1
|
Oskouian B, Lee JY, Asgharzadeh S, Khan R, Zhang M, Weisbrod JR, Choi YJ, Puri L, Aguilar AE, Zhao P, Saba JD. AF1q is a universal marker of neuroblastoma that sustains N-Myc expression and drives tumorigenesis. Oncogene 2024; 43:1203-1213. [PMID: 38413795 PMCID: PMC11014797 DOI: 10.1038/s41388-024-02980-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 02/29/2024]
Abstract
Neuroblastoma is the most common extracranial malignant tumor of childhood, accounting for 15% of all pediatric cancer deaths. Despite significant advances in our understanding of neuroblastoma biology, five-year survival rates for high-risk disease remain less than 50%, highlighting the importance of identifying novel therapeutic targets to combat the disease. MYCN amplification is the most frequent and predictive molecular aberration correlating with poor outcome in neuroblastoma. N-Myc is a short-lived protein primarily due to its rapid proteasomal degradation, a potentially exploitable vulnerability in neuroblastoma. AF1q is an oncoprotein with established roles in leukemia and solid tumor progression. It is normally expressed in brain and sympathetic neurons and has been postulated to play a part in neural differentiation. However, no role for AF1q in tumors of neural origin has been reported. In this study, we found AF1q to be a universal marker of neuroblastoma tumors. Silencing AF1q in neuroblastoma cells caused proteasomal degradation of N-Myc through Ras/ERK and AKT/GSK3β pathways, activated p53 and blocked cell cycle progression, culminating in cell death via the intrinsic apoptotic pathway. Moreover, silencing AF1q attenuated neuroblastoma tumorigenicity in vivo signifying AF1q's importance in neuroblastoma oncogenesis. Our findings reveal AF1q to be a novel regulator of N-Myc and potential therapeutic target in neuroblastoma.
Collapse
Affiliation(s)
- Babak Oskouian
- Department of Pediatrics and the Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA
| | - Joanna Y Lee
- Department of Pediatrics and the Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA
| | - Shahab Asgharzadeh
- Children's Hospital of Los Angeles, University of Southern California, Los Angeles, CA, USA
| | - Ranjha Khan
- Department of Pediatrics and the Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA
| | - Meng Zhang
- Department of Pediatrics and the Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA
| | - Julia R Weisbrod
- Department of Pediatrics and the Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA
| | - Youn-Jeong Choi
- Department of Pediatrics and the Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA
| | - Latika Puri
- Loma Linda University Children's Hospital, Loma Linda, CA, USA
| | - Ana E Aguilar
- Arnold Palmer Hospital for Children, Orlando, FL, USA
| | - Piming Zhao
- Department of Pediatrics and the Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA
| | - Julie D Saba
- Department of Pediatrics and the Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA.
| |
Collapse
|
2
|
Blommers M, Stanton-Turcotte D, Witt EA, Heidari M, Iulianella A. Cerebellar granule cell migration and folia development require Mllt11/Af1q/Tcf7c. Dev Neurobiol 2024; 84:74-92. [PMID: 38509451 DOI: 10.1002/dneu.22936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/22/2024]
Abstract
The organization of neurons into distinct layers, known as lamination, is a common feature of the nervous system. This process, which arises from the direct coupling of neurogenesis and neuronal migration, plays a crucial role in the development of the cerebellum, a structure exhibiting a distinct folding cytoarchitecture with cells arranged in discrete layers. Disruptions to neuronal migration can lead to various neurodevelopmental disorders, highlighting the significance of understanding the molecular regulation of lamination. We report a role Mllt11/Af1q/Tcf7c (myeloid/lymphoid or mixed-lineage leukemia; translocated to chromosome 11/All1 fused gene from chromosome 1q, also known as Mllt11 transcriptional cofactor 7; henceforth referred to Mllt11) in the migration of cerebellar granule cells (GCs). We now show that Mllt11 plays a role in both the tangential and radial migration of GCs. Loss of Mllt11 led to an accumulation of GC precursors in the rhombic lip region and a reduction in the number of GCs successfully populating developing folia. Consequently, this results in smaller folia and an overall reduction in cerebellar size. Furthermore, analysis of the anchoring centers reveals disruptions in the perinatal folia cytoarchitecture, including alterations in the Bergmann glia fiber orientation and reduced infolding of the Purkinje cell plate. Lastly, we demonstrate that Mllt11 interacts with non-muscle myosin IIB (NMIIB) and Mllt11 loss-reduced NMIIB expression. We propose that the dysregulation of NMIIB underlies altered GC migratory behavior. Taken together, the findings reported herein demonstrate a role for Mllt11 in regulating neuronal migration within the developing cerebellum, which is necessary for its proper neuroanatomical organization.
Collapse
Affiliation(s)
- Marley Blommers
- Department of Medical Neuroscience, and Brain Repair Centre, Faculty of Medicine, Dalhousie University, Life Science Research Institute, Halifax, Nova Scotia, Canada
| | - Danielle Stanton-Turcotte
- Department of Medical Neuroscience, and Brain Repair Centre, Faculty of Medicine, Dalhousie University, Life Science Research Institute, Halifax, Nova Scotia, Canada
| | - Emily A Witt
- Department of Medical Neuroscience, and Brain Repair Centre, Faculty of Medicine, Dalhousie University, Life Science Research Institute, Halifax, Nova Scotia, Canada
| | - Mohsen Heidari
- Department of Medical Neuroscience, and Brain Repair Centre, Faculty of Medicine, Dalhousie University, Life Science Research Institute, Halifax, Nova Scotia, Canada
| | - Angelo Iulianella
- Department of Medical Neuroscience, and Brain Repair Centre, Faculty of Medicine, Dalhousie University, Life Science Research Institute, Halifax, Nova Scotia, Canada
| |
Collapse
|
3
|
Proestling K, Husslein H, Hudson QJ, Witzmann-Stern M, Widmar B, Bagó-Horváth Z, Sandrieser L, Perricos A, Wenzl R, Yotova I. MLLT11 Regulates Endometrial Stroma Cell Adhesion, Proliferation and Survival in Ectopic Lesions of Women with Advanced Endometriosis. Int J Mol Sci 2023; 25:439. [PMID: 38203610 PMCID: PMC10778601 DOI: 10.3390/ijms25010439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
MLLT11 is a gene implicated in cell differentiation and the development and progression of human cancers, but whose role in the pathogenesis of endometriosis is still unknown. Using quantitative RT-PCR and immunohistochemistry, we analyzed 37 women with and 33 women without endometriosis for differences in MLLT11 expression. We found that MLLT11 is reduced in the ectopic stroma cells of women with advanced stage endometriosis compared to women without endometriosis. MLLT11 knockdown in control stroma cells resulted in the downregulation of their proliferation accompanied by G1 cell arrest and an increase in the expression of p21 and p27. Furthermore, the knockdown of MLLT11 was associated with increased apoptosis resistance to camptothecin associated with changes in BCL2/BAX signaling. Finally, MLLT11 siRNA knockdown in the control primary stroma cells led to an increase in cell adhesion associated with the transcriptional activation of ACTA2 and TGFB2. We found that the cellular phenotype of MLLT11 knockdown cells resembled the phenotype of the primary endometriosis stroma cells of the lesion, where the levels of MLLT11 are significantly reduced compared to the eutopic stroma cells of women without the disease. Overall, our results indicate that MLLT11 may be a new clinically relevant player in the pathogenesis of endometriosis.
Collapse
Affiliation(s)
- Katharina Proestling
- Department of Obstetrics and Gynecology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria; (K.P.); (H.H.); (Q.J.H.); (M.W.-S.); (B.W.); (L.S.); (A.P.); (R.W.)
| | - Heinrich Husslein
- Department of Obstetrics and Gynecology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria; (K.P.); (H.H.); (Q.J.H.); (M.W.-S.); (B.W.); (L.S.); (A.P.); (R.W.)
| | - Quanah James Hudson
- Department of Obstetrics and Gynecology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria; (K.P.); (H.H.); (Q.J.H.); (M.W.-S.); (B.W.); (L.S.); (A.P.); (R.W.)
| | - Matthias Witzmann-Stern
- Department of Obstetrics and Gynecology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria; (K.P.); (H.H.); (Q.J.H.); (M.W.-S.); (B.W.); (L.S.); (A.P.); (R.W.)
| | - Barbara Widmar
- Department of Obstetrics and Gynecology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria; (K.P.); (H.H.); (Q.J.H.); (M.W.-S.); (B.W.); (L.S.); (A.P.); (R.W.)
| | - Zsuzsanna Bagó-Horváth
- Department of Pathology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria;
| | - Lejla Sandrieser
- Department of Obstetrics and Gynecology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria; (K.P.); (H.H.); (Q.J.H.); (M.W.-S.); (B.W.); (L.S.); (A.P.); (R.W.)
| | - Alexandra Perricos
- Department of Obstetrics and Gynecology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria; (K.P.); (H.H.); (Q.J.H.); (M.W.-S.); (B.W.); (L.S.); (A.P.); (R.W.)
| | - René Wenzl
- Department of Obstetrics and Gynecology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria; (K.P.); (H.H.); (Q.J.H.); (M.W.-S.); (B.W.); (L.S.); (A.P.); (R.W.)
| | - Iveta Yotova
- Department of Obstetrics and Gynecology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria; (K.P.); (H.H.); (Q.J.H.); (M.W.-S.); (B.W.); (L.S.); (A.P.); (R.W.)
| |
Collapse
|
4
|
Liu X, Bai W, Li J, Ma J, Liu Y, Wang Z, Hu L, Li Z, Papukashvili D, Rcheulishvili N, Wang F, Lu X. MLLT11 siRNA Inhibits the Migration and Promotes the Apoptosis of MDA-MB-231 Breast Cancer Cells. Breast J 2023; 2023:6282654. [PMID: 38075552 PMCID: PMC10708952 DOI: 10.1155/2023/6282654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023]
Abstract
Breast cancer is considered the most prevalent malignancy due to its high incidence rate, recurrence, and metastasis in women that makes it one of the deadliest cancers. The current study aimed to predict the genes associated with the recurrence and metastasis of breast cancer and to validate their effect on MDA-MB-231 cells. Through the bioinformatics analysis, the transcription factor 7 cofactor (MLLT11) as the target gene was obtained. MLLT11-specific siRNA was synthesized and transfected into MDA-MB-231 cells. The results demonstrated that the siRNA significantly reduced the MLLT11 mRNA levels. Moreover, cell migration and invasion, as well as the protein levels of phosphatidylinositol 3-kinase (PI3K), AKT, matrix metalloproteinase (MMP) 2, and MMP9, were significantly lower in the groups treated with siRNA while the apoptosis was augmented. Collectively, MLLT11 siRNA elicited ameliorative properties on breast cancer cells, possibly via the inhibition of the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Xiangrong Liu
- Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030001, China
| | - Wenqi Bai
- Breast Surgery, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Jianrong Li
- Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030001, China
| | - Jinfeng Ma
- Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030001, China
| | - Yan Liu
- Shanxi Medical University, Taiyuan 030006, China
| | | | - Linjie Hu
- Shanxi Medical University, Taiyuan 030006, China
| | - Zheng Li
- Shanxi Medical University, Taiyuan 030006, China
| | | | | | - Fusheng Wang
- Breast Surgery, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Xiaoqing Lu
- Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
5
|
Blommers M, Stanton-Turcotte D, Iulianella A. Retinal neuroblast migration and ganglion cell layer organization require the cytoskeletal-interacting protein Mllt11. Dev Dyn 2023; 252:305-319. [PMID: 36131367 DOI: 10.1002/dvdy.540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The vertebrate retina is an organized laminar structure comprised of distinct cell types populating three nuclear layers. During development, each retinal cell type follows a stereotypical temporal order of genesis, differentiation, and migration, giving rise to its stratified organization. Once born, the precise positioning of cells along the apico-basal (radial) axis of the retina is critical for subsequent connections to form, relying on highly orchestrated migratory processes. While these processes are critical for visual function to arise, the regulators of cellular migration and retinal lamination remain largely unexplored. RESULTS We report a role for a microtubule-interacting protein, Mllt11 (myeloid/lymphoid or mixed-lineage leukemia; translocated to chromosome 11/All1 fused gene from chromosome 1q) in mammalian retinal cell migration during retinogenesis. We show that Mllt11 loss-of-function in mouse retinal neuroblasts affected the migration of ganglion and amacrine cells into the ganglion cell layer and led to their aberrant accumulation in the inner nuclear and plexiform layers. CONCLUSIONS We demonstrate a role for Mllt11 in neuroblast migration and formation of the ganglion cell layer of the retina.
Collapse
Affiliation(s)
- Marley Blommers
- Department of Medical Neuroscience, and Brain Repair Centre, Faculty of Medicine, Life Science Research Institute, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Danielle Stanton-Turcotte
- Department of Medical Neuroscience, and Brain Repair Centre, Faculty of Medicine, Life Science Research Institute, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Angelo Iulianella
- Department of Medical Neuroscience, and Brain Repair Centre, Faculty of Medicine, Life Science Research Institute, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
6
|
Stanton-Turcotte D, Hsu K, Moore SA, Yamada M, Fawcett JP, Iulianella A. Mllt11 Regulates Migration and Neurite Outgrowth of Cortical Projection Neurons during Development. J Neurosci 2022; 42:3931-3948. [PMID: 35379703 PMCID: PMC9097781 DOI: 10.1523/jneurosci.0124-22.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/13/2022] [Accepted: 03/30/2022] [Indexed: 11/22/2022] Open
Abstract
The formation of connections within the mammalian neocortex is highly regulated by both extracellular guidance mechanisms and intrinsic gene expression programs. There are two types of cortical projection neurons (CPNs): those that project locally and interhemispherically and those that project to subcerebral structures such as the thalamus, hindbrain, and spinal cord. The regulation of cortical projection morphologies is not yet fully understood at the molecular level. Here, we report a role for Mllt11 (Myeloid/lymphoid or mixed-lineage leukemia; translocated to chromosome 11/All1 Fused Gene From Chromosome 1q) in the migration and neurite outgrowth of callosal projection neurons during mouse brain formation. We show that Mllt11 expression is exclusive to developing neurons and is enriched in the developing cortical plate (CP) during the formation of the superficial cortical layers. In cultured primary cortical neurons, Mllt11 is detected in varicosities and growth cones as well as the soma. Using conditional loss-of-function and gain-of-function analysis we show that Mllt11 is required for neuritogenesis and proper migration of upper layer CPNs. Loss of Mllt11 in the superficial cortex of male and female neonates leads to a severe reduction in fibers crossing the corpus callosum (CC), a progressive loss in the maintenance of upper layer projection neuron gene expression, and reduced complexity of dendritic arborization. Proteomic analysis revealed that Mllt11 associates with stabilized microtubules, and Mllt11 loss affected microtubule staining in callosal axons. Taken together, our findings support a role for Mllt11 in promoting the formation of mature upper-layer neuron morphologies and connectivity in the cerebral cortex.SIGNIFICANCE STATEMENT The regulation of cortical projection neuron (CPN) morphologies is an area of active investigation since the time of Cajal. Yet the molecular mechanisms of how the complex dendritic and axonal morphologies of projection neurons are formed remains incompletely understood. Although conditional mutagenesis analysis in the mouse, coupled with overexpression assays in the developing fetal brain, we show that a novel protein called Mllt11 is sufficient and necessary to regulate the dendritic and axonal characteristics of callosal projection neurons in the developing mammalian neocortex. Furthermore, we show that Mllt11 interacts with microtubules, likely accounting for its role in neuritogenesis.
Collapse
Affiliation(s)
- Danielle Stanton-Turcotte
- Department of Medical Neuroscience, and Brain Repair Centre, Faculty of Medicine, Dalhousie University. Life Science Research Institute, Halifax, Nova Scotia B3H-4R2, Canada
| | - Karolynn Hsu
- Department of Medical Neuroscience, and Brain Repair Centre, Faculty of Medicine, Dalhousie University. Life Science Research Institute, Halifax, Nova Scotia B3H-4R2, Canada
| | - Samantha A Moore
- Department of Medical Neuroscience, and Brain Repair Centre, Faculty of Medicine, Dalhousie University. Life Science Research Institute, Halifax, Nova Scotia B3H-4R2, Canada
| | - Makiko Yamada
- Department of Medical Neuroscience, and Brain Repair Centre, Faculty of Medicine, Dalhousie University. Life Science Research Institute, Halifax, Nova Scotia B3H-4R2, Canada
| | - James P Fawcett
- Departments of Phamacology, Surgery, and Brain Repair Centre, Faculty of Medicine, Dalhousie University. Life Science Research Institute, Halifax, Nova Scotia B3H-4R2, Canada
| | - Angelo Iulianella
- Department of Medical Neuroscience, and Brain Repair Centre, Faculty of Medicine, Dalhousie University. Life Science Research Institute, Halifax, Nova Scotia B3H-4R2, Canada
| |
Collapse
|
7
|
Liu R, Pisco AO, Braun E, Linnarsson S, Zou J. Dynamical Systems Model of RNA Velocity Improves Inference of Single-cell Trajectory, Pseudo-time and Gene Regulation. J Mol Biol 2022; 434:167606. [PMID: 35489382 DOI: 10.1016/j.jmb.2022.167606] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 11/24/2022]
Abstract
Recent development in inferring RNA velocity from single-cell RNA-seq opens up exciting new vista into developmental lineage and cellular dynamics. However, the estimated velocity only gives a snapshot of how the transcriptome instantaneously changes in individual cells, and it does not provide quantitative predictions and insights about the whole system. In this work, we develop RNA-ODE, a principled computational framework that extends RNA velocity to quantify systems level dynamics and improve single-cell data analysis. We model the gene expression dynamics by an ordinary differential equation (ODE) based formalism. Given a snapshot of gene expression at one time, RNA-ODE is able to predict and extrapolate the expression trajectory of each cell by solving the dynamic equations. Systematic experiments on simulations and on new data from developing brain demonstrate that RNA-ODE substantially improves many aspects of standard single-cell analysis. By leveraging temporal dynamics, RNA-ODE more accurately estimates cell state lineage and pseudo-time compared to previous state-of-the-art methods. It also infers gene regulatory networks and identifies influential genes whose expression changes can decide cell fate. We expect RNA-ODE to be a Swiss army knife that aids many facets of single-cell RNA-seq analysis.
Collapse
Affiliation(s)
- Ruishan Liu
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | | | | | | | - James Zou
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA; Chan-Zuckerberg Biohub, San Francisco, CA, USA; Department of Biomedical Data Science, Stanford University, Stanford, CA, USA.
| |
Collapse
|
8
|
Gudiseva HV, Vrathasha V, He J, Bungatavula D, O’Brien JM, Chavali VRM. Single Cell Sequencing of Induced Pluripotent Stem Cell Derived Retinal Ganglion Cells (iPSC-RGC) Reveals Distinct Molecular Signatures and RGC Subtypes. Genes (Basel) 2021; 12:2015. [PMID: 34946963 PMCID: PMC8702079 DOI: 10.3390/genes12122015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 02/04/2023] Open
Abstract
We intend to identify marker genes with differential gene expression (DEG) and RGC subtypes in cultures of human-induced pluripotent stem cell (iPSC)-derived retinal ganglion cells. Single-cell sequencing was performed on mature and functional iPSC-RGCs at day 40 using Chromium Single Cell 3' V3 protocols (10X Genomics). Sequencing libraries were run on Illumina Novaseq to generate 150 PE reads. Demultiplexed FASTQ files were mapped to the hg38 reference genome using the STAR package, and cluster analyses were performed using a cell ranger and BBrowser2 software. QC analysis was performed by removing the reads corresponding to ribosomal and mitochondrial genes, as well as cells that had less than 1X mean absolute deviation (MAD), resulting in 4705 cells that were used for further analyses. Cells were separated into clusters based on the gene expression normalization via PCA and TSNE analyses using the Seurat tool and/or Louvain clustering when using BBrowser2 software. DEG analysis identified subsets of RGCs with markers like MAP2, RBPMS, TUJ1, BRN3A, SOX4, TUBB3, SNCG, PAX6 and NRN1 in iPSC-RGCs. Differential expression analysis between separate clusters identified significant DEG transcripts associated with cell cycle, neuron regulatory networks, protein kinases, calcium signaling, growth factor hormones, and homeobox transcription factors. Further cluster refinement identified RGC diversity and subtype specification within iPSC-RGCs. DEGs can be used as biomarkers for RGC subtype classification, which will allow screening model systems that represent a spectrum of diseases with RGC pathology.
Collapse
Affiliation(s)
| | | | | | | | | | - Venkata R. M. Chavali
- Department of Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; (H.V.G.); (V.V.); (J.H.); (D.B.)
| |
Collapse
|
9
|
Kiaee K, Jodat YA, Bassous NJ, Matharu N, Shin SR. Transcriptomic Mapping of Neural Diversity, Differentiation and Functional Trajectory in iPSC-Derived 3D Brain Organoid Models. Cells 2021; 10:3422. [PMID: 34943930 PMCID: PMC8700452 DOI: 10.3390/cells10123422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 11/17/2022] Open
Abstract
Experimental models of the central nervous system (CNS) are imperative for developmental and pathophysiological studies of neurological diseases. Among these models, three-dimensional (3D) induced pluripotent stem cell (iPSC)-derived brain organoid models have been successful in mitigating some of the drawbacks of 2D models; however, they are plagued by high organoid-to-organoid variability, making it difficult to compare specific gene regulatory pathways across 3D organoids with those of the native brain. Single-cell RNA sequencing (scRNA-seq) transcriptome datasets have recently emerged as powerful tools to perform integrative analyses and compare variability across organoids. However, transcriptome studies focusing on late-stage neural functionality development have been underexplored. Here, we combine and analyze 8 brain organoid transcriptome databases to study the correlation between differentiation protocols and their resulting cellular functionality across various 3D organoid and exogenous brain models. We utilize dimensionality reduction methods including principal component analysis (PCA) and uniform manifold approximation projection (UMAP) to identify and visualize cellular diversity among 3D models and subsequently use gene set enrichment analysis (GSEA) and developmental trajectory inference to quantify neuronal behaviors such as axon guidance, synapse transmission and action potential. We showed high similarity in cellular composition, cellular differentiation pathways and expression of functional genes in human brain organoids during induction and differentiation phases, i.e., up to 3 months in culture. However, during the maturation phase, i.e., 6-month timepoint, we observed significant developmental deficits and depletion of neuronal and astrocytes functional genes as indicated by our GSEA results. Our results caution against use of organoids to model pathophysiology and drug response at this advanced time point and provide insights to tune in vitro iPSC differentiation protocols to achieve desired neuronal functionality and improve current protocols.
Collapse
Affiliation(s)
- Kiavash Kiaee
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA; (Y.A.J.); (N.J.B.)
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Yasamin A. Jodat
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA; (Y.A.J.); (N.J.B.)
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Nicole J. Bassous
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA; (Y.A.J.); (N.J.B.)
| | - Navneet Matharu
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94143, USA;
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA
- Innovative Genomics Institute, University of California San Francisco, San Francisco, CA 94720, USA
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA; (Y.A.J.); (N.J.B.)
| |
Collapse
|
10
|
Forgione MO, McClure BJ, Eadie LN, Yeung DT, White DL. KMT2A rearranged acute lymphoblastic leukaemia: Unravelling the genomic complexity and heterogeneity of this high-risk disease. Cancer Lett 2019; 469:410-418. [PMID: 31705930 DOI: 10.1016/j.canlet.2019.11.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/29/2019] [Accepted: 11/02/2019] [Indexed: 12/11/2022]
Abstract
KMT2A rearranged (KMT2Ar) acute lymphoblastic leukaemia (ALL) is a high-risk genomic subtype, with long-term survival rates of less than 60% across all age groups. These cases present a complex clinical challenge, with a high incidence in infants, high-risk clinical features and propensity for aggressive relapse. KMT2A rearrangements are highly pathogenic leukaemic drivers, reflected by the high incidence of KMT2Ar ALL in infants, who carry few leukaemia-associated cooperative mutations. However, transgenic murine models of KMT2Ar ALL typically exhibit long latency and mature or mixed phenotype, and fail to recapitulate the aggressive disease observed clinically. Next-generation sequencing has revealed that KMT2Ar ALL also occurs in adolescents and adults, and potentially cooperative genomic lesions such as PI3K-RAS pathway variants are present in KMT2Ar patients of all ages. This review addresses the aetiology of KMT2Ar ALL, with a focus on the cell of origin and mutational landscape, and how genomic profiling of KMT2Ar ALL patients in the era of next-generation sequencing demonstrates that KMT2Ar ALL is a complex heterogenous disease. Ultimately, understanding the underlying biology of KMT2Ar ALL will be important in improving long-term outcomes for these high-risk patients.
Collapse
Affiliation(s)
- Michelle O Forgione
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia; School of Biological Sciences, University of Adelaide, SA, 5000, Australia.
| | - Barbara J McClure
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia; Faculty of Health and Medical Science, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Laura N Eadie
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia; Faculty of Health and Medical Science, University of Adelaide, Adelaide, SA, 5000, Australia
| | - David T Yeung
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia; Faculty of Health and Medical Science, University of Adelaide, Adelaide, SA, 5000, Australia; Department of Haematology, Royal Adelaide Hospital, SA, 5000, Australia
| | - Deborah L White
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia; School of Biological Sciences, University of Adelaide, SA, 5000, Australia; Faculty of Health and Medical Science, University of Adelaide, Adelaide, SA, 5000, Australia; Australian Genomics Health Alliance (AGHA), The Murdoch Children's Research Institute, Parkville, Vic, 3052, Australia; Australian and New Zealand Children's Oncology Group (ANZCHOG), Clayton, Vic, 3168, Australia
| |
Collapse
|
11
|
Barron M, Zhang S, Li J. A sparse differential clustering algorithm for tracing cell type changes via single-cell RNA-sequencing data. Nucleic Acids Res 2019; 46:e14. [PMID: 29140455 PMCID: PMC5815159 DOI: 10.1093/nar/gkx1113] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 10/24/2017] [Indexed: 12/15/2022] Open
Abstract
Cell types in cell populations change as the condition changes: some cell types die out, new cell types may emerge and surviving cell types evolve to adapt to the new condition. Using single-cell RNA-sequencing data that measure the gene expression of cells before and after the condition change, we propose an algorithm, SparseDC, which identifies cell types, traces their changes across conditions and identifies genes which are marker genes for these changes. By solving a unified optimization problem, SparseDC completes all three tasks simultaneously. SparseDC is highly computationally efficient and demonstrates its accuracy on both simulated and real data.
Collapse
Affiliation(s)
- Martin Barron
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Siyuan Zhang
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.,Mike and Josie Harper Cancer Research Institute, University of Notre Dame, IN 46617, USA
| | - Jun Li
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN 46556, USA.,Mike and Josie Harper Cancer Research Institute, University of Notre Dame, IN 46617, USA
| |
Collapse
|
12
|
Zhang H, Ren R, Du J, Sun T, Wang P, Kang P. AF1q Contributes to Adriamycin-Induced Podocyte Injury by Activating Wnt/β-Catenin Signaling. Kidney Blood Press Res 2017; 42:794-803. [PMID: 29069662 DOI: 10.1159/000484329] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 09/03/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Injury of podocytes plays an important role in decline of glomerular filtration and proteinuria. It is well-known that proteinuria is associated with numerous chronic kidney diseases (CKD). However, the underlying mechanism of podocyte injury remains unclear. METHODS We used reverse transcription-quantitative PCR (RT-qPCR) to compare the expression level of the ALL1-fused from the chromosome 1q (AF1q) gene in mice and mouse podocytes (MPC5) with or without Adriamycin (ADR) treatment. The effects of AF1q on Wnt/ β-catenin signaling were investigated by determining the expressions of desmin, snail, WT1, nephrin and E-cadherin using western blotting. RESULTS We found that AF1q expression was elevated in podocytes treated with ADR than untreated cells. AF1q overexpression directly led to podocytes injury with increased levels of desmin and snail. Luciferase activity of TOPflash reporter was significantly increased in cells with AF1q overexpression than wild type cells whereas deletion of T-cell-factor-7 (TCF7) eliminated this effect. Immunoprecipitation assay evidenced that AF1q interacted with TCF7 and promoted both transcriptional and translational expressions of TCF7. Overexpression of AF1q increased protein expression of β-catenin. However, in podocytes with deletion of TCF7, AF1q was not able to promote β-catenin expression. CONCLUSION Our findings demonstrated that aberrant expression of AF1q may activate Wnt/β-catenin signaling and result in podocyte injury.
Collapse
Affiliation(s)
- Hongbo Zhang
- Department of Nephrology, Daqing Oil Field General Hospital, NO.9 Saertu District Daqing City, Daqing, China
| | - Rui Ren
- Department of Hygiene Toxicology, School of Public Health, Harbin Medical University, Harbin, China
| | - Juan Du
- Department of Nephrology, Daqing Oil Field General Hospital, NO.9 Saertu District Daqing City, Daqing, China
| | - Tingli Sun
- Department of Nephrology, Daqing Oil Field General Hospital, NO.9 Saertu District Daqing City, Daqing, China
| | - Ping Wang
- Department of Nutriology, Daqing Oil Field General Hospital, NO.9 Saertu District Daqing City, Daqing, China
| | - Ping Kang
- Department of Nephrology, Daqing Oil Field General Hospital, NO.9 Saertu District Daqing City, Daqing, China
| |
Collapse
|
13
|
McCusker CD, Athippozhy A, Diaz-Castillo C, Fowlkes C, Gardiner DM, Voss SR. Positional plasticity in regenerating Amybstoma mexicanum limbs is associated with cell proliferation and pathways of cellular differentiation. BMC DEVELOPMENTAL BIOLOGY 2015; 15:45. [PMID: 26597593 PMCID: PMC4657325 DOI: 10.1186/s12861-015-0095-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/16/2015] [Indexed: 01/07/2023]
Abstract
Background The endogenous ability to dedifferentiate, re-pattern, and re-differentiate adult cells to repair or replace damaged or missing structures is exclusive to only a few tetrapod species. The Mexican axolotl is one example of these species, having the capacity to regenerate multiple adult structures including their limbs by generating a group of progenitor cells, known as the blastema, which acquire pattern and differentiate into the missing tissues. The formation of a limb regenerate is dependent on cells in the connective tissues that retain memory of their original position in the limb, and use this information to generate the pattern of the missing structure. Observations from recent and historic studies suggest that blastema cells vary in their potential to pattern distal structures during the regeneration process; some cells are plastic and can be reprogrammed to obtain new positional information while others are stable. Our previous studies showed that positional information has temporal and spatial components of variation; early bud (EB) and apical late bud (LB) blastema cells are plastic while basal-LB cells are stable. To identify the potential cellular and molecular basis of this variation, we compared these three cell populations using histological and transcriptional approaches. Results Histologically, the basal-LB sample showed greater tissue organization than the EB and apical-LB samples. We also observed that cell proliferation was more abundant in EB and apical-LB tissue when compared to basal-LB and mature stump tissue. Lastly, we found that genes associated with cellular differentiation were expressed more highly in the basal-LB samples. Conclusions Our results characterize histological and transcriptional differences between EB and apical-LB tissue compared to basal-LB tissue. Combined with our results from a previous study, we hypothesize that the stability of positional information is associated with tissue organization, cell proliferation, and pathways of cellular differentiation. Electronic supplementary material The online version of this article (doi:10.1186/s12861-015-0095-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Antony Athippozhy
- Department of Biology, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, 40506, USA.
| | - Carlos Diaz-Castillo
- Department of Developmental and Cellular Biology, University of California, Irvine, CA, 92602, USA.
| | - Charless Fowlkes
- Donald Bren School of Information and Computer Science, University of California, Irvine, CA, 92602, USA.
| | - David M Gardiner
- Department of Developmental and Cellular Biology, University of California, Irvine, CA, 92602, USA.
| | - S Randal Voss
- Department of Biology, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, 40506, USA.
| |
Collapse
|
14
|
Hu Y, Sun Q, Zhang C, Sha Q, Sun X. RE1 silencing transcription factor (REST) negatively regulates ALL1-fused from chromosome 1q (AF1q) gene transcription. BMC Mol Biol 2015; 16:15. [PMID: 26341630 PMCID: PMC4560861 DOI: 10.1186/s12867-015-0043-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 08/27/2015] [Indexed: 11/18/2022] Open
Abstract
Background ALL1-fused from chromosome 1q (AF1q), originally considered as an oncogenic factor, has been implicated in neuronal development; however, its upstream regulatory mechanisms in neural system remained elusive. Results Our study showed that REST (RE1 silencing transcription factor), a key transcription factor in neurodevelopment, could down-regulate the gene expression of AF1q. The promoter assay identified a neuron-restrictive silencer element at −383 to −363 bp of human AF1q promoter. Electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (CHIP) confirmed the binding of REST to the NRSE in AF1q gene promoter. Additionally, the negative correlation between the expression levels of Af1q and Rest in mice neurodevelopment supported the negative regulation of AF1q by REST and the potential functions of AF1q in neurodevelopment. Conclusion These results demonstrate that REST regulates AF1q gene transcription through directly binding to a NRSE at −383 to −363 bp of AF1q promoter.
Collapse
Affiliation(s)
- Yuanyuan Hu
- Department of Neurology, Qilu Hospital Shandong University, 107 Wenhuaxi Rd., Jinan, 250012, Shandong Province, China.
| | - Qianwen Sun
- Department of Neurology, Qilu Hospital Shandong University, 107 Wenhuaxi Rd., Jinan, 250012, Shandong Province, China.
| | - Chen Zhang
- Department of Neurology, Qilu Hospital Shandong University, 107 Wenhuaxi Rd., Jinan, 250012, Shandong Province, China.
| | - Qingquan Sha
- Department of Neurology, Qilu Hospital Shandong University, 107 Wenhuaxi Rd., Jinan, 250012, Shandong Province, China.
| | - Xiulian Sun
- Department of Neurology, Qilu Hospital Shandong University, 107 Wenhuaxi Rd., Jinan, 250012, Shandong Province, China. .,Brain Research Institute, Qilu Hospital of Shandong University, 107 Wenhuaxi Rd., Jinan, 250012, Shandong Province, China.
| |
Collapse
|