Kung UniversityTainanTaiwan
| | - Tzu‐Chi Hung
- Department of PharmacologyCollege of Medicine, National Cheng Kung UniversityTainanTaiwan
| | - Chih‐Hsiang Chang
- Department of PharmacologyCollege of Medicine, National Cheng Kung UniversityTainanTaiwan
| | - Kuan‐Wen Huang
- Department of PharmacologyCollege of Medicine, National Cheng Kung UniversityTainanTaiwan
| | - Chien‐Chin Chen
- Department of PathologyDitmanson Medical Foundation Chia‐Yi Christian HospitalChiayiTaiwan
- Department of Cosmetic ScienceChia Nan University of Pharmacy and ScienceTainanTaiwan
- Ph.D. Program in Translational Medicine, Rong Hsing Research Center for Translational MedicineNational Chung Hsing UniversityTaichungTaiwan
- Department of Biotechnology and Bioindustry SciencesCollege of Bioscience and Biotechnology, National Cheng Kung UniversityTainanTaiwan
| | - Yun‐Wen Chen
- Department of PharmacologyCollege of Medicine, National Cheng Kung UniversityTainanTaiwan
| |
Collapse
|
4
|
Wang W, Li K, Bai D, Wu J, Xiao W. Pterostilbene: a potential therapeutic agent for fibrotic diseases. Inflammopharmacology 2024; 32:975-989. [PMID: 38429613 DOI: 10.1007/s10787-024-01440-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/19/2024] [Indexed: 03/03/2024]
Abstract
Fibrosis is a prevailing pathology in chronic diseases and accounts for 45% of deaths in developed countries. This condition is primarily identified by the transformation of fibroblasts into myofibroblasts and the overproduction of extracellular matrix (ECM) by myofibroblasts. Pterostilbene (PTS) is a natural analogue of resveratrol and is most commonly found in blueberries. Research has shown that PTS exerts a wide range of pharmacological effects, such as antioxidant, anti-inflammatory, and anticancer effects. As a result, PTS has the potential to prevent and cure numerous diseases. Emerging evidence has indicated that PTS can alleviate myocardial fibrosis, renal fibrosis, pulmonary fibrosis, hepatic fibrosis, and colon fibrosis via the inhibition of inflammation, oxidative stress, and fibrogenesis effects in vivo and in vitro, and the potential mechanisms are linked to various pathways, including transforming growth factor-β1 (TGF-β1)/small mother against decapentaplegic proteins (Smads) signalling, the reactive oxygen species (ROS)-driven Pitx2c/mir-15b pathway, nuclear factor kappa B (NF-κB) signalling, Kelch-like epichlorohydrin-associated protein-1 (Keap-1)/NF-E2-related factor-2 (Nrf2) cascade, the NLR family pyridine structure domain 3 (NLRP3) pathway, the Janus kinase-2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) pathway, and the Src/STAT3 pathway. In this review, we comprehensively summarize the antifibrotic effects of PTS both in vivo and in vitro and the pharmacological mechanisms, pharmacokinetics, and toxicology of PTS and provide insights into and strategies for exploring promising agents for the treatment of fibrosis.
Collapse
Affiliation(s)
- Wenhong Wang
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Yangpu District, 650 Qingyuan Ring Road, Shanghai, 200438, China
| | - Ke Li
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Yangpu District, 650 Qingyuan Ring Road, Shanghai, 200438, China
| | - Dandan Bai
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Yangpu District, 650 Qingyuan Ring Road, Shanghai, 200438, China
| | - Jiabin Wu
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Yangpu District, 650 Qingyuan Ring Road, Shanghai, 200438, China
| | - Weihua Xiao
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China.
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Yangpu District, 650 Qingyuan Ring Road, Shanghai, 200438, China.
| |
Collapse
|
5
|
Liu S, Xie J, Duan C, Zhao X, Feng Z, Dai Z, Luo X, Li Y, Yang M, Zhuang R, Li J, Yin W. ADAR1 Inhibits Macrophage Apoptosis and Alleviates Sepsis-induced Liver Injury Through miR-122/BCL2A1 Signaling. J Clin Transl Hepatol 2024; 12:134-150. [PMID: 38343614 PMCID: PMC10851074 DOI: 10.14218/jcth.2023.00171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/18/2023] [Accepted: 10/09/2023] [Indexed: 01/05/2025] Open
Abstract
BACKGROUND AND AIMS As sepsis progresses, immune cell apoptosis plays regulatory roles in the pathogenesis of immunosuppression and organ failure. We previously reported that adenosine deaminases acting on RNA-1 (ADAR1) reduced intestinal and splenic inflammatory damage during sepsis. However, the roles and mechanism of ADAR1 in sepsis-induced liver injury remain unclear. METHODS We performed transcriptome and single-cell RNA sequencing of peripheral blood mononuclear cells (PBMCs) from patients with sepsis to investigate the effects of ADAR1 on immune cell activities. We also employed a cecal ligation and puncture (CLP) sepsis mouse model to evaluate the roles of ADAR1 in sepsis-induced liver injury. Finally, we treated murine RAW 264.7 macrophages with lipopolysaccharide to explore the underlying ADAR1-mediated mechanisms in sepsis. RESULTS PBMCs from patients with sepsis had obvious apoptotic morphological features. Single-cell RNA sequencing indicated that apoptosis-related pathways were enriched in monocytes, with significantly elevated ADAR1 and BCL2A1 expression in severe sepsis. CLP-induced septic mice had aggravated liver injury and Kupffer cell apoptosis that were largely alleviated by ADAR1 overexpression. ADAR1 directly bound to pre-miR-122 to modulate miR-122 biosynthesis. miR-122 was an upstream regulator of BCL2A1. Furthermore, ADAR1 also reduced macrophage apoptosis in mice with CLP-induced sepsis through the miR-122/BCL2A1 signaling pathway and protected against sepsis-induced liver injury. CONCLUSIONS The findings show that ADAR1 alleviates macrophage apoptosis and sepsis-induced liver damage through the miR-122/BCL2A1 signaling pathway. The study provides novel insights into the development of therapeutic interventions in sepsis.
Collapse
Affiliation(s)
- Shanshou Liu
- Emergency Department, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Jiangang Xie
- Emergency Department, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Chujun Duan
- Emergency Department, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Xiaojun Zhao
- Emergency Department, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Zhusheng Feng
- Emergency Department, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Zheng Dai
- Emergency Department, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Xu Luo
- Emergency Department, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yu Li
- Emergency Department, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Minghe Yang
- Third Student Brigade, School of Basic Medical Science, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Ran Zhuang
- Department of Immunology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Junjie Li
- Emergency Department, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Wen Yin
- Emergency Department, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
6
|
Merchant A, Ramirez BI, Reyes MN, Van D, Martinez-Colin M, Ojo DO, Mazuca EL, De La O HJ, Glenn AM, Lira CG, Ehsan H, Yu E, Kaneko G. Genomic loss of the HSP70cA gene in the vertebrate lineage. Cell Stress Chaperones 2023; 28:1053-1067. [PMID: 37587350 PMCID: PMC10746604 DOI: 10.1007/s12192-023-01370-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/18/2023] Open
Abstract
Metazoan 70 kDa heat shock protein (HSP70) genes have been classified into four lineages: cytosolic A (HSP70cA), cytosolic B (HSP70cB), endoplasmic reticulum (HSP70er), and mitochondria (HSP70m). Because previous studies have identified no HSP70cA genes in vertebrates, we hypothesized that this gene was lost on the evolutionary path to vertebrates. To test this hypothesis, the present study conducted a comprehensive database search followed by phylogenetic and synteny analyses. HSP70cA genes were found in invertebrates and in two of the three subphyla of Chordata, Cephalochordata (lancelets) and Tunicata (tunicates). However, no HSP70cA gene was found in the genomes of Craniata (another subphylum of Chordata; lamprey, hagfish, elephant shark, and coelacanth), suggesting the loss of the HSP70cA gene in the early period of vertebrate evolution. Synteny analysis using available genomic resources indicated that the synteny around the HSP70 genes was generally conserved between tunicates but was largely different between tunicates and lamprey. These results suggest the presence of dynamic chromosomal rearrangement in early vertebrates that possibly caused the loss of the HSP70cA gene in the vertebrate lineage.
Collapse
Affiliation(s)
- Alisha Merchant
- College of Natural and Applied Science, University of Houston-Victoria, Victoria, TX, 77901, USA
| | - Bradly I Ramirez
- College of Natural and Applied Science, University of Houston-Victoria, Victoria, TX, 77901, USA
| | - Melinda N Reyes
- College of Natural and Applied Science, University of Houston-Victoria, Victoria, TX, 77901, USA
| | - Dysocheata Van
- College of Natural and Applied Science, University of Houston-Victoria, Victoria, TX, 77901, USA
| | - Marilin Martinez-Colin
- College of Natural and Applied Science, University of Houston-Victoria, Victoria, TX, 77901, USA
| | - Damilola O Ojo
- College of Natural and Applied Science, University of Houston-Victoria, Victoria, TX, 77901, USA
| | - Esmeralda L Mazuca
- College of Natural and Applied Science, University of Houston-Victoria, Victoria, TX, 77901, USA
| | - Heidi J De La O
- College of Natural and Applied Science, University of Houston-Victoria, Victoria, TX, 77901, USA
| | - Abigayle M Glenn
- College of Natural and Applied Science, University of Houston-Victoria, Victoria, TX, 77901, USA
| | - Claudia G Lira
- College of Natural and Applied Science, University of Houston-Victoria, Victoria, TX, 77901, USA
| | - Hashimul Ehsan
- College of Natural and Applied Science, University of Houston-Victoria, Victoria, TX, 77901, USA
| | - Ermeng Yu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute of CAFS, Guangzhou, 510380, China.
| | - Gen Kaneko
- College of Natural and Applied Science, University of Houston-Victoria, Victoria, TX, 77901, USA.
| |
Collapse
|