1
|
Roets B, Abrahamse H, Crous A. Biomaterial Properties and Differentiation Strategies for Tenogenic Differentiation of Mesenchymal Stem Cells. Cells 2025; 14:452. [PMID: 40136701 PMCID: PMC11940850 DOI: 10.3390/cells14060452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/10/2025] [Accepted: 03/17/2025] [Indexed: 03/27/2025] Open
Abstract
Tendinopathy is a prevalent musculoskeletal condition that affects both aging populations and individuals involved in repetitive, high-intensity activities, such as athletes. Current treatment options primarily address symptom management or involve surgery, which carries a significant risk of complications and re-injury. This highlights the need for regenerative medicine approaches that combine stem cells, biomaterials, and growth factors. However, achieving effective tenogenic differentiation remains challenging due to the absence of standardized differentiation protocols. Consequently, a review of existing research has been conducted to identify optimal biomaterial properties and growth factor protocols. Findings suggest that the ideal biomaterial for tenogenic differentiation should feature a 3D structure to preserve tenogenic expression, incorporate a combination of aligned micro- and nanofibers to promote differentiation, and require further investigation into optimal stiffness. Additionally, growth factor protocols should include an induction phase to initiate tenogenic lineage commitment, followed by a maintenance phase to support matrix production and maturation.
Collapse
Affiliation(s)
| | | | - Anine Crous
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, P.O. Box 17011, Johannesburg 2028, South Africa; (B.R.); (H.A.)
| |
Collapse
|
2
|
Canceill T, Jourdan G, Kémoun P, Guissard C, Monsef YA, Bourdens M, Chaput B, Cavalie S, Casteilla L, Planat-Bénard V, Monsarrat P, Raymond-Letron I. Characterization and Safety Profile of a New Combined Advanced Therapeutic Medical Product Platelet Lysate-Based Fibrin Hydrogel for Mesenchymal Stromal Cell Local Delivery in Regenerative Medicine. Int J Mol Sci 2023; 24:ijms24032206. [PMID: 36768532 PMCID: PMC9916739 DOI: 10.3390/ijms24032206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/25/2023] Open
Abstract
Adipose-derived mesenchymal stromal cells (ASC) transplant to recover the optimal tissue structure/function relationship is a promising strategy to regenerate tissue lesions. Because filling local tissue defects by injection alone is often challenging, designing adequate cell carriers with suitable characteristics is critical for in situ ASC delivery. The aim of this study was to optimize the generation phase of a platelet-lysate-based fibrin hydrogel (PLFH) as a proper carrier for in situ ASC implantation and (1) to investigate in vitro PLFH biomechanical properties, cell viability, proliferation and migration sustainability, and (2) to comprehensively assess the local in vivo PLFH/ASC safety profile (local tolerance, ASC fate, biodistribution and toxicity). We first defined the experimental conditions to enhance physicochemical properties and microscopic features of PLFH as an adequate ASC vehicle. When ASC were mixed with PLFH, in vitro assays exhibited hydrogel supporting cell migration, viability and proliferation. In vivo local subcutaneous and subgingival PLFH/ASC administration in nude mice allowed us to generate biosafety data, including biodegradability, tolerance, ASC fate and engraftment, and the absence of biodistribution and toxicity to non-target tissues. Our data strongly suggest that this novel combined ATMP for in situ administration is safe with an efficient local ASC engraftment, supporting the further development for human clinical cell therapy.
Collapse
Affiliation(s)
- Thibault Canceill
- CIRIMAT, Université Toulouse III Paul Sabatier, CNRS UMR 5085, INPT, Faculté de Pharmacie, 35 Chemin des Maraichers, CEDEX 09, 31062 Toulouse, France
- Department of Oral Medicine and Toulouse University Hospital (CHU of Toulouse)—Toulouse Institute of Oral Medicine and Science, CEDEX 09, 31062 Toulouse, France
| | - Géraldine Jourdan
- RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Batiment INCERE, 4bis Avenue Hubert Curien, 31100 Toulouse, France
| | - Philippe Kémoun
- Department of Oral Medicine and Toulouse University Hospital (CHU of Toulouse)—Toulouse Institute of Oral Medicine and Science, CEDEX 09, 31062 Toulouse, France
- RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Batiment INCERE, 4bis Avenue Hubert Curien, 31100 Toulouse, France
| | - Christophe Guissard
- Department of Oral Medicine and Toulouse University Hospital (CHU of Toulouse)—Toulouse Institute of Oral Medicine and Science, CEDEX 09, 31062 Toulouse, France
- RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Batiment INCERE, 4bis Avenue Hubert Curien, 31100 Toulouse, France
| | - Yanad Abou Monsef
- LabHPEC, Histology and Pathology Department, Université de Toulouse, ENVT, CEDEX 03, 31076 Toulouse, France
| | - Marion Bourdens
- RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Batiment INCERE, 4bis Avenue Hubert Curien, 31100 Toulouse, France
| | - Benoit Chaput
- RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Batiment INCERE, 4bis Avenue Hubert Curien, 31100 Toulouse, France
- Service de Chirurgie Plastique, Reconstructrice et Esthétique, Centre Hospitalier Universitaire Rangueil, Avenue du Professeur Jean Poulhès, CEDEX 09, 31059 Toulouse, France
| | - Sandrine Cavalie
- CIRIMAT, Université Toulouse III Paul Sabatier, CNRS UMR 5085, INPT, Faculté de Pharmacie, 35 Chemin des Maraichers, CEDEX 09, 31062 Toulouse, France
| | - Louis Casteilla
- RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Batiment INCERE, 4bis Avenue Hubert Curien, 31100 Toulouse, France
| | - Valérie Planat-Bénard
- RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Batiment INCERE, 4bis Avenue Hubert Curien, 31100 Toulouse, France
| | - Paul Monsarrat
- Department of Oral Medicine and Toulouse University Hospital (CHU of Toulouse)—Toulouse Institute of Oral Medicine and Science, CEDEX 09, 31062 Toulouse, France
- RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Batiment INCERE, 4bis Avenue Hubert Curien, 31100 Toulouse, France
- Artificial and Natural Intelligence Toulouse Institute ANITI, 31400 Toulouse, France
- Correspondence:
| | - Isabelle Raymond-Letron
- RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Batiment INCERE, 4bis Avenue Hubert Curien, 31100 Toulouse, France
- LabHPEC, Histology and Pathology Department, Université de Toulouse, ENVT, CEDEX 03, 31076 Toulouse, France
| |
Collapse
|
3
|
Chansoria P, Asif S, Polkoff K, Chung J, Piedrahita JA, Shirwaiker RA. Characterizing the Effects of Synergistic Thermal and Photo-Cross-Linking during Biofabrication on the Structural and Functional Properties of Gelatin Methacryloyl (GelMA) Hydrogels. ACS Biomater Sci Eng 2021; 7:5175-5188. [PMID: 34597013 DOI: 10.1021/acsbiomaterials.1c00635] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Gelatin methacryloyl (GelMA) hydrogels have emerged as promising and versatile biomaterial matrices with applications spanning drug delivery, disease modeling, and tissue engineering and regenerative medicine. GelMA exhibits reversible thermal cross-linking at temperatures below 37 °C due to the entanglement of constitutive polymeric chains, and subsequent ultraviolet (UV) photo-cross-linking can covalently bind neighboring chains to create irreversibly cross-linked hydrogels. However, how these cross-linking modalities interact and can be modulated during biofabrication to control the structural and functional characteristics of this versatile biomaterial is not well explored yet. Accordingly, this work characterizes the effects of synergistic thermal and photo-cross-linking as a function of GelMA solution temperature and UV photo-cross-linking duration during biofabrication on the hydrogels' stiffness, microstructure, proteolytic degradation, and responses of NIH 3T3 and human adipose-derived stem cells (hASC). Smaller pore size, lower degradation rate, and increased stiffness are reported in hydrogels processed at lower temperature or prolonged UV exposure. In hydrogels with low stiffness, the cells were found to shear the matrix and cluster into microspheroids, while poor cell attachment was noted in high stiffness hydrogels. In hydrogels with moderate stiffness, ones processed at lower temperature demonstrated better shape fidelity and cell proliferation over time. Analysis of gene expression of hASC encapsulated within the hydrogels showed that, while the GelMA matrix assisted in maintenance of stem cell phenotype (CD44), a higher matrix stiffness resulted in higher pro-inflammatory marker (ICAM1) and markers for cell-matrix interaction (ITGA1 and ITGA10). Analysis of constructs with ultrasonically patterned hASC showed that hydrogels processed at higher temperature possessed lower structural fidelity but resulted in more cell elongation and greater anisotropy over time. These findings demonstrate the significant impact of GelMA material formulation and processing conditions on the structural and functional properties of the hydrogels. The understanding of these material-process-structure-function interactions is critical toward optimizing the functional properties of GelMA hydrogels for different targeted applications.
Collapse
Affiliation(s)
- Parth Chansoria
- Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Suleman Asif
- Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Kathryn Polkoff
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27606, United States.,Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Jaewook Chung
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27606, United States.,Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Jorge A Piedrahita
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27606, United States.,Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Rohan A Shirwaiker
- Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27606, United States.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States.,Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
4
|
Lui H, Denbeigh J, Vaquette C, Tran HM, Dietz AB, Cool SM, Dudakovic A, Kakar S, van Wijnen AJ. Fibroblastic differentiation of mesenchymal stem/stromal cells (MSCs) is enhanced by hypoxia in 3D cultures treated with bone morphogenetic protein 6 (BMP6) and growth and differentiation factor 5 (GDF5). Gene 2021; 788:145662. [PMID: 33887373 DOI: 10.1016/j.gene.2021.145662] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/15/2021] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Culture conditions and differentiation cocktails may facilitate cell maturation and extracellular matrix (ECM) secretion and support the production of engineered fibroblastic tissues with applications in ligament regeneration. The objective of this study is to investigate the potential of two connective tissue-related ligands (i.e., BMP6 and GDF5) to mediate collagenous ECM synthesis and tissue maturation in vitro under normoxic and hypoxic conditions based on the hypothesis that BMP6 and GDF5 are components of normal paracrine signalling events that support connective tissue homeostasis. METHODS Human adipose-derived MSCs were seeded on 3D-printed medical-grade polycaprolactone (PCL) scaffolds using a bioreactor and incubated in media containing GDF5 and/or BMP6 for 21 days in either normoxic (5% oxygen) or hypoxic (2% oxygen) conditions. Constructs were harvested on Day 3 and 21 for cell viability analysis by live/dead staining, structural analysis by scanning electron microscopy, mRNA levels by RTqPCR analysis, and in situ deposition of proteins by immunofluorescence microscopy. RESULTS Pro-fibroblastic gene expression is enhanced by hypoxic culture conditions compared to normoxic conditions. Hypoxia renders cells more responsive to treatment with BMP6 as reflected by increased expression of ECM mRNA levels on Day 3 with sustained expression until Day 21. GDF5 was not particularly effective either in the absence or presence of BMP6. CONCLUSIONS Fibroblastic differentiation of MSCs is selectively enhanced by BMP6 and not GDF5. Environmental factors (i.e., hypoxia) also influenced the responsiveness of cells to this morphogen.
Collapse
Affiliation(s)
- Hayman Lui
- Griffith University, School of Medicine, Gold Coast, Queensland, Australia; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Janet Denbeigh
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Cedryck Vaquette
- The University of Queensland, School of Dentistry, Brisbane, Queensland, Australia
| | - Hoai My Tran
- The University of Queensland, School of Dentistry, Brisbane, Queensland, Australia
| | - Allan B Dietz
- Department of Laboratory Medicine, Mayo Clinic, Rochester, MN, United States
| | - Simon M Cool
- Glycotherapeutics Group, Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Sanjeev Kakar
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States.
| |
Collapse
|
5
|
Shariati L, Esmaeili Y, Javanmard SH, Bidram E, Amini A. Organoid Technology: Current Standing and Future Perspectives. STEM CELLS (DAYTON, OHIO) 2021; 39:1625-1649. [PMID: 33786925 DOI: 10.1002/stem.3379] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 03/01/2021] [Indexed: 11/12/2022]
Abstract
Organoids are powerful systems to facilitate the study of individuals' disorders and personalized treatments. Likewise, emerging this technology has improved the chance of translatability of drugs for pre-clinical therapies and mimicking the complexity of organs, while it proposes numerous approaches for human disease modeling, tissue engineering, drug development, diagnosis, and regenerative medicine. In this review, we outline the past/present organoid technology and summarize its faithful applications, then, we discuss the challenges and limitations encountered by 3D organoids. In the end, we offer the human organoids as basic mechanistic infrastructure for "human modelling" systems to prescribe personalized medicines. © AlphaMed Press 2021 SIGNIFICANCE STATEMENT: This concise review concerns about organoids, available methods for in vitro organoid formation and different types of human organoid models. We, then, summarize biological approaches to improve 3D organoids complexity and therapeutic potentials of organoids. Despite the existing incomprehensive review articles in literature that examine partial aspects of the organoid technology, the present review article comprehensively and critically presents this technology from different aspects. It effectively provides a systematic overview on the past and current applications of organoids and discusses the future perspectives and suggestions to improve this technology and its applications.
Collapse
Affiliation(s)
- Laleh Shariati
- Applied Physiology Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yasaman Esmaeili
- Biosensor Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Bidram
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Biosensor Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abbas Amini
- Department of Mechanical Engineering, Australian College of Kuwait, Mishref, Safat, Kuwait.,Centre for Infrastructure Engineering, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
6
|
Wang D, Zhang X, Huang S, Liu Y, Fu BSC, Mak KKL, Blocki AM, Yung PSH, Tuan RS, Ker DFE. Engineering multi-tissue units for regenerative Medicine: Bone-tendon-muscle units of the rotator cuff. Biomaterials 2021; 272:120789. [PMID: 33845368 DOI: 10.1016/j.biomaterials.2021.120789] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/13/2022]
Abstract
Our body systems are comprised of numerous multi-tissue units. For the musculoskeletal system, one of the predominant functional units is comprised of bone, tendon/ligament, and muscle tissues working in tandem to facilitate locomotion. To successfully treat musculoskeletal injuries and diseases, critical consideration and thoughtful integration of clinical, biological, and engineering aspects are necessary to achieve translational bench-to-bedside research. In particular, identifying ideal biomaterial design specifications, understanding prior and recent tissue engineering advances, and judicious application of biomaterial and fabrication technologies will be crucial for addressing current clinical challenges in engineering multi-tissue units. Using rotator cuff tears as an example, insights relevant for engineering a bone-tendon-muscle multi-tissue unit are presented. This review highlights the tissue engineering strategies for musculoskeletal repair and regeneration with implications for other bone-tendon-muscle units, their derivatives, and analogous non-musculoskeletal tissue structures.
Collapse
Affiliation(s)
- Dan Wang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR; Ministry of Education Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR; Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR
| | - Xu Zhang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Shuting Huang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Yang Liu
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR
| | - Bruma Sai-Chuen Fu
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR; Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR
| | | | - Anna Maria Blocki
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR; Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR
| | - Patrick Shu-Hang Yung
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR; Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR
| | - Rocky S Tuan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Dai Fei Elmer Ker
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR; Ministry of Education Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR; Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR.
| |
Collapse
|
7
|
Alavije AA, Barati F, Barati M, Nazari H, Karimi I. Polyethersulfone/MWCNT nanocomposite scaffold for endometrial cell culture: preparation, characterization, and in vitroinvestigation. Biomed Phys Eng Express 2021; 7. [PMID: 35014622 DOI: 10.1088/2057-1976/abd67f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/23/2020] [Indexed: 11/12/2022]
Abstract
Endometrial cell culture is a method for investigating physiological or pathological conditions or simulatingin vivoconditions for embryo culture. The natural function of the endometrium depends on a polarized epithelium and 3D stromal compartments. The polymer-based scaffolds of simple polyethersulfone (PES), laser scratched PES (PES-LS), and multiwall carbon nanotubes (MWCNT) composited PES (PES-MWCNT) were prepared and used for bovine endometrial cells (bECs) culture. For better investigation of the relationship between physical structure and cell growth behavior, the surface morphologies of the scaffolds were evaluated by atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM) techniques. Three synthesized membranes (PES, PES-LS, and PES-MWCNT) were evaluated for the cell morphology, viability and, doubling time. Results showed acceptable physical and chemical fabrication of the polymers with no significant differences in the proportions of live cells to primary cultured cells, dead to live cells, and the cell doubling time among groups during the experiment (P > 0.05). Total cell count (live and dead cells) was significantly different on Day 2 among types of polymers. The results showed the comparable potential of the PES-MWCNT membrane for the bECs culture.
Collapse
Affiliation(s)
- Ali Alirezaei Alavije
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Farid Barati
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Mohammad Barati
- Department of Applied Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Hasan Nazari
- Institute of Farm Animal Embryo Technology, Shahrekord University, Shahrekord, Iran
| | - Iraj Karimi
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
8
|
Chocarro‐Wrona C, de Vicente J, Antich C, Jiménez G, Martínez‐Moreno D, Carrillo E, Montañez E, Gálvez‐Martín P, Perán M, López‐Ruiz E, Marchal JA. Validation of the 1,4-butanediol thermoplastic polyurethane as a novel material for 3D bioprinting applications. Bioeng Transl Med 2021; 6:e10192. [PMID: 33532591 PMCID: PMC7823129 DOI: 10.1002/btm2.10192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 12/27/2022] Open
Abstract
Tissue engineering (TE) seeks to fabricate implants that mimic the mechanical strength, structure, and composition of native tissues. Cartilage TE requires the development of functional personalized implants with cartilage-like mechanical properties capable of sustaining high load-bearing environments to integrate into the surrounding tissue of the cartilage defect. In this study, we evaluated the novel 1,4-butanediol thermoplastic polyurethane elastomer (b-TPUe) derivative filament as a 3D bioprinting material with application in cartilage TE. The mechanical behavior of b-TPUe in terms of friction and elasticity were examined and compared with human articular cartilage, PCL, and PLA. Moreover, infrapatellar fat pad-derived human mesenchymal stem cells (MSCs) were bioprinted together with scaffolds. in vitro cytotoxicity, proliferative potential, cell viability, and chondrogenic differentiation were analyzed by Alamar blue assay, SEM, confocal microscopy, and RT-qPCR. Moreover, in vivo biocompatibility and host integration were analyzed. b-TPUe demonstrated a much closer compression and shear behavior to native cartilage than PCL and PLA, as well as closer tribological properties to cartilage. Moreover, b-TPUe bioprinted scaffolds were able to maintain proper proliferative potential, cell viability, and supported MSCs chondrogenesis. Finally, in vivo studies revealed no toxic effects 21 days after scaffolds implantation, extracellular matrix deposition and integration within the surrounding tissue. This is the first study that validates the biocompatibility of b-TPUe for 3D bioprinting. Our findings indicate that this biomaterial can be exploited for the automated biofabrication of artificial tissues with tailorable mechanical properties including the great potential for cartilage TE applications.
Collapse
Affiliation(s)
- Carlos Chocarro‐Wrona
- Biosanitary Research Institute of Granada (ibs.GRANADA)University Hospitals of Granada‐University of GranadaGranadaSpain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of GranadaGranadaSpain
- Department of Human Anatomy and EmbryologyFaculty of Medicine, University of GranadaGranadaSpain
- Excellence Research Unit “Modeling Nature” (MNat)University of GranadaGranadaSpain
| | - Juan de Vicente
- Excellence Research Unit “Modeling Nature” (MNat)University of GranadaGranadaSpain
- Department of Applied PhysicsFaculty of Sciences, University of GranadaGranadaSpain
| | - Cristina Antich
- Biosanitary Research Institute of Granada (ibs.GRANADA)University Hospitals of Granada‐University of GranadaGranadaSpain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of GranadaGranadaSpain
- Department of Human Anatomy and EmbryologyFaculty of Medicine, University of GranadaGranadaSpain
- Excellence Research Unit “Modeling Nature” (MNat)University of GranadaGranadaSpain
| | - Gema Jiménez
- Biosanitary Research Institute of Granada (ibs.GRANADA)University Hospitals of Granada‐University of GranadaGranadaSpain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of GranadaGranadaSpain
- Excellence Research Unit “Modeling Nature” (MNat)University of GranadaGranadaSpain
| | - Daniel Martínez‐Moreno
- Biosanitary Research Institute of Granada (ibs.GRANADA)University Hospitals of Granada‐University of GranadaGranadaSpain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of GranadaGranadaSpain
- Department of Human Anatomy and EmbryologyFaculty of Medicine, University of GranadaGranadaSpain
- Excellence Research Unit “Modeling Nature” (MNat)University of GranadaGranadaSpain
| | - Esmeralda Carrillo
- Biosanitary Research Institute of Granada (ibs.GRANADA)University Hospitals of Granada‐University of GranadaGranadaSpain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of GranadaGranadaSpain
- Department of Human Anatomy and EmbryologyFaculty of Medicine, University of GranadaGranadaSpain
- Excellence Research Unit “Modeling Nature” (MNat)University of GranadaGranadaSpain
| | - Elvira Montañez
- Biomedical Research Institute of Málaga (IBIMA)Málaga
- Department of Orthopedic Surgery and TraumatologyVirgen de la Victoria University HospitalMálagaSpain
| | - Patricia Gálvez‐Martín
- Department of Pharmacy and Pharmaceutical TechnologySchool of Pharmacy, University of GranadaGranadaSpain
- Advanced Therapies AreaBioibérica S.A.UBarcelonaSpain
| | - Macarena Perán
- Biosanitary Research Institute of Granada (ibs.GRANADA)University Hospitals of Granada‐University of GranadaGranadaSpain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of GranadaGranadaSpain
- Excellence Research Unit “Modeling Nature” (MNat)University of GranadaGranadaSpain
- Department of Health SciencesUniversity of JaénJaénSpain
| | - Elena López‐Ruiz
- Biosanitary Research Institute of Granada (ibs.GRANADA)University Hospitals of Granada‐University of GranadaGranadaSpain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of GranadaGranadaSpain
- Excellence Research Unit “Modeling Nature” (MNat)University of GranadaGranadaSpain
- Department of Health SciencesUniversity of JaénJaénSpain
| | - Juan Antonio Marchal
- Biosanitary Research Institute of Granada (ibs.GRANADA)University Hospitals of Granada‐University of GranadaGranadaSpain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of GranadaGranadaSpain
- Department of Human Anatomy and EmbryologyFaculty of Medicine, University of GranadaGranadaSpain
- Excellence Research Unit “Modeling Nature” (MNat)University of GranadaGranadaSpain
| |
Collapse
|
9
|
Kubrova E, Su M, Galeano-Garces C, Galvan ML, Jerez S, Dietz AB, Smith J, Qu W, van Wijnen AJ. Differences in Cytotoxicity of Lidocaine, Ropivacaine, and Bupivacaine on the Viability and Metabolic Activity of Human Adipose-Derived Mesenchymal Stem Cells. Am J Phys Med Rehabil 2021; 100:82-91. [PMID: 32657816 PMCID: PMC11784493 DOI: 10.1097/phm.0000000000001529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE We evaluated biological effects of distinct local anesthetics on human adipose-derived mesenchymal stem cells when applied to reduce periprocedural pain during mesenchymal stem cell injections. METHODS AND MATERIALS Metabolic activity (MTS assay), viability (Live/Dead stain), and gene expression (quantitative real-time reverse-transcriptase polymerase chain reaction) were measured in mesenchymal stem cells incubated with various concentrations of lidocaine, ropivacaine, or bupivacaine during a 12-hr time course. RESULTS Cell viability and metabolic activity decreased in a dose, time, and substance-specific manner after exposure to lidocaine, ropivacaine, and bupivacaine, with ropivacaine being the least cytotoxic. Cell viability decreases after brief exposure (<1.5 hrs) at clinically relevant concentrations (eg, 8 mg/ml of lidocaine, 2.5 mg/ml of ropivacaine or bupivacaine). Mesenchymal stem cells exposed to local anesthetics change their expression of mRNA biomarkers for stress response (EGR1, EGR2), proliferation (MKI67, HIST2H4A), ECM (COL1A1, COL3A1), and cell surface marker (CD105). CONCLUSIONS Local anesthetics are cytotoxic to clinical-grade human mesenchymal stem cells in a dose-, time-, and agent-dependent manner and change expression of ECM, proliferation, and cell surface markers. Lidocaine and bupivacaine are more cytotoxic than ropivacaine. Single-dose injections of local anesthetics may affect the biological properties of mesenchymal stem cells in vitro but may not affect the effective dose of MSCs in a clinical setting.
Collapse
Affiliation(s)
- Eva Kubrova
- From the Department of Physical Medicine & Rehabilitation, Mayo Clinic, Rochester, Minnesota (EK, MS, JS, WQ); Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota (EK, MS, CG-G, MLG, SJ, AJvW); Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, Minnesota (MS, CG-G, SJ, AJvW); Department of Physical Medicine & Rehabilitation, The First Affiliated Hospital of Soochow University, Suzhou, China (MS); and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota (ABD)
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Sun Y, You Y, Jiang W, Zhai Z, Dai K. 3D-bioprinting a genetically inspired cartilage scaffold with GDF5-conjugated BMSC-laden hydrogel and polymer for cartilage repair. Theranostics 2019; 9:6949-6961. [PMID: 31660079 PMCID: PMC6815949 DOI: 10.7150/thno.38061] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/06/2019] [Indexed: 02/07/2023] Open
Abstract
Rationale: Articular cartilage injury is extremely common in congenital joint dysplasia patients. Genetic studies have identified Growth differentiation factor 5 (GDF5) as a shared gene in joint dysplasia and OA progression across different populations. However, few studies have employed GDF5 in biological regeneration for articular cartilage repair. Methods & Results: In the present study, we report identified genetic association between GDF5 loci and hip joint dysplasia with genome-wide association study (GWAS). GWAS and replication studies in separate populations achieved significant signals for GDF5 loci. GDF5 expression was dysregulated with allelic differences in hip cartilage of DDH and upregulated in the repaired cartilage in a rabbit cartilage defect model. GDF5 in vitro enhanced chondrogenesis and migration of bone marrow stem cells (BMSCs), GDF5 was tested in ectopic cartilage generation with BMSCs by GDF5 in nude mice in vivo. Genetically inspired, we further generated functional knee articular cartilage construct for cartilage repair by 3d-bioprinting a GDF5-conjugated BMSC-laden scaffold. GDF5-conjugated scaffold showed better cartilage repairing effects compared to control. Meanwhile, transplantation of the 3D-bioprinted GDF5-conjugated BMSC-laden scaffold in rabbit knees conferred long-term chondroprotection. Conclusions: In conclusion, we report identified genetic association between GDF5 and DDH with combined GWAS and replications, which further inspired us to generate a ready-to-implant GDF5-conjugated BMSC-laden scaffold with one-step 3d-bioprinting for cartilage repair.
Collapse
|
11
|
Kubrova E, Qu W, Galvan ML, Paradise CR, Yang J, Dietz AB, Dudakovic A, Smith J, van Wijnen AJ. Hypothermia and nutrient deprivation alter viability of human adipose-derived mesenchymal stem cells. Gene 2019; 722:144058. [PMID: 31494240 DOI: 10.1016/j.gene.2019.144058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 08/17/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE Adipose-derived mesenchymal stem cells (MSCs) are attractive biological agents in regenerative medicine. To optimize cell therapies, it is necessary to determine the most effective delivery method for MSCs. Therefore, we evaluated the biological properties of MSCs after exposure to various temperatures to define optimal storage conditions prior to therapeutic delivery of MSCs. DESIGN Prospective observational study. METHODS AND MATERIALS Adherent and non-adherent MSCs were incubated at multiple temperatures (i.e., 4, 23 and 37 °C) in Lactated Ringers (LR) solution lacking essential cell growth ingredients, or in culture media which is optimized for cell growth. Cells were assessed either after the temperature changes (4 h) or after recovery (24 h). Metabolic activity of MSCs, cell number and expression of representative mRNA biomarkers were evaluated to assess the biological effects of temperature. We monitored changes in mRNAs expression related to cytoprotective- or stress-related responses (e.g., FOS, JUN, ATF1, ATF4, EGR1, EGR2, MYC), proliferation (e.g., HIST2H4, CCNB2), and extracellular matrix production (ECM; e.g., COL3A1, COL1A1) by quantitative real time reverse-transcriptase polymerase chain reaction (RT-qPCR) analysis. RESULTS Our study demonstrates that storing MSCs in Lactated Ringers (LR) solution for 4 h decreases cell number and metabolic activity. The number of viable MSCs decreased significantly when cultured at physiological temperature (37 °C) and severe hypothermia (4 °C), while cells grown at ambient temperature (23 °C) exhibited the least detrimental effects. There were no appreciable biological differences in mRNA markers for proliferation or ECM deposition at any of the temperatures. However, biomarkers related to cytoprotective- or stress-responses were selectively elevated depending on temperature or media type (i.e., LR versus standard media). CONCLUSION The biological impact of nutrient-free media and temperature changes after 4 h exposure persists after a 24 h recovery period. Hence, storage temperature and media conditions should be optimized to improve effective dosing of MSCs.
Collapse
Affiliation(s)
- Eva Kubrova
- Department of Physical Medicine &Rehabilitation, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Wenchun Qu
- Department of Physical Medicine &Rehabilitation, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America.
| | - M Lizeth Galvan
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Christopher R Paradise
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, United States of America; Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States of America
| | - Juan Yang
- Department of Physical Medicine &Rehabilitation, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Allan B Dietz
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States of America
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Jay Smith
- Department of Physical Medicine &Rehabilitation, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America.
| |
Collapse
|
12
|
Nie H, Kubrova E, Wu T, Denbeigh JM, Hunt C, Dietz AB, Smith J, Qu W, van Wijnen AJ. Effect of Lidocaine on Viability and Gene Expression of Human Adipose-derived Mesenchymal Stem Cells: An in vitro Study. PM R 2019; 11:1218-1227. [PMID: 30784215 DOI: 10.1002/pmrj.12141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/28/2019] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To assess the biologic effects of lidocaine on the viability, proliferation, and function of human adipose tissue-derived mesenchymal stromal/stem cells (MSCs) in vitro. METHODS Adipose-derived MSCs from three donors were exposed to lidocaine at various dilutions (2 mg/mL to 8 mg/mL) and exposure times (0.5 to 4 hours). Cell number and viability, mitochondrial activity, and real-time reverse-transcriptase quantitative polymerase chain reaction (RT-qPCR) were analyzed at 0 (immediate effects) or 24 and 48 hours (recovery effects) after treatment with lidocaine. RESULTS Trypan blue staining showed that increasing concentrations of lidocaine decreased the number of observable viable cells. 3-[4,5,dimethylthiazol-2-yl]-5-[3-carboxymethoxy-phenyl]-2-[4-sulfophenyl]-2H-tetrazolium (MTS) assays revealed a concentration- and time- dependent decline of mitochondrial activity and proliferative ability. Gene expression analysis by RT-qPCR revealed that adipose-derived MSCs exposed to lidocaine express robust levels of stress response/cytoprotective genes. However, higher concentrations of lidocaine caused a significant downregulation of these genes. No significant differences were observed in expression of extracellular matrix (ECM) markers COL1A1 and DCN except for COL3A1 (P < .05). Levels of messenger RNA (mRNA) for proliferation markers (CCNB2, HIST2H4A, P < .001) and MKI67 (P < .001) increased at 24 and 48 hours. Expression levels of several transcription factors- including SP1, PRRX1, and ATF1-were modulated in the same manner. MSC surface markers CD44 and CD105 demonstrated decreased expression immediately after treatment, but at 24 and 48 hours postexposure, the MSC markers showed no significant difference among groups. CONCLUSION Lidocaine is toxic to MSCs in a dose- and time- dependent manner. MSC exposure to high (4-8 mg/mL) concentrations of lidocaine for prolonged periods can affect their biologic functions. Although the exposure time in vivo is short, it is essential to choose safe concentrations when applying lidocaine along with MSCs to avoid compromising the viability and potency of the stem cell therapy.
Collapse
Affiliation(s)
- Hai Nie
- Department of Orthopedic Surgery Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN.,Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN
| | - Eva Kubrova
- Department of Orthopedic Surgery Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN.,Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN
| | - Tao Wu
- Department of Physical Medicine & Rehabilitation, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN
| | - Janet M Denbeigh
- Department of Orthopedic Surgery Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN
| | - Christine Hunt
- Department of Physical Medicine & Rehabilitation, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN
| | - Allan B Dietz
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN
| | - Jay Smith
- Department of Physical Medicine & Rehabilitation, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN
| | - Wenchun Qu
- Department of Physical Medicine & Rehabilitation, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN
| | - Andre J van Wijnen
- Department of Orthopedic Surgery Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN.,Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
13
|
Prasad A, Kandasubramanian B. Fused deposition processing polycaprolactone of composites for biomedical applications. POLYM-PLAST TECH MAT 2019. [DOI: 10.1080/25740881.2018.1563117] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Arya Prasad
- Institute of Plastics Technology, Central Institute of Plastics Engineering & Technology (CIPET), Kochi, Kerala, India
| | - Balasubramanian Kandasubramanian
- Rapid Prototyping Lab, Department of Metallurgical & Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune, India
| |
Collapse
|