1
|
Zárate-Segura PB, Martínez-Castillo M, Garduño-Gutiérrez AP, Hernández-Hernández JM, Cano-Martínez LJ, García-Mena J, Coral-Vázquez RM, Bastida-González F. Changes in miRNA Pattern Expression Associated With COVID-19 Severity. In Vivo 2025; 39:482-490. [PMID: 39740904 PMCID: PMC11705121 DOI: 10.21873/invivo.13852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND/AIM Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2 infection, manifests a wide range of clinical symptoms ranging from mild to moderate and severe. Host-related factors influence the course of SARS-CoV-2 infection; for instance, the expression of host microRNAs (miRNAs) could influence the progression and complications of COVID-19. This study aimed to determine the expression pattern of endogenous miRNAs in 80 severe COVID-19 patients compared to a group of healthy individuals. MATERIALS AND METHODS The miRNA screening expression analysis was performed using TaqMan Low-Density Array, and the expression changes of miR-490-3p, miR-195-5p, miR-454-3p, and miR-431-5p were validated using RT-qPCR. In silico analysis was used to identify new targets and predict the pathways, biological processes, and interactions of the selected miRNAs. RESULTS The miR-490-3p, miR-195-5p, miR-454-3p, and miR-431-5p, were over-expressed in the total population of severe COVID-19 patients compared to the control group. miR-490-3p was found to be over-expressed in both female and male COVID-19 patients. CONCLUSION Specific miRNAs might be a potential biomarker for predicting the clinical course of COVID-19.
Collapse
Affiliation(s)
- Paola B Zárate-Segura
- Laboratorio de Medicina Traslacional, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico;
| | - Macario Martínez-Castillo
- Laboratorio de Medicina Traslacional, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | | | | | - Luis Javier Cano-Martínez
- Laboratorio de Medicina Traslacional, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
- Subdirección de Enseñanza e Investigación, Centro Médico Nacional "20 de Noviembre", Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Mexico City, Mexico
| | - Jaime García-Mena
- Departamento de Genética y Biología Molecular, Cinvestav, Mexico City, Mexico
| | - Ramón M Coral-Vázquez
- Laboratorio de Medicina Traslacional, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
- Subdirección de Enseñanza e Investigación, Centro Médico Nacional "20 de Noviembre", Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Mexico City, Mexico
| | - Fernando Bastida-González
- Laboratorio de Biología Molecular, Laboratorio Estatal de Salud Pública del Estado de México, Toluca de Lerdo, Mexico
| |
Collapse
|
2
|
Bai J, Li Q. Predicting candidate biomarkers for COVID-19 associated with leukemia in children. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL IMMUNOLOGY 2024; 13:246-258. [PMID: 39839345 PMCID: PMC11744346 DOI: 10.62347/ulta9461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 12/01/2024] [Indexed: 01/23/2025]
Abstract
Since the COVID-19 pandemic, a significant number of pediatric leukemia patients have shown to have also contracted COVID-19 several weeks or months prior to the development of their cancer. Current research indicates the expression of MDA5, encoded by IFIH1, is associated with increased immunity to COVID-19 in children. Children are also known to have a much lower risk of developing leukemia. Our hypothesis is that IFIH1 and its regulatory miRNAs are biomarkers associated with pediatric leukemia; the objective of our study is to identify genes, through miRNA targeting mechanisms, which may be biomarkers associated with COVID-19 infection and leukemia. The database TarBase was analyzed to identify miRNAs that target IFIH1, followed by the identification of other genes regulated by IFIH1's targeting miRNAs, to construct a gene-miRNA targeting network. Protein-Protein Interaction (PPI) analysis and DAVID/KEGG pathway analysis were conducted to identify genes with meaningful biological interactions and pathways. We identified two significant miRNAs, hsa-196a-5p and hsa-196b-5p, and 51 of their targeted and highly expressed genes reported in the Acute Myeloid Leukemia (AML) samples from The Cancer Genome Atlas (TCGA) RNA sequencing database. When conducting additional analysis using the Gene Constellation module of the Immunological Genome Project for the top three candidate genes, several other genes were identified to be highly correlated with STAT3 and IFIH1 in our study. Based on our investigation into co-expression analysis, we found that IFIH1 is a potential biomarker for AML. We are expanding our work to create a machine learning model to identify other biomarkers, examine the significance of various parameters (age, race, etc.), and perform comorbidity network analysis for other potential genes/miRNAs.
Collapse
Affiliation(s)
- Judy Bai
- Greenhills SchoolAnn Arbor, MI 48105, USA
| | - Qing Li
- Department of Internal Medicine, University of MichiganAnn Arbor, MI 48109, USA
| |
Collapse
|
3
|
Tamkini M, Nourbakhsh M, Movahedi M, Golestani A. Exploring genetic signatures of obesity: hub genes and miRNAs unveiled through comprehensive bioinformatic analysis. J Diabetes Metab Disord 2024; 23:2225-2232. [PMID: 39610518 PMCID: PMC11599662 DOI: 10.1007/s40200-024-01490-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/14/2024] [Indexed: 11/30/2024]
Abstract
Objectives Adipogenesis, the process of fat accumulation in adipose tissue, is closely linked to obesity, a condition characterized by excessive fat storage. Genetic factors significantly contribute to an individual's susceptibility to adipogenesis and the development of obesity. Methods In this study, we conducted a comprehensive bioinformatic analysis, including Weighted Gene Co-expression Analysis, differentially expressed gene analysis, and protein-protein interaction analysis, to identify hub genes and miRNAs associated with obesity. Results Our findings highlight the potential involvement of genes such as ATP5F1A, FN1, CCl2, RPS14, and RPS16, as well as miRNAs including hsa-miR-6844, hsa-miR-4528, hsa-miR-3686, hsa-miR-3124-3p, hsa-miR-381-3p, and hsa-miR-300 in obesity. Conclusions The findings from this study contribute to the growing knowledge of adipogenesis and obesity genetics, and provide potential biomarkers for further investigation and translation into clinical or research applications. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s40200-024-01490-8.
Collapse
Affiliation(s)
- Mahdieh Tamkini
- Department of Biochemistry, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mitra Nourbakhsh
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Clinical Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Monireh Movahedi
- Department of Biochemistry, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Abolfazl Golestani
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Shekhar Patil M, Richter E, Fanning L, Hendrix J, Wyns A, Barrero Santiago L, Nijs J, Godderis L, Polli A. Epigenetic changes in patients with post-acute COVID-19 symptoms (PACS) and long-COVID: A systematic review. Expert Rev Mol Med 2024; 26:e29. [PMID: 39435694 PMCID: PMC11505605 DOI: 10.1017/erm.2024.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/28/2024] [Accepted: 09/11/2024] [Indexed: 10/23/2024]
Abstract
BACKGROUND Up to 30% of people infected with SARS-CoV-2 report disabling symptoms 2 years after the infection. Over 100 persistent symptoms have been associated with Post-Acute COVID-19 Symptoms (PACS) and/or long-COVID, showing a significant clinical heterogeneity. To develop effective, patient-targeted treatment, a better understanding of underlying mechanisms is needed. Epigenetics has helped elucidating the pathophysiology of several health conditions and it might help unravelling inter-individual differences in patients with PACS and long-COVID. As accumulating research is exploring epigenetic mechanisms in PACS and long-COVID, we systematically summarized the available literature on the topic. METHODS We interrogated five databases (Medline, Embase, Web of Science, Scopus and medXriv/bioXriv) and followed PRISMA and SWiM guidelines to report our results. RESULTS Eight studies were included in our review. Six studies explored DNA methylation in PACS and/or long-COVID, while two studies explored miRNA expression in long-COVID associated with lung complications. Sample sizes were mostly small and study quality was low or fair. The main limitation of the included studies was a poor characterization of the patient population that made a homogeneous synthesis of the literature challenging. However, studies on DNA methylation showed that mechanisms related to the immune and the autonomic nervous system, and cell metabolism might be implicated in the pathophysiology of PACS and long-COVID. CONCLUSION Epigenetic changes might help elucidating PACS and long-COVID underlying mechanisms, aid subgrouping, and point towards tailored treatments. Preliminary evidence is promising but scarce. Biological and epigenetic research on long-COVID will benefit millions of people suffering from long-COVID and has the potential to be transferable and benefit other conditions as well, such as Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). We urge future research to employ longitudinal designs and provide a better characterization of included patients.
Collapse
Affiliation(s)
- Madhura Shekhar Patil
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Emma Richter
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Lara Fanning
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Jolien Hendrix
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
- Pain in Motion (PAIN) Research Group, Department of Physiotherapy, Human Physiology, and Anatomy, Vrije Universiteit Brussel, Brussels, Belgium
- Research Foundation, Flanders (FWO)
| | - Arne Wyns
- Pain in Motion (PAIN) Research Group, Department of Physiotherapy, Human Physiology, and Anatomy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Laura Barrero Santiago
- Department of Cell Biology, Genetics, Pharmacology and Histology – University of Valladolid, Spain
| | - Jo Nijs
- Pain in Motion (PAIN) Research Group, Department of Physiotherapy, Human Physiology, and Anatomy, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Health and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Lode Godderis
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
- External Service for Prevention and Protection at Work (IDEWE), Leuven, Belgium
| | - Andrea Polli
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
- Pain in Motion (PAIN) Research Group, Department of Physiotherapy, Human Physiology, and Anatomy, Vrije Universiteit Brussel, Brussels, Belgium
- Research Foundation, Flanders (FWO)
| |
Collapse
|
5
|
Smail SW, Hirmiz SM, Ahmed AA, Albarzinji N, Awla HK, Amin K, Janson C. Decoding the intricacies: a comprehensive analysis of microRNAs in the pathogenesis, diagnosis, prognosis and therapeutic strategies for COVID-19. Front Med (Lausanne) 2024; 11:1430974. [PMID: 39434774 PMCID: PMC11492531 DOI: 10.3389/fmed.2024.1430974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/23/2024] [Indexed: 10/23/2024] Open
Abstract
The pandemic of coronavirus disease-19 (COVID-19), provoked by the appearance of a novel coronavirus named severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), required a worldwide healthcare emergency. This has elicited an immediate need for accelerated research into its mechanisms of disease, criteria for diagnosis, methods for forecasting outcomes, and treatment approaches. microRNAs (miRNAs), are diminutive RNA molecules, that are non-coding and participate in gene expression regulation post-transcriptionally, having an important participation in regulating immune processes. miRNAs have granted substantial interest in their impact on viral replication, cell proliferation, and modulation of how the host's immune system responds. This narrative review delves into host miRNAs' multifaceted roles within the COVID-19 context, highlighting their involvement in disease progression, diagnostics, and prognostics aspects, given their stability in biological fluids and varied expression profiles when responding to an infection. Additionally, we discuss complicated interactions between SARS-CoV-2 and host cellular machinery facilitated by host miRNAs revealing how dysregulation of host miRNA expression profiles advances viral replication, immune evasion, and inflammatory responses. Furthermore, it investigates the potential of host miRNAs as therapeutic agents, whether synthetic or naturally occurring, which could be harnessed to either mitigate harmful inflammation or enhance antiviral responses. However, searching more deeply is needed to clarify how host's miRNAs are involved in pathogenesis of COVID-19, its diagnosis processes, prognostic assessments, and treatment approaches for patients.
Collapse
Affiliation(s)
- Shukur Wasman Smail
- College of Pharmacy, Cihan University-Erbil, Kurdistan Region, Erbil, Iraq
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Iraq
| | - Sarah Mousa Hirmiz
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Iraq
| | - Akhter Ahmed Ahmed
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Iraq
| | - Niaz Albarzinji
- Department of Medicine, Hawler Medical University, Erbil, Iraq
| | - Harem Khdir Awla
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Iraq
| | - Kawa Amin
- College of Medicine, University of Sulaimani, Sulaymaniyah, Iraq
- Department of Medical Sciences: Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden
| | - Christer Janson
- Department of Medical Sciences: Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
Mohammad MA, Malik A, Thangada L, Polanía-Villanueva D, Zabaleta J, Majumder R. SARS-CoV-2 Vaccine Improved Hemostasis of a Patient with Protein S Deficiency: A Case Report. Int J Mol Sci 2024; 25:10717. [PMID: 39409046 PMCID: PMC11477061 DOI: 10.3390/ijms251910717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
A 16-year-old patient, while an infant, incurred right-sided hemiparesis and had difficulty breast feeding. She was later diagnosed with a neonatal stroke and her genetic testing showed a missense mutation in her PROS1 (Protein S) gene. Both her grandfather and father, but not her mother, had hereditary Protein S (PS) deficiency. The patient was not prescribed any mediation due to her young age but was frequently checked by her physician. The patient's plasma was first collected at the age of 13, and the isolated plasma from the patient and her father were analyzed by aPTT, thrombin generation, and enzyme-linked immunosorbent assays. These analyses showed low PS activity and clotting time associated with the missense mutation in the PROS1 gene. During the COVID-19 pandemic, the patient received her first Pfizer vaccination dose in 2021, followed by a booster dose in 2022. The plasma samples were collected 8 weeks post-immunization, after which her clotting parameters had improved for up to 6 months following vaccination. The patient's plasma showed a significant reduction in thrombin generation and an improved aPTT clotting time. Mass spectrometry analysis revealed that her antithrombin-III level was significantly higher post-vaccination, and both thrombin and FXII levels were significantly lowered compared with her father. To our knowledge, this is the first report to document that COVID-19 vaccination can lower the risk of thrombosis in a patient with inherited thrombophilia. Although the effect was observed on a single mutation, it would be interesting to investigate the effect of COVID-19 vaccinations on other thrombophilia.
Collapse
Affiliation(s)
- Mohammad A. Mohammad
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA 70112, USA; (M.A.M.); (A.M.); (L.T.); (J.Z.)
| | - Alaa Malik
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA 70112, USA; (M.A.M.); (A.M.); (L.T.); (J.Z.)
| | - Lekha Thangada
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA 70112, USA; (M.A.M.); (A.M.); (L.T.); (J.Z.)
| | - Diana Polanía-Villanueva
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA;
| | - Jovanny Zabaleta
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA 70112, USA; (M.A.M.); (A.M.); (L.T.); (J.Z.)
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA;
| | - Rinku Majumder
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA 70112, USA; (M.A.M.); (A.M.); (L.T.); (J.Z.)
| |
Collapse
|
7
|
Timofeeva AM, Nikitin AO, Nevinsky GA. Circulating miRNAs in the Plasma of Post-COVID-19 Patients with Typical Recovery and Those with Long-COVID Symptoms: Regulation of Immune Response-Associated Pathways. Noncoding RNA 2024; 10:48. [PMID: 39311385 PMCID: PMC11417918 DOI: 10.3390/ncrna10050048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/26/2024] Open
Abstract
Following the acute phase of SARS-CoV-2 infection, certain individuals experience persistent symptoms referred to as long COVID. This study analyzed the patients categorized into three distinct groups: (1) individuals presenting rheumatological symptoms associated with long COVID, (2) patients who have successfully recovered from COVID-19, and (3) donors who have never contracted COVID-19. A notable decline in the expression of miR-200c-3p, miR-766-3p, and miR-142-3p was identified among patients exhibiting rheumatological symptoms of long COVID. The highest concentration of miR-142-3p was found in healthy donors. One potential way to reduce miRNA concentrations is through antibody-mediated hydrolysis. Not only can antibodies possessing RNA-hydrolyzing activity recognize the miRNA substrate specifically, but they also catalyze its hydrolysis. The analysis of the catalytic activity of plasma antibodies revealed that antibodies from patients with long COVID demonstrated lower hydrolysis activity against five fluorescently labeled oligonucleotide sequences corresponding to the Flu-miR-146b-5p, Flu-miR-766-3p, Flu-miR-4742-3p, and Flu-miR-142-3p miRNAs and increased activity against the Flu-miR-378a-3p miRNA compared to other patient groups. The changes in miRNA concentrations and antibody-mediated hydrolysis of miRNAs are assumed to have a complex regulatory mechanism that is linked to gene pathways associated with the immune system. We demonstrate that all six miRNAs under analysis are associated with a large number of signaling pathways associated with immune response-associated pathways.
Collapse
Affiliation(s)
- Anna M. Timofeeva
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Artem O. Nikitin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
| | - Georgy A. Nevinsky
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
8
|
Firoozi Z, Mohammadisoleimani E, Bagheri F, Taheri A, Pezeshki B, Naghizadeh MM, Daraei A, Karimi J, Gholampour Y, Mansoori Y, Montaseri Z. Evaluation of the Expression of Infection-Related Long Noncoding RNAs among COVID-19 Patients: A Case-Control Study. Genet Res (Camb) 2024; 2024:3391054. [PMID: 38389521 PMCID: PMC10883746 DOI: 10.1155/2024/3391054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 01/04/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Background and Aims Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a worldwide pandemic, activates signaling cascades and leads to innate immune responses and secretion of multiple chemokines and cytokines. Long noncoding RNAs (lncRNAs) have a crucial role in inflammatory pathways. Through our search on the PubMed database, we discovered that existing research has primarily focused on examining the regulatory impacts of five lncRNAs in the context of viral infections. However, their role in regulating other conditions, including SARS-CoV-2, has not been explored. Therefore, this study aimed to investigate the expression pattern of lncRNAs in the peripheral blood mononuclear cells (PBMC) and their potential roles in SARS-CoV-2 infection. Potentially significant competing endogenous RNA (ceRNA) networks of these five lncRNAs were found using online in-silico techniques. Methods Ethylenediaminetetraacetic acid (EDTA) blood samples of the control group consisted of 45 healthy people, and a total of 53 COVID-19-infected patients in case group, with a written informed consent, was collected. PBMCs were extracted, and then, the RNA extraction and complementary DNA (cDNA) synthesis was performed. The expression of five lncRNAs (lnc ISR, lnc ATV, lnc PAAN, lnc SG20, and lnc HEAL) was assessed by real-time PCR. In order to evaluate the biomarker roles of genes, receiver operating characteristic (ROC) curve was drawn. Results Twenty-four (53.3%) and 29 (54.7%) of healthy and COVID-19-infected participants were male, respectively. The most prevalent symptoms were as follows: cough, general weakness, contusion, headache, and sore throat. The results showed that three lncRNAs, including lnc ISR, lnc ATV, and lnc HEAL, were expressed dramatically higher in the case group compared to healthy controls. According to ROC curve analysis, lnc ATV has a higher AUC and is a better biomarker to differentiate COVID-19 patients from the healthy controls. Then, using bioinformatics methods, the ceRNA network of these lncRNAs enabled the identification of mRNAs and miRNAs with crucial functions in COVID-19. Conclusion The considerable higher expression of ISR, ATV, and HEAL lncRNAs and the significant area under curve (AUC) in ROC curve demonstrate that these RNAs probably have a potential role in controlling the host innate immune responses and regulate the viral replication of SARS-CoV-2. However, these assumptions need further in vitro and in vivo investigations to be confirmed.
Collapse
Affiliation(s)
- Zahra Firoozi
- Department of Medical Genetics, Fasa University of Medical Sciences, Fasa, Iran
- USERN Office, Fasa University of Medical Sciences, Fasa, Iran
| | - Elham Mohammadisoleimani
- USERN Office, Fasa University of Medical Sciences, Fasa, Iran
- Department of Medical Biotechnology, Fasa University of Medical Sciences, Fasa, Iran
- Department of Microbiology and Virology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Farzaneh Bagheri
- USERN Office, Fasa University of Medical Sciences, Fasa, Iran
- Department of Internal Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Atefeh Taheri
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Babak Pezeshki
- Department of Internal Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | | | - Abdolreza Daraei
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Jalal Karimi
- Department of Infectious Diseases, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Yousef Gholampour
- Department of Internal Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Yaser Mansoori
- Department of Medical Genetics, Fasa University of Medical Sciences, Fasa, Iran
- USERN Office, Fasa University of Medical Sciences, Fasa, Iran
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Zahra Montaseri
- Department of Infectious Diseases, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
9
|
Chen WC, Hu SY, Shen CF, Cheng MH, Hong JJ, Shen CJ, Cheng CM. COVID-19 Vaccination in Pregnancy: Pilot Study for Maternal and Neonatal MicroRNA Profiles. Vaccines (Basel) 2023; 11:1814. [PMID: 38140218 PMCID: PMC10747030 DOI: 10.3390/vaccines11121814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
This pilot study explores alterations in miRNA profiles among pregnant women and their neonates upon receiving different doses of COVID-19 vaccines. Blood samples, including maternal blood (MB) and neonatal cord blood (CB), collected from five pregnant women were scrutinized using the miRNA PanelChip Analysis System, identifying nine distinct miRNAs, including miR-451a and miR-1972, which exhibited significant downregulation with two vaccine doses in both MB and CB. When compared with women vaccinated with four doses, miR-486-5p, miR-451a, and miR-1972 in the two-dose group also showed notable downregulation. Evaluating recipients of three and four doses, miR-423-5p and miR-1972 expression were significantly reduced in both MB and CB. Further comparative analysis highlighted a decline in miR-223-3p expression with increasing vaccine doses, while miR15a-5p, miR-16-5p, and miR-423-5p showed an upward trend. Notably, miR-451a, miR-1972, and miR-423-5p levels varied across doses and were associated with pathways such as "PI3K-Akt", "neurotrophin signaling", and "cortisol synthesis", suggesting the profound influence of vaccination on diverse molecular mechanisms. Our research has uncovered that escalating vaccine dosages impact miRNA profiles, which may be associated with the immunological response mechanisms in both the mother and fetus, thus indicating a substantial impact of vaccination on various molecular processes.
Collapse
Affiliation(s)
- Wei-Chun Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan; (W.-C.C.); (S.-Y.H.)
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital at Linkou, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Obstetrics and Gynecology, New Taipei City Municipal Tucheng Hospital, New Taipei City 236, Taiwan
- International Intercollegiate Ph.D. Program, National Tsing Hua University, Hsinchu 300, Taiwan
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Shu-Yu Hu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan; (W.-C.C.); (S.-Y.H.)
| | - Ching-Fen Shen
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan;
| | - Mei-Hsiu Cheng
- Taiwan Business Development Department, Inti Taiwan, Inc., Hsinchu 302, Taiwan; (M.-H.C.); (J.-J.H.)
| | - Jun-Jie Hong
- Taiwan Business Development Department, Inti Taiwan, Inc., Hsinchu 302, Taiwan; (M.-H.C.); (J.-J.H.)
| | - Ching-Ju Shen
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chao-Min Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan; (W.-C.C.); (S.-Y.H.)
- International Intercollegiate Ph.D. Program, National Tsing Hua University, Hsinchu 300, Taiwan
| |
Collapse
|
10
|
Shaker O, El Amir M, Elfatah YA, Elwi HM. Expression patterns of lncRNA MALAT-1 in SARS-COV-2 infection and its potential effect on disease severity via miR-200c-3p and SIRT1. Biochem Biophys Rep 2023; 36:101562. [PMID: 37965063 PMCID: PMC10641570 DOI: 10.1016/j.bbrep.2023.101562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023] Open
Abstract
Downregulating Angiotensin Converting Enzyme2 (ACE2) expression may be a shared mechanism for RNA viruses. Aim Evaluate the expressions of ACE2 effectors: the long non-coding RNA 'MALAT-1', the micro-RNA 'miR-200c-3p' and the histone deacetylase 'SIRT1' in SARS-COV-2 patients and correlate to disease severity. Sera samples from 98 SARS-COV-2 patients and 30 healthy control participants were collected. qRT-PCR was used for MALAT-1 and miR-200c-3p expression. SIRT1 was measured using ELISA. Results In sera of COVID-19 patients, gene expression of miR-200c-3p is increased while MALAT-1 is decreased. SIRT1 protein level is decreased (P value < 0.001). Findings are accentuated with increased disease severity. Serum MALAT-1, miR-200c-3p and SIRT1 could be used as diagnostic markers at cut off values of 0.04 (95.9 % sensitivity), 5.59 (94.9 % sensitivity, 99 % specificity), and 7.4 (98 % sensitivity) respectively. A novel MALAT-1-miR-200c-3p-SIRT1 pathway may be involved in the regulation of SARS-COV-2 severity.
Collapse
Affiliation(s)
- Olfat Shaker
- Medical Biochemistry and Molecular Biology, Kasr Alainy Faculty of Medicine, Cairo University, Kasralainy st, Cairo, 11562, Egypt
| | - Monica El Amir
- Medical Biochemistry and Molecular Biology, Kasr Alainy Faculty of Medicine, Cairo University, Kasralainy st, Cairo, 11562, Egypt
| | - Yasmine Abd Elfatah
- Internal Medicine, Kasr Alainy Faculty of Medicine, Cairo University, Kasralainy st, Cairo, 11562, Egypt
| | - Heba M. Elwi
- Medical Biochemistry and Molecular Biology, Kasr Alainy Faculty of Medicine, Cairo University, Kasralainy st, Cairo, 11562, Egypt
| |
Collapse
|
11
|
Vaddadi K, Gandikota C, Huang C, Liang Y, Liu L. Cellular microRNAs target SARS-CoV-2 spike protein and restrict viral replication. Am J Physiol Cell Physiol 2023; 325:C420-C428. [PMID: 37399496 PMCID: PMC10390048 DOI: 10.1152/ajpcell.00516.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 06/12/2023] [Accepted: 06/27/2023] [Indexed: 07/05/2023]
Abstract
MicroRNAs (miRNAs) regulate gene expression posttranscriptionally and are implicated in viral replication and host tropism. miRNAs can impact the viruses either by directly interacting with the viral genome or modulating host factors. Although many miRNAs have predicted binding sites in the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) viral RNA genome, little experimental validation has been done. We first identified 492 miRNAs that have binding site(s) on the spike (S) viral RNA by a bioinformatics prediction. We then validated the selected 39 miRNAs by examining S-protein levels after coexpressing the S-protein and a miRNA into the cells. Seven miRNAs were found to reduce the S-protein levels by more than 50%. Among them, miR-15a, miR-153, miR-298, miR-508, miR-1909, and miR-3130 also significantly reduced SARS-CoV-2 viral replication. SARS-CoV-2 infection decreased the expression levels of miR-298, miR-497, miR-508, miR-1909, and miR-3130, but had no significant effects on miR-15a and miR-153 levels. Intriguingly, the targeting sequences of these miRNAs on the S viral RNA showed sequence conservation among the variants of concern. Our results suggest that these miRNAs elicit effective antiviral defense against SARS-CoV-2 by modulating S-protein expression and are likely targeting all the variants. Thus, the data signify the therapeutic potential of miRNA-based therapy for SARS-CoV-2 infections.NEW & NOTEWORTHY MicroRNAs can impact viruses either by directly interacting with the virus genome or by modulating host factors. We identified that cellular miRNAs regulate effective antiviral defense against SARS-CoV-2 via modulating spike protein expression, which may offer a potential candidate for antiviral therapy.
Collapse
Affiliation(s)
- Kishore Vaddadi
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, United States
- The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, United States
| | - Chaitanya Gandikota
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, United States
- The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, United States
| | - Chaoqun Huang
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, United States
- The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, United States
| | - Yurong Liang
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, United States
- The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, United States
| | - Lin Liu
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, United States
- The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, United States
| |
Collapse
|
12
|
Gjorgjieva T, Chaloemtoem A, Shahin T, Bayaraa O, Dieng MM, Alshaikh M, Abdalbaqi M, Del Monte J, Begum G, Leonor C, Manikandan V, Drou N, Arshad M, Arnoux M, Kumar N, Jabari A, Abdulle A, ElGhazali G, Ali R, Shaheen SY, Abdalla J, Piano F, Gunsalus KC, Daggag H, Al Nahdi H, Abuzeid H, Idaghdour Y. Systems genetics identifies miRNA-mediated regulation of host response in COVID-19. Hum Genomics 2023; 17:49. [PMID: 37303042 DOI: 10.1186/s40246-023-00494-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
BACKGROUND Individuals infected with SARS-CoV-2 vary greatly in their disease severity, ranging from asymptomatic infection to severe disease. The regulation of gene expression is an important mechanism in the host immune response and can modulate the outcome of the disease. miRNAs play important roles in post-transcriptional regulation with consequences on downstream molecular and cellular host immune response processes. The nature and magnitude of miRNA perturbations associated with blood phenotypes and intensive care unit (ICU) admission in COVID-19 are poorly understood. RESULTS We combined multi-omics profiling-genotyping, miRNA and RNA expression, measured at the time of hospital admission soon after the onset of COVID-19 symptoms-with phenotypes from electronic health records to understand how miRNA expression contributes to variation in disease severity in a diverse cohort of 259 unvaccinated patients in Abu Dhabi, United Arab Emirates. We analyzed 62 clinical variables and expression levels of 632 miRNAs measured at admission and identified 97 miRNAs associated with 8 blood phenotypes significantly associated with later ICU admission. Integrative miRNA-mRNA cross-correlation analysis identified multiple miRNA-mRNA-blood endophenotype associations and revealed the effect of miR-143-3p on neutrophil count mediated by the expression of its target gene BCL2. We report 168 significant cis-miRNA expression quantitative trait loci, 57 of which implicate miRNAs associated with either ICU admission or a blood endophenotype. CONCLUSIONS This systems genetics study has given rise to a genomic picture of the architecture of whole blood miRNAs in unvaccinated COVID-19 patients and pinpoints post-transcriptional regulation as a potential mechanism that impacts blood traits underlying COVID-19 severity. The results also highlight the impact of host genetic regulatory control of miRNA expression in early stages of COVID-19 disease.
Collapse
Affiliation(s)
- T Gjorgjieva
- Biology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
- Public Health Research Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| | - A Chaloemtoem
- Biology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - T Shahin
- Biology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - O Bayaraa
- Biology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - M M Dieng
- Biology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - M Alshaikh
- Public Health Research Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - M Abdalbaqi
- Public Health Research Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - J Del Monte
- Public Health Research Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - G Begum
- Public Health Research Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - C Leonor
- Biology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - V Manikandan
- Biology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - N Drou
- Center for Genomics and Systems Biology, NYU Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - M Arshad
- Center for Genomics and Systems Biology, NYU Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - M Arnoux
- Center for Genomics and Systems Biology, NYU Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - N Kumar
- Seha (Abu Dhabi Health Services Company), Abu Dhabi, United Arab Emirates
| | - A Jabari
- Public Health Research Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - A Abdulle
- Public Health Research Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - G ElGhazali
- Sheikh Khalifa Medical City-Union 71 PureHealth, Abu Dhabi, United Arab Emirates
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - R Ali
- Public Health Research Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - S Y Shaheen
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - J Abdalla
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - F Piano
- Biology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Public Health Research Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Center for Genomics and Systems Biology, NYU Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - K C Gunsalus
- Biology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Public Health Research Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Center for Genomics and Systems Biology, NYU Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - H Daggag
- Seha (Abu Dhabi Health Services Company), Abu Dhabi, United Arab Emirates
| | - H Al Nahdi
- Seha (Abu Dhabi Health Services Company), Abu Dhabi, United Arab Emirates
| | - H Abuzeid
- Seha (Abu Dhabi Health Services Company), Abu Dhabi, United Arab Emirates
| | - Y Idaghdour
- Biology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
- Public Health Research Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
- Center for Genomics and Systems Biology, NYU Abu Dhabi, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
13
|
Ahmad W, Gull B, Baby J, Panicker NG, Khader TA, Akhlaq S, Rizvi TA, Mustafa F. Differentially-regulated miRNAs in COVID-19: A systematic review. Rev Med Virol 2023:e2449. [PMID: 37145095 DOI: 10.1002/rmv.2449] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/22/2023] [Accepted: 04/04/2023] [Indexed: 05/06/2023]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is responsible for coronavirus disease of 2019 (COVID-19) that infected more than 760 million people worldwide with over 6.8 million deaths to date. COVID-19 is one of the most challenging diseases of our times due to the nature of its spread, its effect on multiple organs, and an inability to predict disease prognosis, ranging from being completely asymptomatic to death. Upon infection, SARS-CoV-2 alters the host immune response by changing host-transcriptional machinery. MicroRNAs (miRNAs) are regarded as post-transcriptional regulators of gene expression that can be perturbed by invading viruses. Several in vitro and in vivo studies have reported such dysregulation of host miRNA expression upon SARS-CoV-2 infection. Some of this could occur as an anti-viral response of the host to the viral infection. Viruses themselves can counteract that response by mounting their own pro-viral response that facilitates virus infection, an aspect which may cause pathogenesis. Thus, miRNAs could serve as possible disease biomarkers in infected people. In the current review, we have summarised and analysed the existing data about miRNA dysregulation in patients infected with SARS-CoV-2 to determine their concordance between studies, and identified those that could serve as potential biomarkers during infection, disease progression, and death, even in people with other co-morbidities. Having such biomarkers can be vital in not only predicting COVID-19 prognosis, but also the development of novel miRNA-based anti-virals and therapeutics which can become invaluable in case of the emergence of new viral variants with pandemic potential in the future.
Collapse
Affiliation(s)
- Waqar Ahmad
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bushra Gull
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Jasmin Baby
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Neena G Panicker
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Thanumol A Khader
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Shaima Akhlaq
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Tahir A Rizvi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences (ZCHS), College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Research Institute in Precision Medicine, Abu Dhabi, United Arab Emirates
| | - Farah Mustafa
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences (ZCHS), College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
14
|
Yılmaz B, Çakmak Genç G, Karakaş Çelik S, Pişkin N, Horuz E, Dursun A. The 3'UTR region of the DNA repair gene PARP-1 May increase the severity of COVID-19 by altering the binding of antiviral miRNAs. Virology 2023; 583:29-35. [PMID: 37087842 PMCID: PMC10110933 DOI: 10.1016/j.virol.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023]
Abstract
COVID-19 may cause the release of systemic inflammatory cytokines resulting in severe inflammation. PARP-1 has been identified as a nuclear enzyme that is activated by DNA strand breaks. It has been suggested that PARP-1 has a role in the cytokine storm shown as a cause of mortality in COVID-19, and its inhibition may adversely affect the replication of SARS -CoV-2. We aimed to investigate the relationship between PARP-1 gene polymorphisms and the clinical severity of COVID-19. rs8679 TT genotype was found to increase with the COVID-19 disease severity. The 3'UTR polymorphism rs8679 may cause PARP-1 activity as a result of viral replication increase by changing the binding site of antiviral or anti-inflammatory miRNAs. PARP-1 may affect the severity of COVID-19 by cytokine release and maybe a possible treatment target.
Collapse
Affiliation(s)
- Büşra Yılmaz
- Department of Medical Genetics, Zonguldak Bulent Ecevit University, Zonguldak, Turkey.
| | - Güneş Çakmak Genç
- Department of Medical Genetics, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| | - Sevim Karakaş Çelik
- Department of Medical Genetics, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| | - Nihal Pişkin
- Department of Infectious Disease, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| | - Emre Horuz
- Department of Infectious Disease, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| | - Ahmet Dursun
- Department of Medical Genetics, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| |
Collapse
|
15
|
Bukreieva T, Svitina H, Nikulina V, Vega A, Chybisov O, Shablii I, Ustymenko A, Nemtinov P, Lobyntseva G, Skrypkina I, Shablii V. Treatment of Acute Respiratory Distress Syndrome Caused by COVID-19 with Human Umbilical Cord Mesenchymal Stem Cells. Int J Mol Sci 2023; 24:ijms24054435. [PMID: 36901868 PMCID: PMC10003440 DOI: 10.3390/ijms24054435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/26/2023] Open
Abstract
This study aimed to identify the impact of mesenchymal stem cell transplantation on the safety and clinical outcomes of patients with severe COVID-19. This research focused on how lung functional status, miRNA, and cytokine levels changed following mesenchymal stem cell transplantation in patients with severe COVID-19 pneumonia and their correlation with fibrotic changes in the lung. This study involved 15 patients following conventional anti-viral treatment (Control group) and 13 patients after three consecutive doses of combined treatment with MSC transplantation (MCS group). ELISA was used to measure cytokine levels, real-time qPCR for miRNA expression, and lung computed tomography (CT) imaging to grade fibrosis. Data were collected on the day of patient admission (day 0) and on the 7th, 14th, and 28th days of follow-up. A lung CT assay was performed on weeks 2, 8, 24, and 48 after the beginning of hospitalization. The relationship between levels of biomarkers in peripheral blood and lung function parameters was investigated using correlation analysis. We confirmed that triple MSC transplantation in individuals with severe COVID-19 was safe and did not cause severe adverse reactions. The total score of lung CT between patients from the Control and MSC groups did not differ significantly on weeks 2, 8, and 24 after the beginning of hospitalization. However, on week 48, the CT total score was 12 times lower in patients in the MSC group (p ≤ 0.05) compared to the Control group. In the MSC group, this parameter gradually decreased from week 2 to week 48 of observation, whereas in the Control group, a significant drop was observed up to week 24 and remained unchanged afterward. In our study, MSC therapy improved lymphocyte recovery. The percentage of banded neutrophils in the MSC group was significantly lower in comparison with control patients on day 14. Inflammatory markers such as ESR and CRP decreased more rapidly in the MSC group in comparison to the Control group. The plasma levels of surfactant D, a marker of alveocyte type II damage, decreased after MSC transplantation for four weeks in contrast to patients in the Control group, in whom slight elevations were observed. We first showed that MSC transplantation in severe COVID-19 patients led to the elevation of the plasma levels of IP-10, MIP-1α, G-CSF, and IL-10. However, the plasma levels of inflammatory markers such as IL-6, MCP-1, and RAGE did not differ between groups. MSC transplantation had no impact on the relative expression levels of miR-146a, miR-27a, miR-126, miR-221, miR-21, miR-133, miR-92a-3p, miR-124, and miR-424. In vitro, UC-MSC exhibited an immunomodulatory impact on PBMC, increasing neutrophil activation, phagocytosis, and leukocyte movement, activating early T cell markers, and decreasing effector and senescent effector T cell maturation.
Collapse
Affiliation(s)
- Tetiana Bukreieva
- Laboratory of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics, Department of Functional Genomics, National Academy of Science, 150 Zabolotnogo Str., 03143 Kyiv, Ukraine
- Placenta Stem Cell Laboratory, Cryobank, Institute of Cell Therapy, 03035 Kyiv, Ukraine
| | - Hanna Svitina
- Laboratory of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics, Department of Functional Genomics, National Academy of Science, 150 Zabolotnogo Str., 03143 Kyiv, Ukraine
- Placenta Stem Cell Laboratory, Cryobank, Institute of Cell Therapy, 03035 Kyiv, Ukraine
| | - Viktoriia Nikulina
- Placenta Stem Cell Laboratory, Cryobank, Institute of Cell Therapy, 03035 Kyiv, Ukraine
| | - Alyona Vega
- Department of Infectious Diseases, Shupyk National Healthcare University of Ukraine, 04112 Kyiv, Ukraine
| | - Oleksii Chybisov
- Endoscopic Unit, CNE Kyiv City Clinical Hospital # 4, 03110 Kyiv, Ukraine
| | - Iuliia Shablii
- Laboratory of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics, Department of Functional Genomics, National Academy of Science, 150 Zabolotnogo Str., 03143 Kyiv, Ukraine
| | - Alina Ustymenko
- Laboratory of Cell and Tissue Cultures, Department of Cell and Tissue Technologies, Institute of Genetic and Regenerative Medicine, State Institution, 04114 Kyiv, Ukraine
- National Scientific Center “Institute of Cardiology, Clinical and Regenerative Medicine n.a. M. D. Strazhesko”, National Academy of Medical Sciences of Ukraine, 03680 Kyiv, Ukraine
- Laboratory of Pathophysiology and Immunology, D. F. Chebotarev State Institute of Gerontology of the National Academy of Medical Sciences of Ukraine, 04114 Kyiv, Ukraine
| | - Petro Nemtinov
- Placenta Stem Cell Laboratory, Cryobank, Institute of Cell Therapy, 03035 Kyiv, Ukraine
- Coordination Center for Transplantation of Organs, Tissues and Cells, Ministry of Health of Ukraine, 01021 Kyiv, Ukraine
| | - Galyna Lobyntseva
- Placenta Stem Cell Laboratory, Cryobank, Institute of Cell Therapy, 03035 Kyiv, Ukraine
| | - Inessa Skrypkina
- Laboratory of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics, Department of Functional Genomics, National Academy of Science, 150 Zabolotnogo Str., 03143 Kyiv, Ukraine
- Correspondence: (I.S.); (V.S.)
| | - Volodymyr Shablii
- Laboratory of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics, Department of Functional Genomics, National Academy of Science, 150 Zabolotnogo Str., 03143 Kyiv, Ukraine
- Placenta Stem Cell Laboratory, Cryobank, Institute of Cell Therapy, 03035 Kyiv, Ukraine
- Correspondence: (I.S.); (V.S.)
| |
Collapse
|
16
|
Diallo I, Jacob RA, Vion E, Kozak RA, Mossman K, Provost P. Altered microRNA Transcriptome in Cultured Human Airway Cells upon Infection with SARS-CoV-2. Viruses 2023; 15:v15020496. [PMID: 36851710 PMCID: PMC9962802 DOI: 10.3390/v15020496] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Numerous proteomic and transcriptomic studies have been carried out to better understand the current multi-variant SARS-CoV-2 virus mechanisms of action and effects. However, they are mostly centered on mRNAs and proteins. The effect of the virus on human post-transcriptional regulatory agents such as microRNAs (miRNAs), which are involved in the regulation of 60% of human gene activity, remains poorly explored. Similar to research we have previously undertaken with other viruses such as Ebola and HIV, in this study we investigated the miRNA profile of lung epithelial cells following infection with SARS-CoV-2. At the 24 and 72 h post-infection time points, SARS-CoV-2 did not drastically alter the miRNome. About 90% of the miRNAs remained non-differentially expressed. The results revealed that miR-1246, miR-1290 and miR-4728-5p were the most upregulated over time. miR-196b-5p and miR-196a-5p were the most downregulated at 24 h, whereas at 72 h, miR-3924, miR-30e-5p and miR-145-3p showed the highest level of downregulation. In the top significantly enriched KEGG pathways of genes targeted by differentially expressed miRNAs we found, among others, MAPK, RAS, P13K-Akt and renin secretion signaling pathways. Using RT-qPCR, we also showed that SARS-CoV-2 may regulate several predicted host mRNA targets involved in the entry of the virus into host cells (ACE2, TMPRSS2, ADAM17, FURIN), renin-angiotensin system (RAS) (Renin, Angiotensinogen, ACE), innate immune response (IL-6, IFN1β, CXCL10, SOCS4) and fundamental cellular processes (AKT, NOTCH, WNT). Finally, we demonstrated by dual-luciferase assay a direct interaction between miR-1246 and ACE-2 mRNA. This study highlights the modulatory role of miRNAs in the pathogenesis of SARS-CoV-2.
Collapse
Affiliation(s)
- Idrissa Diallo
- CHU de Québec Research Center/CHUL Pavilion, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Rajesh Abraham Jacob
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Elodie Vion
- CHU de Québec Research Center/CHUL Pavilion, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Robert A. Kozak
- Division of Microbiology, Department of Laboratory Medicine & Molecular Diagnostics, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
| | - Karen Mossman
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Patrick Provost
- CHU de Québec Research Center/CHUL Pavilion, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
- Correspondence: ; Tel.: +1-418-525-4444 (ext. 48842)
| |
Collapse
|
17
|
Garmendia JV, García AH, De Sanctis CV, Hajdúch M, De Sanctis JB. Autoimmunity and Immunodeficiency in Severe SARS-CoV-2 Infection and Prolonged COVID-19. Curr Issues Mol Biol 2022; 45:33-50. [PMID: 36661489 PMCID: PMC9857622 DOI: 10.3390/cimb45010003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
SARS-CoV-2 causes the complex and heterogeneous illness known as COVID-19. The disease primarily affects the respiratory system but can quickly become systemic, harming multiple organs and leading to long-lasting sequelae in some patients. Most infected individuals are asymptomatic or present mild symptoms. Antibodies, complement, and immune cells can efficiently eliminate the virus. However, 20% of individuals develop severe respiratory illness and multiple organ failure. Virus replication has been described in several organs in patients who died from COVID-19, suggesting a compromised immune response. Immunodeficiency and autoimmunity are responsible for this impairment and facilitate viral escape. Mutations in IFN signal transduction and T cell activation are responsible for the inadequate response in young individuals. Autoantibodies are accountable for secondary immunodeficiency in patients with severe infection or prolonged COVID-19. Antibodies against cytokines (interferons α, γ and ω, IL1β, IL6, IL10, IL-17, IL21), chemokines, complement, nuclear proteins and DNA, anticardiolipin, and several extracellular proteins have been reported. The type and titer of autoantibodies depend on age and gender. Organ-specific autoantibodies have been described in prolonged COVID-19. Their role in the disease is under study. Autoimmunity and immunodeficiency should be screened as risk factors for severe or prolonged COVID-19.
Collapse
Affiliation(s)
- Jenny Valentina Garmendia
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Alexis Hipólito García
- Institute of Immunology, Faculty of Medicine, Universidad Central de Venezuela, Caracas 1040, Venezuela
| | - Claudia Valentina De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
- Czech Institute of Advanced Technology in Research [Catrin], Palacky University, 779 00 Olomouc, Czech Republic
| | - Juan Bautista De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
- Czech Institute of Advanced Technology in Research [Catrin], Palacky University, 779 00 Olomouc, Czech Republic
- Correspondence:
| |
Collapse
|
18
|
Zhdanov VP. Interplay of Cellular mRNA, miRNA and Viral miRNA during Infection of a Cell. Int J Mol Sci 2022; 24:ijms24010122. [PMID: 36613566 PMCID: PMC9820072 DOI: 10.3390/ijms24010122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/29/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
The understanding of the kinetics of gene expression in cells infected by viruses is currently limited. As a rule, the corresponding models do not take viral microRNAs (miRNAs) into account. Such RNAs are, however, operative during the replication of some viruses, including, e.g., herpesvirus. To clarify the kinetics of this category (with emphasis on the information available for herpesvirus), I introduce a generic model describing the transient interplay of cellular mRNA, protein, miRNA and viral miRNA. In the absence of viral miRNA, the cellular miRNA is considered to suppress the populations of mRNA and protein due to association with mRNA and subsequent degradation. During infection, the viral miRNA suppresses the population of cellular miRNA and via this pathway makes the mRNA and protein populations larger. This effect becomes appreciable with the progress of intracellular viral replication. Using biologically reasonable parameters, I investigate the corresponding mean-field kinetics and show the scale of the effect of viral miRNAs on cellular miRNA and mRNA. The scale of fluctuations of the populations of these species is illustrated as well by employing Monte Carlo simulations.
Collapse
Affiliation(s)
- Vladimir P Zhdanov
- Boreskov Institute of Catalysis, Russian Academy of Sciences, Novosibirsk 630090, Russia
| |
Collapse
|