1
|
VİTHANAGE V, C.D. J, M.D.P. DE. C, RAJENDRAM S. Photodynamic Therapy : An Overview and Insights into a Prospective Mainstream Anticancer Therapy. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2022. [DOI: 10.18596/jotcsa.1000980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Photodynamic therapy (PDT) procedure has minimum invasiveness in contrast to conventional anticancer surgical procedures. Although clinically approved a few decades ago, it is not commonly used due to its poor efficacy, mainly due to poor light penetration into deeper tissues. PDT uses a photosensitizer (PS), which is photoactivated on illumination by light of appropriate wavelength and oxygen in the tissue, leading to a series of photochemical reactions producing reactive oxygen species (ROS) triggering various mechanisms resulting in lethal effects on tumor cells. This review looks into the fundamental aspects of PDT, such as photochemistry, photobiological effects, and the current clinical applications in the light of improving PDT to become a mainstream therapeutic procedure against a broad spectrum of cancers and malignant lesions. The side effects of PDT, both early and late-onset, are elaborated on in detail to highlight the available options to minimize side effects without compromising therapeutic efficacy. This paper summarizes the benefits, drawbacks, and limitations of photodynamic therapy along with the recent attempts to achieve improved therapeutic efficacy via monitoring various cellular and molecular processes through fluorescent imagery aided by suitable biomarkers, prospective nanotechnology-based targeted delivery methods, the use of scintillating nanoparticles to deliver light to remote locations and also combining PDT with conventional anticancer therapies have opened up new dimensions for PDT in treating cancers. This review inquires and critically analyses prospective avenues in which a breakthrough would finally enable PDT to be integrated into mainstream anticancer therapy.
Collapse
|
2
|
Wang L, Li G, Cao L, Shao K, Li Y, Zhang X, Zhao J, Zhao W. Novel Water-Soluble Chlorin-Based Photosensitizer for Low-Fluence Photodynamic Therapy. ACS Pharmacol Transl Sci 2022; 5:110-117. [PMID: 35187418 PMCID: PMC8844960 DOI: 10.1021/acsptsci.1c00249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Indexed: 01/23/2023]
Abstract
Photodynamic therapy (PDT), performed with low-fluence rates, can improve antitumor responses and prevent adverse effects. However, photosensitizers (PSs) for low-fluence PDT treatment are rarely reported. Herein, we exploited an amphiphilic chlorin-based PS, named DYSP-C34, which has a variety of beneficial biological properties, such as improved water solubility, better cellular permeability, specific localization and enhanced phototoxicity under low light dose irradiation. In addition, DYSP-C34 could effectively accumulate in a mouse subcutaneous xenograft tumor and exhibit substantial tumor regression after irradiation with an extremely low light fluence (6 J/cm2). Meanwhile, the excellent phototoxicity could stimulate the host immune system and lead to a strong inhibition of tumor growth synergistically. These results indicated the potential value of DYSP-C34 as a chlorin-type PS for low-fluence PDT application.
Collapse
Affiliation(s)
- Liu Wang
- State
Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences,
School of Chemical Engineering, Dalian University
of Technology, Dalian 116024, China
| | - Guangzhe Li
- State
Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences,
School of Chemical Engineering, Dalian University
of Technology, Dalian 116024, China
| | - Lei Cao
- State
Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences,
School of Chemical Engineering, Dalian University
of Technology, Dalian 116024, China
| | - Kun Shao
- State
Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yueqing Li
- State
Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences,
School of Chemical Engineering, Dalian University
of Technology, Dalian 116024, China
| | - Xi Zhang
- State
Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences,
School of Chemical Engineering, Dalian University
of Technology, Dalian 116024, China
| | - Jianzhang Zhao
- State
Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Weijie Zhao
- State
Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences,
School of Chemical Engineering, Dalian University
of Technology, Dalian 116024, China
| |
Collapse
|
3
|
Privitera L, Paraboschi I, Cross K, Giuliani S. Above and Beyond Robotic Surgery and 3D Modelling in Paediatric Cancer Surgery. Front Pediatr 2021; 9:777840. [PMID: 34988038 PMCID: PMC8721224 DOI: 10.3389/fped.2021.777840] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022] Open
Abstract
Although the survival rates for children's cancers have more than doubled in the last few decades, the surgical practise has not significantly changed. Among the most recent innovations introduced in the clinic, robotic surgery and augmented reality are two of the most promising, even if they are not widespread. The increased flexibility of the motion, the magnification of the surgical field and the tremor reduction provided by robotic surgery have been beneficial to perform complex oncological procedures in children. Besides, augmented reality has been proven helpful in planning for tumour removal, facilitating early discrimination between cancer and healthy organs. Nowadays, research in the field of surgical oncology is moving fast, and new technologies and innovations wich will help to shape a new way to perform cancer surgery. Paediatric surgeons need to be ready to adopt these novel devices and intraoperative techniques to allow more radical tumour resections with fewer complications. This review aims to present the mechanism of action and indications of several novel technologies such as optical imaging surgery, high definition cameras, and intraoperative loco-regional treatments. We hope this will enhance early adoption and more research on how to employ technology for the benefit of children.
Collapse
Affiliation(s)
- Laura Privitera
- Wellcome/Engineering and Physical Sciences Research Council Centre for Interventional & Surgical Sciences, University College London, London, United Kingdom
- Developmental Biology and Cancer Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Irene Paraboschi
- Wellcome/Engineering and Physical Sciences Research Council Centre for Interventional & Surgical Sciences, University College London, London, United Kingdom
- Developmental Biology and Cancer Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Kate Cross
- Department of Specialist Neonatal and Paediatric Surgery, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Stefano Giuliani
- Wellcome/Engineering and Physical Sciences Research Council Centre for Interventional & Surgical Sciences, University College London, London, United Kingdom
- Developmental Biology and Cancer Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
- Department of Specialist Neonatal and Paediatric Surgery, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
4
|
Yanovsky RL, Bartenstein DW, Rogers GS, Isakoff SJ, Chen ST. Photodynamic therapy for solid tumors: A review of the literature. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2019; 35:295-303. [DOI: 10.1111/phpp.12489] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 04/26/2019] [Accepted: 05/26/2019] [Indexed: 11/28/2022]
Affiliation(s)
| | - Diana W. Bartenstein
- Harvard Medical School Boston Massachusetts USA
- Internal Medicine Residency Program Brigham & Women's Hospital Boston Massachusetts USA
| | - Gary S. Rogers
- Tufts University School of Medicine Boston Massachusetts USA
| | - Steven J. Isakoff
- Department of Hematology Oncology Massachusetts General Hospital Boston Massachusetts USA
- Department of Dermatology Massachusetts General Hospital Boston Massachusetts USA
| | - Steven T. Chen
- Harvard Medical School Boston Massachusetts USA
- Department of Dermatology Massachusetts General Hospital Boston Massachusetts USA
- Division of General Internal Medicine, Department of Internal Medicine Massachusetts General Hospital Boston Massachusetts USA
| |
Collapse
|
5
|
Abdulrehman G, Xv K, Li Y, Kang L. Effects of meta-tetrahydroxyphenylchlorin photodynamic therapy on isogenic colorectal cancer SW480 and SW620 cells with different metastatic potentials. Lasers Med Sci 2018; 33:1581-1590. [PMID: 29796953 PMCID: PMC6133037 DOI: 10.1007/s10103-018-2524-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/22/2018] [Indexed: 01/10/2023]
Abstract
The aim of this study is to investigate the antitumor effects and possible mechanisms of meta-tetrahydroxyphenylchlorin-mediated photodynamic therapy (m-THPC-PDT) on human primary (SW480) and metastatic (SW620) colon cancer cell lines. SW480 and SW620 cells were incubated with various concentrations of m-THPC, followed by photodynamic irradiation. Subcellular localization of m-THPC in cells was observed with confocal laser scanning microscopy (CLSM). Photocytotoxicity of m-THPC in the two cells was investigated by using MTT assay. The flow cytometry was employed to detect the cell apoptosis. The migration and long-term recovery ability were determined by scratch test and colony formation assay respectively. CLSM showed that m-THPC was mainly distributed within the endoplasmic reticulum (ER) and lysosome of SW480 cells and within the lysosome and mitochondria of SW620 cells. m-THPC-PDT induced a dose-dependent and light energy-dependent cytotoxicity in SW480 and SW620 cells. Apoptosis rate was approximately 65 and 25% in SW480 and SW620 respectively when the concentration of m-THPC increased to 11.76 μM. However, the rate of necrotic cells had no significant changes in two cell lines. The colony formation and migration ability of the two cell lines were decreased with m-THPC-PDT treatment in a dose-dependent manner. PDT with m-THPC not only could effectively inhibit cell proliferation and decrease migration ability and colony formation ability, but also could effectively kill SW480 and SW620 cells in a dose-dependent manner in vitro. These results suggest that m-THPC is a promising sensitizer that warrants further development and extensive studies towards clinical use of colorectal cancer.
Collapse
Affiliation(s)
- Gulinur Abdulrehman
- College of Public Health, Xinjiang Medical University, No. 393, Xinyi Road, Xinyi District, Urumqi, Xinjiang, China
| | - Kaiyue Xv
- College of Public Health, Xinjiang Medical University, No. 393, Xinyi Road, Xinyi District, Urumqi, Xinjiang, China
| | - Yuhua Li
- College of Public Health, Xinjiang Medical University, No. 393, Xinyi Road, Xinyi District, Urumqi, Xinjiang, China
| | - Ling Kang
- College of Public Health, Xinjiang Medical University, No. 393, Xinyi Road, Xinyi District, Urumqi, Xinjiang, China.
| |
Collapse
|
6
|
Broughton LJ, Giuntini F, Savoie H, Bryden F, Boyle RW, Maraveyas A, Madden LA. Duramycin-porphyrin conjugates for targeting of tumour cells using photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 163:374-84. [DOI: 10.1016/j.jphotobiol.2016.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/30/2016] [Accepted: 09/01/2016] [Indexed: 12/27/2022]
|
7
|
Gao H, Shi L, Yin H, Wang H, Shen J, Wang C, Niu Q, Li Y, Li W, Dong M, Lu Y. Evaluation of the effect of photodynamic therapy with hematoporphyrin monomethyl ether on VX2 tumors implanted in the rectal submucosa of rabbits. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 163:162-9. [DOI: 10.1016/j.jphotobiol.2016.08.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 08/19/2016] [Accepted: 08/23/2016] [Indexed: 12/11/2022]
|
8
|
Li W, Tan G, Cheng J, Zhao L, Wang Z, Jin Y. A Novel Photosensitizer 3¹,13¹-phenylhydrazine -Mppa (BPHM) and Its in Vitro Photodynamic Therapy against HeLa Cells. Molecules 2016; 21:molecules21050558. [PMID: 27136527 PMCID: PMC6273471 DOI: 10.3390/molecules21050558] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 04/22/2016] [Accepted: 04/23/2016] [Indexed: 01/12/2023] Open
Abstract
Photodynamic therapy (PDT) has attracted widespread attention due to its potential in the treatment of various cancers. Porphyrinic pyropheophorbide-a (PPa) has been shown to be a potent photosensitizer in PDT experiments. In this paper, a C-31,131 bisphenylhydrazone modified methyl pyropheophorbide-a (BPHM) was designed and synthesized with the consideration that phenylhydrazone structure may extend absorption wavelength of methyl pyro-pheophorbide-a (Mppa), and make the photosensitizer potential in deep tumor treatment. The synthesis, spectral properties and in vitro photodynamic therapy (PDT) against human HeLa cervical cancer cell line was studied. Methyl thiazolyl tetrazolium (MTT) assay showed the title compound could achieve strong inhibition of cervical cancer cell viability under visible light (675 nm, 25 J/cm2). Cell uptake experiments were performed on HeLa cells. Morphological changes were examined and analyzed by fluorescent inverted microscope. In addition, the mechanism of the photochemical processes of PDT was investigated, which showed that the formation of singlet oxygen after treatment with PDT played a moderate important role.
Collapse
Affiliation(s)
- Wenting Li
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China.
| | - Guanghui Tan
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China.
| | - Jianjun Cheng
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China.
| | - Lishuang Zhao
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China.
| | - Zhiqiang Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China.
| | - Yingxue Jin
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China.
| |
Collapse
|
9
|
Rapozzi V, Della Pietra E, Bonavida B. Dual roles of nitric oxide in the regulation of tumor cell response and resistance to photodynamic therapy. Redox Biol 2015; 6:311-317. [PMID: 26319434 PMCID: PMC4556768 DOI: 10.1016/j.redox.2015.07.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 07/08/2015] [Accepted: 07/29/2015] [Indexed: 12/16/2022] Open
Abstract
Photodynamic therapy (PDT) against cancer has gained attention due to the successful outcome in some cancers, particularly those on the skin. However, there have been limitations to PDT applications in deep cancers and, occasionally, PDT treatment resulted in tumor recurrence. A better understanding of the underlying molecular mechanisms of PDT-induced cytotoxicity and cytoprotection should facilitate the development of better approaches to inhibit the cytoprotective effects and also augment PDT-mediated cytotoxicity. PDT treatment results in the induction of iNOS/NO in both the tumor and the microenvironment. The role of NO in cytotoxicity and cytoprotection was examined. The findings revealed that NO mediates its effects by interfering with a dysregulated pro-survival/anti-apoptotic NF-κB/Snail/YY1/RKIP loop which is often expressed in cancer cells. The cytoprotective effect of PDT-induced NO was the result of low levels of NO that activates the pro-survival/anti-apoptotic NF-κB, Snail, and YY1 and inhibits the anti-survival/pro-apoptotic and metastasis suppressor RKIP. In contrast, PDT-induced high levels of NO result in the inhibition of NF-kB, Snail, and YY1 and the induction of RKIP, all of which result in significant anti-tumor cytotoxicity. The direct role of PDT-induced NO effects was corroborated by the use of the NO inhibitor, l-NAME, which reversed the PDT-mediated cytotoxic and cytoprotective effects. In addition, the combination of the NO donor, DETANONOate, and PDT potentiated the PDT-mediated cytotoxic effects. These findings revealed a new mechanism of PDT-induced NO effects and suggested the potential therapeutic application of the combination of NO donors/iNOS inducers and PDT in the treatment of various cancers. In addition, the study suggested that the combination of PDT with subtoxic cytotoxic drugs will result in significant synergy since NO has been shown to be a significant chemo-immunosensitizing agent to apoptosis. PDT-mediated cytotoxic and cytoprotective effects depend also by the induction of NO from tumor. The PDT-induced NO modulates the dysregulated NF-kB/Snail/RKIP loop. The direct role of NO induction by PDT was corroborated by the use of the NO inhibitor, l-NAME. The combination of an NO donor and PDT resulted in a increased cytotoxic effect, in vitro and in vivo. Novel potential therapeutic applications are proposed for the use of PDT combined with NO donors.
Collapse
Affiliation(s)
- Valentina Rapozzi
- Department of Medical and Biological Sciences, University of Udine, P.le Kolbe 4, 33100 Udine, Italy.
| | - Emilia Della Pietra
- Department of Medical and Biological Sciences, University of Udine, P.le Kolbe 4, 33100 Udine, Italy.
| | - Benjamin Bonavida
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
10
|
Qumseya BJ, David W, Wolfsen HC. Photodynamic Therapy for Barrett's Esophagus and Esophageal Carcinoma. Clin Endosc 2013; 46:30-7. [PMID: 23423151 PMCID: PMC3572348 DOI: 10.5946/ce.2013.46.1.30] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 01/14/2013] [Accepted: 01/14/2013] [Indexed: 01/14/2023] Open
Abstract
This paper reviews the use of photodynamic therapy (PDT) in patients with Barrett's esophagus and esophageal carcinoma. We describe the history of PDT, mechanics, photosensitizers for PDT in patients with esophageal disease. Finally, we discuss its utility and limitations in this setting.
Collapse
Affiliation(s)
- Bashar J Qumseya
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL, USA
| | | | | |
Collapse
|
11
|
Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO, Hahn SM, Hamblin MR, Juzeniene A, Kessel D, Korbelik M, Moan J, Mroz P, Nowis D, Piette J, Wilson BC, Golab J. Photodynamic therapy of cancer: an update. CA Cancer J Clin 2011; 61:250-81. [PMID: 21617154 PMCID: PMC3209659 DOI: 10.3322/caac.20114] [Citation(s) in RCA: 3528] [Impact Index Per Article: 252.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Photodynamic therapy (PDT) is a clinically approved, minimally invasive therapeutic procedure that can exert a selective cytotoxic activity toward malignant cells. The procedure involves administration of a photosensitizing agent followed by irradiation at a wavelength corresponding to an absorbance band of the sensitizer. In the presence of oxygen, a series of events lead to direct tumor cell death, damage to the microvasculature, and induction of a local inflammatory reaction. Clinical studies revealed that PDT can be curative, particularly in early stage tumors. It can prolong survival in patients with inoperable cancers and significantly improve quality of life. Minimal normal tissue toxicity, negligible systemic effects, greatly reduced long-term morbidity, lack of intrinsic or acquired resistance mechanisms, and excellent cosmetic as well as organ function-sparing effects of this treatment make it a valuable therapeutic option for combination treatments. With a number of recent technological improvements, PDT has the potential to become integrated into the mainstream of cancer treatment.
Collapse
Affiliation(s)
- Patrizia Agostinis
- Department of Molecular Cell Biology, Cell Death Research & Therapy Laboratory, Catholic University of Leuven, B-3000 Leuven, Belgium,
| | - Kristian Berg
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, N-0310 Oslo, Norway, ;
| | - Keith A. Cengel
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19004, USA, ;
| | - Thomas H. Foster
- Department of Imaging Sciences, University of Rochester, Rochester, NY 14642, USA,
| | - Albert W. Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226-3548, USA,
| | - Sandra O. Gollnick
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm and Carlton Sts, Buffalo, NY, 14263, USA,
| | - Stephen M. Hahn
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19004, USA, ;
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114-2696, USA, ;
- Department of Dermatology, Harvard Medical School, Boston MA 02115
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Asta Juzeniene
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, N-0310 Oslo, Norway, ;
| | - David Kessel
- Department of Pharmacology, Wayne State University School of Medicine, Detroit MI 48201, USA,
| | | | - Johan Moan
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, N-0310 Oslo, Norway, ;
- Institute of Physics, University of Oslo, Blindern 0316 Oslo, Norway;
| | - Pawel Mroz
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114-2696, USA, ;
- Department of Dermatology, Harvard Medical School, Boston MA 02115
| | - Dominika Nowis
- Department of Immunology, Centre of Biostructure Research, Medical University of Warsaw, Poland, ;
| | - Jacques Piette
- GIGA-Research, Laboratory of Virology & Immunology, University of Liège, B-4000 Liège Belgium,
| | - Brian C. Wilson
- Ontario Cancer Institute/University of Toronto, Toronto, ON M5G 2M9, Canada,
| | - Jakub Golab
- Department of Immunology, Centre of Biostructure Research, Medical University of Warsaw, Poland, ;
- Institute of Physical Chemistry, Polish Academy of Sciences, Department 3, Warsaw, Poland
| |
Collapse
|
12
|
Gross SA, Wolfsen HC. The role of photodynamic therapy in the esophagus. Gastrointest Endosc Clin N Am 2010; 20:35-53, vi. [PMID: 19951793 DOI: 10.1016/j.giec.2009.07.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Photodynamic therapy (PDT) is a drug and device therapy using photosensitizer drugs activated by laser light for mucosal ablation. Porfimer sodium PDT has been used extensively with proven long-term efficacy and durability for the ablation of Barrett esophagus and high-grade dysplasia. and early esophageal adenocarcinoma. However, continued use is hampered by an associated stricture risk and prolonged photosensitivity (4-6 weeks). Promising single-center European studies using other forms of PDT, such as aminolevulinic acid PDT, have not been replicated elsewhere, limiting the widespread use of other forms of PDT. Future use of PDT in esophageal disease depends on the development of improved dosimetry and patient selection to optimize treatment outcomes, while minimizing adverse events and complications.
Collapse
Affiliation(s)
- Seth A Gross
- Division of Gastroenterology, Norwalk Hospital, Norwalk, CT 06856, USA
| | | |
Collapse
|
13
|
van Veen RLP, Robinson DJ, Siersema PD, Sterenborg HJCM. The importance of in situ dosimetry during photodynamic therapy of Barrett's esophagus. Gastrointest Endosc 2006; 64:786-8. [PMID: 17055875 DOI: 10.1016/j.gie.2006.06.056] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Accepted: 06/21/2006] [Indexed: 12/10/2022]
Affiliation(s)
- Robert L P van Veen
- Center for Optical Diagnostics and Therapy, Erasmus MC, Department of Radiation Oncology, PO Box 2040, Rotterdam 3000 CA, The Netherlands
| | | | | | | |
Collapse
|
14
|
Abstract
Photodynamic therapy (PDT) is increasingly being recognized as an attractive, alternative treatment modality for superficial cancer. Treatment consists of two relatively simple procedures: the administration of a photosensitive drug and illumination of the tumor to activate the drug. Efficacy is high for small superficial tumors and, except for temporary skin photosensitization, there are no long-term side effects if appropriate protocols are followed. Healing occurs with little or no scarring and the procedure can be repeated without cumulative toxicity. Considering the efficacy and lack of long-term toxicity of PDT, and the fact that the first treatment of cancer with PDT was done more than 100 years ago, one might expect that this treatment had already become an established therapy. However, PDT is currently offered in only a few selected centers, although it is slowly gaining acceptance as an alternative to conventional cancer therapies. Here, we show the developmental steps PDT underwent and summarize the current clinical applications. The data show that, when properly used, PDT is an effective alternative treatment option in oncology.
Collapse
Affiliation(s)
- Martijn Triesscheijn
- Division of Experimental Therapy (H6), The Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
15
|
Wolfsen H, Canto M, Etemad B, Greenwald B, Gress F, Schembre D, Muthusamy VR, Ribeiro A, Sharma V, Ginsberg G. Bare fiber photodynamic therapy using porfimer sodium for esophageal disease. Photodiagnosis Photodyn Ther 2006; 3:87-92. [DOI: 10.1016/j.pdpdt.2006.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Accepted: 03/09/2006] [Indexed: 12/20/2022]
|