1
|
György É, Laslo É. Microbiological Quality Assessment of Some Commercially Available Breads. Foods 2024; 13:3271. [PMID: 39456333 PMCID: PMC11507153 DOI: 10.3390/foods13203271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Bread is a staple, energy-rich food for people of all ages, so quality is important to consumers. In our region, most of the commercially available bread, whether packaged or unpackaged, is produced by local bakeries, so monitoring microbial levels and the types of microbes present on bread can help to draw attention to protect the final product. It can also help to ensure the food safety, quality, and shelf life of bread. The freshly baked product is microbiologically sterile. Post-process contamination affects the microbial load of bread. In this study, the microbial load of 30 different commercial bread crumbs and crusts was determined. The different types of bread with different compositions were analyzed for total viable bacteria, Escherichia coli, Staphylococcus aureus, aerobic and anaerobic spore-forming bacteria, and culturable microscopic fungi. The K-means clustering algorithm was used to cluster the different types of bread based on the number of aerobic mesophilic bacteria. Significant differences (p < 0.05) were found in the total viable bacterial count for bread crusts and crumbs. The bacterial count of bread varied between 10.00 ± 0.00-395.00 ± 52.4 CFU/g for bread crusts and 10.00 ± 0.0-310.67 ± 94 CFU/g for bread crumbs. The results of 16S rDNA sequence analysis showed that the most frequently occurring bacterial species belonged to the genus Bacillus, but species of the genus Staphylococcus were also present. Chryseobacterium spp. predominated on multigrain bread, Marinilactobacillus spp. on rustic potato bread, and Staphylococcus warneri on sliced brown potato bread. The results contribute to a better understanding of the microbial dynamics in locally produced breads from the Eastern Carpathians of Transylvania, with the aim of improving food safety, quality control, and consumer protection.
Collapse
Affiliation(s)
- Éva György
- Department of Food Science, Faculty of Economics, Socio-Human Sciences and Engineering, Sapientia Hungarian University of Transylvania, 530104 Miercurea Ciuc, Romania;
| | | |
Collapse
|
2
|
Ma M, Li A, Feng J, Wang Z, Jia Y, Ma X, Ning Y. Antifungal mechanism of Lactiplantibacillus plantarum P10 against Aspergillus niger and its in-situ biopreservative application in Chinese steamed bread. Food Chem 2024; 449:139181. [PMID: 38581786 DOI: 10.1016/j.foodchem.2024.139181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/08/2024]
Affiliation(s)
- Mengge Ma
- College of Food and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Ao Li
- College of Food and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Jin Feng
- College of Food and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Zhixin Wang
- College of Food and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Yingmin Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Xinying Ma
- Hebei Inatural Biotech Co., Ltd, Shijiazhuang 050800, China
| | - Yawei Ning
- College of Food and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| |
Collapse
|
3
|
Duyar SM, Sari F, Karaoglan HA. Production of red beetroot juice by different methods: Kinetics of microbial growth, sugar consumption, and acid production. Heliyon 2024; 10:e30448. [PMID: 38737281 PMCID: PMC11088329 DOI: 10.1016/j.heliyon.2024.e30448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/14/2024] Open
Abstract
As a fermentation method, the utilisation of starter culture is a common practice in industrial manufacturing, although spontaneous methods have been employed since ancient times. The objective of this study was to investigate the effect of different production methods on red beetroot juice (RBJ). For this purpose, as a starter culture, the probiotic Lactibasillus paracasei (Lc. paracasei) was inoculated into the RBJ samples after pasteurization. Also, the growth of cells, acid production, and substrate utilisation were monitored throughout the fermentation process of RBJ under two different methods of fermentation. The samples produced by the addition of Lc. paracasei demonstrated a slightly lower decrease in pH values in comparison to the samples obtained by the spontaneous method. The concentration of lactic acid (LA) and acetic acid (AA) at the end of fermentation reveals that Lc. paracasei exhibits a greater capacity for both LA and AA generation compared to the spontaneous method. The ratios of LA and AA molar concentrations of RBJ were determined to be 1.7 and 3.6 for the samples produced by adding Lc. paracasei and the spontaneous method, respectively. The samples produced by adding Lc. paracasei exhibited a greater consumption of sucrose. Both fermentation methods provide LAB counts exceeding 8 log CFU/mL at the end of fermentation. Time demonstrated a significant correlation with LA and AA in the method by adding Lc. paracasei (r = 0.942 and 0.745), respectively (p < 0.01). In both methods, it was demonstrated that while sucrose content decreased during the fermentation period, fructose and glucose content remained constant (p < 0.05).
Collapse
Affiliation(s)
| | - Ferda Sari
- Sivas Cumhuriyet University, Sivas Technical Sciences Vocational School, Plant and Animal Production, Department of Organic Agriculture, Sivas, Turkey
| | - Hatice Aybuke Karaoglan
- Sivas Cumhuriyet University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Sivas, Turkey
| |
Collapse
|
4
|
Yang Y, Cui J, Jiang Z, Zhao X. GC × GC-ToF-MS combined with multivariate statistical methods to explore the effects of L. paracasei fermentation on bread flavor characteristics. Food Chem 2024; 435:137643. [PMID: 37801769 DOI: 10.1016/j.foodchem.2023.137643] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/16/2023] [Accepted: 09/29/2023] [Indexed: 10/08/2023]
Abstract
GC × GC-ToF-MS is increasingly used to analyze complex food flavors due to its high resolution and sensitivity, but few studies have used the method to identify aroma components of bread. For the first time, this study combines GC × GC-ToF-MS and multivariate statistical methods to explore the effects of L. paracasei fermentation on bread flavor characteristics. A total of 1534 volatile organic compounds were identified, of which 447 were obtained by metabolome normalization. Based on the variable importance for the projection and p values, 82 different compounds were screened in L. paracasei bread compared with yeast bread, and the total relative content was 1.52 times higher than that of yeast bread. 2-Furancarboxaldehyde, 5-methyl-, pentanoic acid, 2-hydroxy-4-methyl-, ethyl ester, pyrazine, 2,5-dimethyl- and γ-terpinene are aroma-presenting substances specific to L. paracasei bread that could be potential identification compounds. This study provides a new techno-theoretical approach for the characterization and discrimination of LAB bread flavors.
Collapse
Affiliation(s)
- Yuxia Yang
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, Liaoning Province, China
| | - Jinxi Cui
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, Liaoning Province, China
| | - Zhongli Jiang
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, Liaoning Province, China
| | - Xiuhong Zhao
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, Liaoning Province, China.
| |
Collapse
|
5
|
Ciont C, Difonzo G, Pasqualone A, Chis MS, Ranga F, Szabo K, Simon E, Naghiu A, Barbu-Tudoran L, Caponio F, Lelia Pop O, Cristian Vodnar D. Phenolic profile of micro- and nano-encapsulated olive leaf extract in biscuits during in vitro gastrointestinal digestion. Food Chem 2023; 428:136778. [PMID: 37421669 DOI: 10.1016/j.foodchem.2023.136778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/16/2023] [Accepted: 06/29/2023] [Indexed: 07/10/2023]
Abstract
Olive leaf was characterized by a high content of phenols and flavonoids (oleuropein, luteolin, and their derivatives), presenting functional and health-related properties. The chemical instability of phenolics through technological processes and their degradation in the digestive system may negatively impact them, leading to lower absorption. This study evaluates the phenolic profile of micro- and nano-encapsulated olive leaf extract in biscuits during the INFOGEST static in vitro digestion, aiming to enhance stability and sensorial properties. Ultrasound-assisted extraction and chromatography characterized the extract, while spray drying (maltodextrin-glucose) and nano-encapsulation (maltodextrin, whey protein isolate, and arabic gum) techniques were used with specific solutions. Encapsulated formulations underwent microscopy (TEM, SEM) and encapsulation efficiency analysis. Micro- and nano-encapsulation improved biscuit functionality by enhancing phenolic stability during digestion. However, the highest concentration adversely affected sensory and textural parameters. These findings contribute to developing functional food products enriched with bioactive compounds, providing improved health benefits while maintaining sensory attributes.
Collapse
Affiliation(s)
- Călina Ciont
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania; Molecular Nutrition and Proteomics Laboratory, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania
| | - Graziana Difonzo
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, I-70126 Bari, Italy.
| | - Antonella Pasqualone
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, I-70126 Bari, Italy
| | - Maria Simona Chis
- Department Food Technology, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania
| | - Florica Ranga
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania
| | - Katalin Szabo
- Molecular Nutrition and Proteomics Laboratory, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania
| | - Elemer Simon
- Molecular Nutrition and Proteomics Laboratory, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania
| | - Anca Naghiu
- Research Institute for Analytical Instrumentation, National Institute of Research and Development for Optoelectronics INOE 2000, 67 Donath Street, 400293 Cluj-Napoca, Romania
| | - Lucian Barbu-Tudoran
- Electron Microscopy Center, Faculty of Biology and Geology, Babes-Bolyai University, Clinicilor 5-7, 400006 Cluj-Napoca, Romania
| | - Francesco Caponio
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, I-70126 Bari, Italy
| | - Oana Lelia Pop
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania; Molecular Nutrition and Proteomics Laboratory, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania.
| | - Dan Cristian Vodnar
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania
| |
Collapse
|
6
|
Selim S, Albqmi M, Al-Sanea MM, Alnusaire TS, Almuhayawi MS, AbdElgawad H, Al Jaouni SK, Elkelish A, Hussein S, Warrad M, El-Saadony MT. Valorizing the usage of olive leaves, bioactive compounds, biological activities, and food applications: A comprehensive review. Front Nutr 2022; 9:1008349. [PMID: 36424930 PMCID: PMC9678927 DOI: 10.3389/fnut.2022.1008349] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/04/2022] [Indexed: 11/10/2022] Open
Abstract
Olive oil production is a significant source of economic profit for Mediterranean nations, accounting for around 98 percent of global output. Olive oil usage has increased dramatically in recent years, owing to its organoleptic characteristics and rising knowledge of its health advantages. The culture of olive trees and the manufacture of industrial and table olive oil produces enormous volumes of solid waste and dark liquid effluents, involving olive leaves, pomace, and olive oil mill wastewaters. These by-products cause an economic issue for manufacturers and pose major environmental concerns. As a result, partial reuse, like other agronomical production wastes, is a goal to be achieved. Because these by-products are high in bioactive chemicals, which, if isolated, might denote components with significant added value for the food, cosmetic, and nutraceutical sectors, indeed, they include significant amounts of beneficial organic acids, carbohydrates, proteins, fibers, and phenolic materials, which are distributed differently between the various wastes depending on the olive oil production method and table olive agronomical techniques. However, the extraction and recovery of bioactive materials from chosen by-products is a significant problem of their reasonable value, and rigorous detection and quantification are required. The primary aims of this review in this context are to outline the vital bioactive chemicals in olive by-products, evaluate the main developments in extraction, purification, and identification, and study their uses in food packaging systems and safety problems.
Collapse
Affiliation(s)
- Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
- Olive Research Center, Jouf University, Sakaka, Saudi Arabia
- *Correspondence: Samy Selim,
| | - Mha Albqmi
- Olive Research Center, Jouf University, Sakaka, Saudi Arabia
- Department of Chemistry, College of Science and Arts, Jouf University, Al Qurayyat, Saudi Arabia
| | - Mohammad M. Al-Sanea
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | | | - Mohammed S. Almuhayawi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hamada AbdElgawad
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Soad K. Al Jaouni
- Department of Hematology and Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amr Elkelish
- Department of Botany and Microbiology, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Shaimaa Hussein
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Mona Warrad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences at Al-Quriat, Jouf University, Al Qurayyat, Saudi Arabia
| | - Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
- Mohamed T. El-Saadony,
| |
Collapse
|
7
|
Liu A, Xu R, Zhang S, Wang Y, Hu B, Ao X, Li Q, Li J, Hu K, Yang Y, Liu S. Antifungal Mechanisms and Application of Lactic Acid Bacteria in Bakery Products: A Review. Front Microbiol 2022; 13:924398. [PMID: 35783382 PMCID: PMC9244174 DOI: 10.3389/fmicb.2022.924398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Bakery products are nutritious, but they are susceptible to fungal contamination, which leads to a decline in quality and safety. Chemical preservatives are often used to extend the shelf-life of bakery products, but long-term consumption of these preservatives may increase the risk of chronic diseases. Consumers increasingly demand food with fewer chemical preservatives. The application of lactic acid bacteria (LAB) as a novel biological preservative not only prolongs the shelf-life of bakery products but also improves the baking properties of bakery products. This review summarizes different types and action mechanisms of antifungal compounds produced by LAB, factors affecting the production of antifungal compounds, and the effects of antifungal LAB on bakery products, providing a reference for future applications of antifungal LAB in bakery products.
Collapse
|
8
|
Effects of Teff-Based Sourdoughs on Dough Rheology and Gluten-Free Bread Quality. Foods 2022; 11:foods11071012. [PMID: 35407099 PMCID: PMC8997562 DOI: 10.3390/foods11071012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 12/24/2022] Open
Abstract
Production of gluten-free bread (GFB) with good quality characteristics represents a technological challenge. Our study aimed to obtain nongluten bread from cereals and pseudocereals with applying single cultures of Pediococcus acidilactici, Pediococcus pentosaceus and Enteroccocus durans as sourdoughs. The effect of sourdoughs on the quality traits of gluten-free (GF) dough and GFB was explored. The structural and baking properties of GF dough composed of teff, rice, corn, and sorghum flours were improved by adding xanthan gum (0.6%), guar gum (1.0%) and carboxymethyl cellulose (1.0%). The tested strains reached 108 cfu/g in teff flour and produced sourdoughs with a pleasant lactic aroma. The sourdough-fermented doughs were softer and more elastic compared to control dough and yielded reduced baking loss. Strain Enterococcus durans ensured the best baking characteristics of GF dough and the highest softness of the GFB during storage. Strain Pediococcus pentosaceus had the most pronounced positive effect on aroma, taste and aftertaste. Pan baking was found to be more appropriate to obtain stable shape and good-looking products. A careful starter culture selection is necessary for GFB development since a significant effect of strain specificity on dough rheology and baking characteristics was observed.
Collapse
|
9
|
Lokapirnasari WP, Agustono B, Al Arif MA, Maslachah L, Chandra EH, Yulianto AB. Effect of probiotic and Moringa oleifera extract on performance, carcass yield, and mortality of Peking duck. Vet World 2022; 15:694-700. [PMID: 35497955 PMCID: PMC9047131 DOI: 10.14202/vetworld.2022.694-700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 02/15/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Antibiotics have been used as growth promoters in poultry. However, continuous and long-term antibiotics can cause resistance, suppress the immune system, and accumulate toxic residue. To overcome these problems, feed additives that are safe for livestock and health for humans are needed, including probiotics. Therefore, the study aimed to determine the effect of probiotics (Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus lactis, and Bifidobacterium spp.) and Moringa oleifera extract on performance (body weight gain, body weight, feed intake, feed efficiency, and feed conversion ratio [FCR]), carcass yield (carcass weight and percentage of carcass) and mortality of Peking duck.
Materials and Methods: This study used 48 Peking ducks, divided into four treatments and six replications. Each replication consisted of two ducks. The treatments were as follows: T0=control, T1=4 mL containing 1.2×108 CFU/mL of probiotic in drinking water, T2=4 mL containing M. oleifera extract in drinking water, and T3=2 mL containing 1.2×108 CFU/mL of probiotic in drinking water+2 mL containing M. oleifera extract in drinking water. The probiotics consist of L. acidophilus, L. casei, L. lactis, and Bifidobacterium spp. The data were statistically analyzed through analysis of variance. For the follow-up test, a multiple range test was conducted.
Results: There was no significant difference (p>0.05) between body weight, feed intake, and mortality treatments. By contrast, control and treatment showed a significant difference (p<0.05) on feed efficiency, FCR, body weight gain, carcass weight, and percentage of carcass weight. Results of body weight gain statistics showed no significant difference (p>0.05) between T0 and T1, but T0 and T1 showed a significant difference with T2 and T3. The results of the feed efficiency statistic showed no significant difference (p>0.05) between T0, T1, and T2, but there was a significant difference between T0, T1, and T3. Feed efficiency at T2 showed no significant difference with T3, T1, and T0. The results of the FCR statistic showed no significant difference (p>0.05) between T0, T1, and T2, but there was a significant difference between T0, T1, and T3. FCR at T2 showed no significant difference with T3, T1, and T0. The carcass weight statistic showed no significant difference (p>0.05) between T0, T1, and T3, but there was a significant difference between T0 and T2. T2 showed no significant difference with T1 and T3. The carcass percentage statistic showed no significant difference (p>0.05) between T0 and T1, but T0 and T1 showed a significant difference (p<0.05) with T2 and T3.
Conclusion: Based on the study results, it can be concluded that the use of a combination of probiotics (L. acidophilus, L. casei, L. lactis, and Bifidobacterium spp.) and M. oleifera extract can increase the production performance of Peking ducks and is safe for ducks' health.
Collapse
Affiliation(s)
| | - Bodhi Agustono
- Division of Animal Husbandry, Faculty of Veterinary Medicine, Universitas Airlangga, Indonesia
| | - Mohammad Anam Al Arif
- Division of Animal Husbandry, Faculty of Veterinary Medicine, Universitas Airlangga, Indonesia
| | - Lilik Maslachah
- Division of Veterinary Basic Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Indonesia
| | - Evania Haris Chandra
- Master Study program of Veterinary Agribusiness, Faculty of Veterinary Medicine, Universitas Airlangga, Indonesia
| | - Andreas Berny Yulianto
- Department of Veterinary Basic Medicine, Faculty of Veterinary Medicine, Wijaya Kusuma Surabaya University, Indonesia
| |
Collapse
|
10
|
Comparative Evaluation of the Phytochemical Profiles and Antioxidant Potentials of Olive Leaves from 32 Cultivars Grown in China. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041292. [PMID: 35209081 PMCID: PMC8878581 DOI: 10.3390/molecules27041292] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 11/16/2022]
Abstract
Olives (Olea europaea L.) are a significant part of the agroindustry in China. Olive leaves, the most abundant by-products of the olive and olive oil industry, contain bioactive compounds that are beneficial to human health. The purpose of this study was to evaluate the phytochemical profiles and antioxidant capacities of olive leaves from 32 cultivars grown in China. A total of 32 phytochemical compounds were identified using high-performance liquid chromatography–electrospray ionization–tandem mass spectrometry, including 17 flavonoids, five iridoids, two hydroxycinnamic acids, six triterpenic acids, one simple phenol, and one coumarin. Specifically, olive leaves were found to be excellent sources of flavonoids (4.92–18.29 mg/g dw), iridoids (5.75–33.73 mg/g dw), and triterpenic acids (15.72–35.75 mg/g dw), and considerable variations in phytochemical content were detected among the different cultivars. All tested cultivars were classified into three categories according to their oil contents for further comparative phytochemicals assessment. Principal component analysis indicated that the investigated olive cultivars could be distinguished based upon their phytochemical profiles and antioxidant capacities. The olive leaves obtained from the low-oil-content (<16%) cultivars exhibited higher levels of glycosylated flavonoids and iridoids, while those obtained from high-oil-content (>20%) cultivars contained mainly triterpenic acids in their compositions. Correspondingly, the low-oil-content cultivars (OL3, Frantoio selection and OL14, Huaou 5) exhibited the highest ABTS antioxidant activities (758.01 ± 16.54 and 710.64 ± 14.58 mg TE/g dw, respectively), and OL9 (Olea europaea subsp. Cuspidata isolate Yunnan) and OL3 exhibited the highest ferric reducing/antioxidant power assay values (1228.29 ± 23.95 mg TE/g dw and 1099.99 ± 14.30 mg TE/g dw, respectively). The results from this study may be beneficial to the comprehensive evaluation and utilization of bioactive compounds in olive leaves.
Collapse
|
11
|
Ghasemi L, Nouri L, Mohammadi Nafchi A, Al‐Hassan AA. The effects of encapsulated probiotic bacteria on the physicochemical properties, staling, and viability of probiotic bacteria in gluten‐free bread. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16359] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Leila Ghasemi
- Department of Food Science and Technology Damghan Branch, Islamic Azad University Damghan Iran
| | - Leila Nouri
- Department of Food Science and Technology Damghan Branch, Islamic Azad University Damghan Iran
| | - Abdorreza Mohammadi Nafchi
- Department of Food Science and Technology Damghan Branch, Islamic Azad University Damghan Iran
- Food Technology Division School of Industrial Technology Universiti Sains Malaysia Penang Malaysia
| | - Ahmed Ali Al‐Hassan
- Department of Food Science and Human Nutrition College of Agriculture and Veterinary Medicine Qassim University Burydah Saudi Arabia
| |
Collapse
|
12
|
Yang Q, Rutherfurd-Markwick K, Mutukumira AN. Identification of dominant lactic acid bacteria and yeast in rice sourdough produced in New Zealand. Curr Res Food Sci 2021; 4:729-736. [PMID: 34729499 PMCID: PMC8546371 DOI: 10.1016/j.crfs.2021.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/07/2021] [Accepted: 10/06/2021] [Indexed: 11/21/2022] Open
Abstract
This study characterised a commercial New Zealand gluten free (GF) rice sourdough and its starter culture composition. Acidity of the mother sourdough, dough before proofing and dough after proofing was determined during the production of rice sourdough bread, and colour was measured for the baked bread. Yeast and lactic acid bacteria (LAB) were enumerated in the rice sourdough samples and representative colonies characterised using API kits and sequenced by the Internal Transcribed Spacer and 16 S rRNA region. Sourdough LAB isolates were identified as Lactobacillus (L.) papraplantarum DSM 10667 and L. fermentarum CIP 102980 and the yeast isolates as Saccharomyces (S.) cerevisiae CBS 1171. Dough acidity increased significantly (p < 0.05) during fermentation due to the metabolic activities of the sourdough cultures. After baking, the colour of the rice sourdough bread crust was similar to that of unleavened wheat bread (golden brown). The improved colour of the rice sourdough bread crust may be a result of combined use of sourdough technique and optimal baking conditions. The results of this study may allow bakers to improve the overall quality of GF rice sourdough baked bread by selecting suitable fermentation and baking parameters. Gluten-free rice sourdough bread. Rice sourdough fermentation of gluten-free bread improved bread crust colour Rice sourdough LAB identified as Lactobacillus paraplantarum CIP 102980 and Lactobacillus fermentarum DSM 10667 Yeast isolated from rice sourdough was identified as S. cerevisiae CBS 1171.
Collapse
Affiliation(s)
- Qiwei Yang
- School of Food and Advanced Technology, Massey University, Auckland, 0745, New Zealand
| | - Kay Rutherfurd-Markwick
- School of Health Sciences, College of Health, Massey University, Auckland, 0745, New Zealand
| | - Anthony N. Mutukumira
- School of Food and Advanced Technology, Massey University, Auckland, 0745, New Zealand
- Corresponding author.
| |
Collapse
|
13
|
Characterization and Cell Viability of Probiotic/Prebiotics Film Based on Duck Feet Gelatin: A Novel Poultry Gelatin as a Suitable Matrix for Probiotics. Foods 2021; 10:foods10081761. [PMID: 34441538 PMCID: PMC8392242 DOI: 10.3390/foods10081761] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 01/17/2023] Open
Abstract
The probiotic viability, physicochemical, mechanical, barrier, and microstructure properties of synbiotic edible films (SEFs) based on duck feet gelatin (DFG) were evaluated. Four synbiotic systems were obtained by mixing four types of prebiotics, namely, dextrin, polydextrose, gum Arabic, and sago starch, with DFG to immobilize of probiotic (Lactobacillus casei ATCC). The ability of DFG to create a suitable matrix to increase probiotic viability was compared with those of other commercial gelatins in a preliminary evaluation. The DFG showed proper probiotic viability compared with other gelatins. The addition of prebiotics reduced the transparency of SEFs and increased color differentiation, uniformity, and complete coverage of probiotic cells. The estimated shelf-life of surviving bacteria in the SEFs stored at 4 and 25 °C showed that gum arabic showed the best performance and enhanced the viability of L. casei by 42% and 45%, respectively. Dextrin, polydextrose, and sago starch enhanced the viability of L. casei at 4 and 25 °C by 26% and 35%, 26% and 5%, and 20% and 5%, respectively. The prebiotics improved the physicochemical, mechanical, and barrier properties of all SEFs, except polydextrose film. The viability of L. casei can be increased with the proper selection of gelatin and prebiotics.
Collapse
|
14
|
Moghadam RM, Ariaii P, Ahmady M. The effect of microencapsulated extract of pennyroyal (Mentha pulegium. L) on the physicochemical, sensory, and viability of probiotic bacteria in yogurt. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00849-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
15
|
Varedesara MS, Ariaii P, Hesari J. The effect of grape seed protein hydrolysate on the properties of stirred yogurt and viability of Lactobacillus casei in it. Food Sci Nutr 2021; 9:2180-2190. [PMID: 33841834 PMCID: PMC8020923 DOI: 10.1002/fsn3.2188] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/03/2021] [Accepted: 02/06/2021] [Indexed: 11/07/2022] Open
Abstract
In this study, the effect of grape seed protein hydrolysate (GPH) on the physicochemical and sensory properties of stirred yogurt was evaluated. At first, the antioxidant properties and degree of hydrolysis (DH) of GPH were determined using the microbial protease enzymes (alcalase and flavourzyme), the results showed that alcalase enzyme can produce GPH with higher DH and antioxidant properties (p < .05). Also, increasing the hydrolysis time had a positive effect on these properties (p < .05). The DH, free radical scavenging DPPH, and ferric reducing power for GPH by alcalase at 30 min was 21.51%, 88.68%, and 0.33 μmol ferrous/ g, respectively. Therefore, this treatment was used for further experiments. In the next part, the mentioned GPH was added to the stirred yogurt with three concentrations (0.5, 1.5, and 1.5%) and physicochemical properties and viability of Lactobacillus casei and sensory properties were measured during 15 days of storage. The results showed that the GPH treatment had higher pH, viscosity, and texture firmness and less acidity and syneresis compared with the control sample (p < .05). Also, in these samples, the decreasing trend of L. casei viability was slower than the control treatment during the storage period (p < .05). In most parameters, better results were observed with increasing the concentration GPH and all the treatments were acceptable in terms of sensory properties. Therefore, by producing yogurt containing GPH, a new functional food can be provided for consumers of dairy products, which in addition to the desired taste, good nutritional properties can be also achieved from its consumption.
Collapse
Affiliation(s)
| | - Peiman Ariaii
- Department of Food Science & TechnologyAyatolla Amoli BranchIslamic Azad UniversityAmolIran
| | - Javad Hesari
- Department of Food and TechnologyCollege of AgricultureUniversity of TabrizTabrizIran
| |
Collapse
|
16
|
Characteristics of the Proteolytic Enzymes Produced by Lactic Acid Bacteria. Molecules 2021; 26:molecules26071858. [PMID: 33806095 PMCID: PMC8037685 DOI: 10.3390/molecules26071858] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 12/20/2022] Open
Abstract
Over the past several decades, we have observed a very rapid development in the biotechnological use of lactic acid bacteria (LAB) in various branches of the food industry. All such areas of activity of these bacteria are very important and promise enormous economic and industrial successes. LAB are a numerous group of microorganisms that have the ability to ferment sugars into lactic acid and to produce proteolytic enzymes. LAB proteolytic enzymes play an important role in supplying cells with the nitrogen compounds necessary for their growth. Their nutritional requirements in this regard are very high. Lactic acid bacteria require many free amino acids to grow. The available amount of such compounds in the natural environment is usually small, hence the main function of these enzymes is the hydrolysis of proteins to components absorbed by bacterial cells. Enzymes are synthesized inside bacterial cells and are mostly secreted outside the cell. This type of proteinase remains linked to the cell wall structure by covalent bonds. Thanks to advances in enzymology, it is possible to obtain and design new enzymes and their preparations that can be widely used in various biotechnological processes. This article characterizes the proteolytic activity, describes LAB nitrogen metabolism and details the characteristics of the peptide transport system. Potential applications of proteolytic enzymes in many industries are also presented, including the food industry.
Collapse
|
17
|
Asadzadeh A, Jalali H, Azizi MH, Mohammadi Nafchi A. Production of oat bran functional probiotic beverage using Bifidobacterium lactis. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00726-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Effect of manganese sulfate and vitamin B12 on the properties of physicochemical, textural, sensory and bacterial growth of set yogurt. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00720-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|