1
|
Rao S, Watt KEN, Maili L, Lamb M, Farrow E, Hassan H, Weaver K, Miller B, Dash S, Cox LL, Gallacher L, Kant SG, Gibson M, Pastinen T, Li D, Bhoj EJK, Zhu H, Zhang J, Zhang YB, Tan TY, Trainor PA, Cox TC. Splicing Defects and Cell Death Cause SF3B2-Linked Craniofacial Microsomia. J Dent Res 2025:220345251325818. [PMID: 40275713 DOI: 10.1177/00220345251325818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025] Open
Abstract
Craniofacial microsomia (CFM) is a genetically and phenotypically heterogeneous disorder characterized by hypoplasia of facial tissue that is often asymmetric. Affected tissues typically include the ears (external and internal), mandible, and maxilla, but various extracranial anomalies have also been reported. Loss-of-function variants in the SF3B2 gene have recently been reported in 8 cases of CFM, representing one of the more common genetic causes identified to date. To better define the full phenotypic spectrum associated with variants in SF3B2, we report novel loss-of-function variants in SF3B2 in 5 new families with CFM. Furthermore, to determine the mechanism by which SF3B2 loss-of-function perturbs craniofacial development, we established sf3b2-null mutant zebrafish, which exhibited severe deficiencies in craniofacial cartilage and bone progenitors due to elevated apoptosis and reduced proliferation of cranial neural crest cells. In addition, we generated a heterozygous truncating variant of SF3B2 in human induced pluripotent stem cells using CRISPR/Cas9 gene editing. Differentiation of these cells into neural crest cells was accompanied by increased cell death and reduced proliferation. RNA sequencing of sf3b2 mutant zebrafish revealed widespread disruption of mRNA splicing, including mdm2, a key regulator of Tp53-mediated apoptosis. Genetic inhibition of tp53 in sf3b2 mutants demonstrated that tp53 inhibition reduces early cell death but does not improve proliferation or craniofacial cartilage development. Therefore, our functional studies indicate that widespread mRNA splicing disruption, in addition to Tp53-dependent cell death, contributes to the craniofacial features observed in SF3B2-related CFM.
Collapse
Affiliation(s)
- S Rao
- Department of Oral and Craniofacial Sciences, University of Missouri-Kansas City, Kansas City, MO, USA
| | - K E N Watt
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - L Maili
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - M Lamb
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - E Farrow
- Children's Mercy Hospital, Kansas City, MO, USA
| | - H Hassan
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - K Weaver
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - B Miller
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - S Dash
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Biological Sciences, University at Albany (SUNY Albany), Albany, NY, USA
| | - L L Cox
- Department of Oral and Craniofacial Sciences, University of Missouri-Kansas City, Kansas City, MO, USA
| | - L Gallacher
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Australia
| | - S G Kant
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - M Gibson
- Children's Mercy Hospital, Kansas City, MO, USA
| | - T Pastinen
- Children's Mercy Hospital, Kansas City, MO, USA
| | - D Li
- The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - E J K Bhoj
- The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - H Zhu
- School of Engineering Medicine, Beihang University, Beijing, China
| | - J Zhang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Y-B Zhang
- School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China
| | - T Y Tan
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Australia
| | - P A Trainor
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - T C Cox
- Department of Oral and Craniofacial Sciences, University of Missouri-Kansas City, Kansas City, MO, USA
- Department of Pediatrics, University of Missouri-Kansas City, Kansas City, MO, USA
| |
Collapse
|
2
|
Groza C, Ge B, Cheung WA, Pastinen T, Bourque G. Expanded methylome and quantitative trait loci detection by long-read profiling of personal DNA. Genome Res 2025; 35:644-652. [PMID: 40113263 PMCID: PMC12047246 DOI: 10.1101/gr.279240.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 02/11/2025] [Indexed: 03/22/2025]
Abstract
Structural variants (SVs) are omnipresent in human DNA, yet their genotype and methylation statuses are rarely characterized due to previous limitations in genome assembly and detection of modified nucleotides. Also, the extent to which SVs act as methylation quantitative trait loci (SV-mQTLs) is largely unknown. Here, we generated a pangenome graph summarizing SVs in 782 de novo assemblies obtained from Genomic Answers for Kids, capturing 14.6 million CpG dinucleotides that are absent from the CHM13v2 reference (SV-CpGs), thus expanding their number by 43.6%. Using 435 methylomes, we genotyped 4.06 million SV-CpGs, of which 3.93 million (96.8%) are methylated at least once. Nonrepeat sequences contribute 1.59 × 106 novel SV-CpGs, followed by centromeric satellites (6.57 × 105), simple repeats (5.40 × 105), Alu elements (5.07 × 105), satellites (2.17 × 105), LINE-1s (1.83 × 105), and SVA (SINE-VNTR-Alu) elements (1.50 × 105). Centromeric satellites, simple repeats, and SVAs are overrepresented in SV-CpGs versus reference CpGs. Similarly, methylation levels in SV-CpGs are more variable than in reference CpGs. To explore if SVs are potentially causal for functional variation, we measured SV-mQTLs. This revealed over 230,464 methylation bins where the methylation is associated with common SVs within 100 kbp. Finally, we identified 65,659 methylation bins (28.5%) where the leading QTL variant is an SV. In conclusion, we demonstrate that graph pangenomes provide full SV structures, the associated methylation variation, and reveal tens of thousands of SV-mQTLs, underscoring the importance of assembly based analyses of human traits.
Collapse
Affiliation(s)
- Cristian Groza
- Université de Montréal, Montréal Heart Institute, Montréal, Québec H1T 1C8, Canada
| | - Bing Ge
- McGill University, McGill University and Genome Quebec Innovation Centre, Montréal, Québec H3A 2T8, Canada
| | - Warren A Cheung
- Children's Mercy Hospital and Research Institute, Genomic Medicine Center, Kansas City, Missouri 64108, USA
| | - Tomi Pastinen
- Children's Mercy Hospital and Research Institute, Genomic Medicine Center, Kansas City, Missouri 64108, USA;
| | - Guillaume Bourque
- McGill University, Human Genetics, Montréal, Québec H3A 0C7, Canada;
- Canadian Center for Computational Genomics, McGill University, Montréal, Québec H3A 2R7, Canada
- Victor Phillip Dahdaleh Institute of Genomic Medicine at McGill University, Montréal, Québec H3A 0G1, Canada
| |
Collapse
|
3
|
Mattioli F, Friðriksdóttir R, Hebert A, Bassani S, Ibrahim N, Naz S, Chrast J, Pailler-Pradeau C, Oddsson Á, Sulem P, Halldorsson GH, Melsted P, Guðbjartsson DF, Palombo F, Pippucci T, Nouri N, Seri M, Farrow EG, Saunders CJ, Guex N, Ansar M, Stefansson K, Reymond A. Bi-allelic variants in BRF2 are associated with perinatal death and craniofacial anomalies. Genome Med 2025; 17:38. [PMID: 40229899 PMCID: PMC11995667 DOI: 10.1186/s13073-025-01463-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 03/25/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND Variants in genes encoding multiple subunits of the RNA Polymerase III complex which synthesizes rRNAs, tRNAs, and other small RNAs were previously associated with neurological disorders, such as syndromic hypomyelination leukodystrophies, pontocerebellar hypoplasia, and cerebellofaciodental syndrome. One new such candidate is BRF2, which encodes a TFIIB-like factor that recruits the RNA polymerase III complex to type 3 promoters to initiate transcription of U6, RnaseP, and 7SK RNAs. METHODS We combined sequencing with functional analyses to investigate the effects of BRF2 variants. RESULTS We observe that a previously reported significant underrepresentation of double transmission of a splice variant results in recessive lethality in three large Icelandic families with multiple perinatal losses. Using data aggregation, we identified an additional seven individuals worldwide from three unrelated families carrying biallelic variants in BRF2. Affected individuals present a variable phenotype ranging from severe craniofacial anomalies with early death to intellectual disability with motor and speech development. In silico 3D modelling and functional analyses showed functional impairment of the identified variants, e.g., differences in target loci occupancy. Zebrafish knocked down for the orthologous brf2 presented with abnormal escape response, reduced swimming velocity and head size, and craniofacial malformations. These defects were complemented by the human wild-type but not mutated BRF2 mRNA further demonstrating their deleteriousness. CONCLUSIONS Overall, our results support the association of biallelic BRF2 variants with a novel neurodevelopmental disease and provide an additional link between RNA polymerase III, its targets and craniofacial anomalies.
Collapse
Affiliation(s)
- Francesca Mattioli
- Center for Integrative Genomics, University of Lausanne, Genopode Building, CH-1015, Lausanne, Switzerland
| | | | - Anne Hebert
- Center for Integrative Genomics, University of Lausanne, Genopode Building, CH-1015, Lausanne, Switzerland
| | - Sissy Bassani
- Center for Integrative Genomics, University of Lausanne, Genopode Building, CH-1015, Lausanne, Switzerland
| | - Nazia Ibrahim
- Center for Integrative Genomics, University of Lausanne, Genopode Building, CH-1015, Lausanne, Switzerland
- Lahore College for Women University, Lahore, Pakistan
| | - Shagufta Naz
- Lahore College for Women University, Lahore, Pakistan
| | - Jacqueline Chrast
- Center for Integrative Genomics, University of Lausanne, Genopode Building, CH-1015, Lausanne, Switzerland
| | - Clara Pailler-Pradeau
- Center for Integrative Genomics, University of Lausanne, Genopode Building, CH-1015, Lausanne, Switzerland
| | | | | | - Gisli H Halldorsson
- deCODE Genetics/Amgen Inc, Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Páll Melsted
- deCODE Genetics/Amgen Inc, Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Daníel F Guðbjartsson
- deCODE Genetics/Amgen Inc, Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Flavia Palombo
- IRCCS Istituto Delle Scienze Neurologiche, Programma Di Neurogenetica, Bologna, Italy
| | - Tommaso Pippucci
- IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Nayereh Nouri
- Craniofacial and Cleft Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marco Seri
- IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Emily G Farrow
- University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
- Department of Pathology and Laboratory Medicine, Children's Mercy, Kansas City, MO, USA
| | - Carol J Saunders
- University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
- Department of Pathology and Laboratory Medicine, Children's Mercy, Kansas City, MO, USA
| | - Nicolas Guex
- Bioinformatics Competence Center, University of Lausanne, Lausanne, Switzerland
| | - Muhammad Ansar
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile Des Aveugles, Lausanne, Switzerland
| | - Kari Stefansson
- deCODE Genetics/Amgen Inc, Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Genopode Building, CH-1015, Lausanne, Switzerland.
- Health2030 Genome Center, Foundation Campus Biotech Geneva, Geneva, Switzerland.
| |
Collapse
|
4
|
Jensen TD, Ni B, Reuter CM, Gorzynski JE, Fazal S, Bonner D, Ungar RA, Goddard PC, Raja A, Ashley EA, Bernstein JA, Zuchner S, Greicius MD, Montgomery SB, Schatz MC, Wheeler MT, Battle A. Integration of transcriptomics and long-read genomics prioritizes structural variants in rare disease. Genome Res 2025; 35:914-928. [PMID: 40113264 PMCID: PMC12047269 DOI: 10.1101/gr.279323.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 01/06/2025] [Indexed: 03/22/2025]
Abstract
Rare structural variants (SVs)-insertions, deletions, and complex rearrangements-can cause Mendelian disease, yet they remain difficult to accurately detect and interpret. We sequenced and analyzed Oxford Nanopore Technologies long-read genomes of 68 individuals from the undiagnosed disease network (UDN) with no previously identified diagnostic mutations from short-read sequencing. Using our optimized SV detection pipelines and 571 control long-read genomes, we detected 716 long-read rare (MAF < 0.01) SV alleles per genome on average, achieving a 2.4× increase from short reads. To characterize the functional effects of rare SVs, we assessed their relationship with gene expression from blood or fibroblasts from the same individuals and found that rare SVs overlapping enhancers were enriched (LOR = 0.46) near expression outliers. We also evaluated tandem repeat expansions (TREs) and found 14 rare TREs per genome; notably, these TREs were also enriched near overexpression outliers. To prioritize candidate functional SVs, we developed Watershed-SV, a probabilistic model that integrates expression data with SV-specific genomic annotations, which significantly outperforms baseline models that do not incorporate expression data. Watershed-SV identified a median of eight high-confidence functional SVs per UDN genome. Notably, this included compound heterozygous deletions in FAM177A1 shared by two siblings, which were likely causal for a rare neurodevelopmental disorder. Our observations demonstrate the promise of integrating long-read sequencing with gene expression toward improving the prioritization of functional SVs and TREs in rare disease patients.
Collapse
Affiliation(s)
- Tanner D Jensen
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Bohan Ni
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Chloe M Reuter
- Center for Undiagnosed Diseases, Stanford University, Stanford, California 94305, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - John E Gorzynski
- Department of Genetics, Stanford University, Stanford, California 94305, USA
- Center for Undiagnosed Diseases, Stanford University, Stanford, California 94305, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Sarah Fazal
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Devon Bonner
- Center for Undiagnosed Diseases, Stanford University, Stanford, California 94305, USA
- Department of Pediatrics, Division of Medical Genetics, Stanford University School of Medicine, Stanford, California 94304, USA
| | - Rachel A Ungar
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Pagé C Goddard
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Archana Raja
- Center for Undiagnosed Diseases, Stanford University, Stanford, California 94305, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Euan A Ashley
- Center for Undiagnosed Diseases, Stanford University, Stanford, California 94305, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Jonathan A Bernstein
- Center for Undiagnosed Diseases, Stanford University, Stanford, California 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94304, USA
| | - Stephan Zuchner
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Michael D Greicius
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Stephen B Montgomery
- Department of Genetics, Stanford University, Stanford, California 94305, USA;
- Department of Pathology, Stanford University, Stanford, California 94305, USA
- Department of Biomedical Data Science, Stanford University, Stanford, California 94305, USA
| | - Michael C Schatz
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, USA;
| | - Matthew T Wheeler
- Center for Undiagnosed Diseases, Stanford University, Stanford, California 94305, USA;
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
- GREGoR Stanford Site, Stanford University, Stanford, California 94305, USA
| | - Alexis Battle
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, USA;
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
5
|
Del Gobbo GF, Boycott KM. The additional diagnostic yield of long-read sequencing in undiagnosed rare diseases. Genome Res 2025; 35:559-571. [PMID: 39900460 PMCID: PMC12047273 DOI: 10.1101/gr.279970.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Long-read sequencing (LRS) is a promising technology positioned to study the significant proportion of rare diseases (RDs) that remain undiagnosed as it addresses many of the limitations of short-read sequencing, detecting and clarifying additional disease-associated variants that may be missed by the current standard diagnostic workflow for RDs. Some key areas where additional diagnostic yields may be realized include: (1) detection and resolution of structural variants (SVs); (2) detection and characterization of tandem repeat expansions; (3) coverage of regions of high sequence similarity; (4) variant phasing; (5) the use of de novo genome assemblies for reference-based or graph genome variant detection; and (6) epigenetic and transcriptomic evaluations. Examples from over 50 studies support that the main areas of added diagnostic yield currently lie in SV detection and characterization, repeat expansion assessment, and phasing (with or without DNA methylation information). Several emerging studies applying LRS in cohorts of undiagnosed RDs also demonstrate that LRS can boost diagnostic yields following negative standard-of-care clinical testing and provide an added yield of 7%-17% following negative short-read genome sequencing. With this evidence of improved diagnostic yield, we discuss the incorporation of LRS into the diagnostic care pathway for undiagnosed RDs, including current challenges and considerations, with the ultimate goal of ending the diagnostic odyssey for countless individuals with RDs.
Collapse
Affiliation(s)
- Giulia F Del Gobbo
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada K1H 5B2
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada K1H 5B2;
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada K1H 8L1
| |
Collapse
|
6
|
Keskus AG, Bryant A, Ahmad T, Yoo B, Aganezov S, Goretsky A, Donmez A, Lansdon LA, Rodriguez I, Park J, Liu Y, Cui X, Gardner J, McNulty B, Sacco S, Shetty J, Zhao Y, Tran B, Narzisi G, Helland A, Cook DE, Chang PC, Kolesnikov A, Carroll A, Molloy EK, Bi C, Walter A, Gibson M, Pushel I, Guest E, Pastinen T, Shafin K, Miga KH, Malikic S, Day CP, Robine N, Sahinalp C, Dean M, Farooqi MS, Paten B, Kolmogorov M. Severus detects somatic structural variation and complex rearrangements in cancer genomes using long-read sequencing. Nat Biotechnol 2025:10.1038/s41587-025-02618-8. [PMID: 40185952 DOI: 10.1038/s41587-025-02618-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 02/26/2025] [Indexed: 04/07/2025]
Abstract
For the detection of somatic structural variation (SV) in cancer genomes, long-read sequencing is advantageous over short-read sequencing with respect to mappability and variant phasing. However, most current long-read SV detection methods are not developed for the analysis of tumor genomes characterized by complex rearrangements and heterogeneity. Here, we present Severus, a breakpoint graph-based algorithm for somatic SV calling from long-read cancer sequencing. Severus works with matching normal samples, supports unbalanced cancer karyotypes, can characterize complex multibreak SV patterns and produces haplotype-specific calls. On a comprehensive multitechnology cell line panel, Severus consistently outperforms other long-read and short-read methods in terms of SV detection F1 score (harmonic mean of the precision and recall). We also illustrate that compared to long-read methods, short-read sequencing systematically misses certain classes of somatic SVs, such as insertions or clustered rearrangements. We apply Severus to several clinical cases of pediatric leukemia/lymphoma, revealing clinically relevant cryptic rearrangements missed by standard genomic panels.
Collapse
Affiliation(s)
- Ayse G Keskus
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Asher Bryant
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Tanveer Ahmad
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Byunggil Yoo
- Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | | | - Anton Goretsky
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
- Department of Computer Science, University of Maryland, College Park, MD, USA
| | - Ataberk Donmez
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
- Department of Computer Science, University of Maryland, College Park, MD, USA
| | - Lisa A Lansdon
- Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Isabel Rodriguez
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Rockville, MD, USA
| | - Jimin Park
- University of California, Santa Cruz, Genomics Institute, Santa Cruz, CA, USA
| | - Yuelin Liu
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
- Department of Computer Science, University of Maryland, College Park, MD, USA
| | - Xiwen Cui
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Joshua Gardner
- University of California, Santa Cruz, Genomics Institute, Santa Cruz, CA, USA
| | - Brandy McNulty
- University of California, Santa Cruz, Genomics Institute, Santa Cruz, CA, USA
| | - Samuel Sacco
- University of California, Santa Cruz, Genomics Institute, Santa Cruz, CA, USA
| | - Jyoti Shetty
- Sequencing Facility, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Yongmei Zhao
- Sequencing Facility Bioinformatics Group, Biomedical Informatics and Data Science Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Bao Tran
- Sequencing Facility, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | | | | | | | | | | | | - Erin K Molloy
- Department of Computer Science, University of Maryland, College Park, MD, USA
| | - Chengpeng Bi
- Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Adam Walter
- Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Margaret Gibson
- Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Irina Pushel
- Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Erin Guest
- Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Tomi Pastinen
- Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Kishwar Shafin
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Rockville, MD, USA
| | - Karen H Miga
- University of California, Santa Cruz, Genomics Institute, Santa Cruz, CA, USA
| | - Salem Malikic
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Chi-Ping Day
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | | | - Cenk Sahinalp
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Michael Dean
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Rockville, MD, USA
| | - Midhat S Farooqi
- Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Benedict Paten
- University of California, Santa Cruz, Genomics Institute, Santa Cruz, CA, USA
| | - Mikhail Kolmogorov
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
7
|
Yoon JG, Lee S, Park S, Jang SS, Cho J, Kim MJ, Kim SY, Kim WJ, Lee JS, Chae JH. Identification of a novel non-coding deletion in Allan-Herndon-Dudley syndrome by long-read HiFi genome sequencing. BMC Med Genomics 2025; 18:41. [PMID: 40033291 PMCID: PMC11877835 DOI: 10.1186/s12920-024-02058-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 11/27/2024] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND Allan-Herndon-Dudley syndrome (AHDS) is an X-linked disorder caused by pathogenic variants in the SLC16A2 gene. Although most reported variants are found in protein-coding regions or adjacent junctions, structural variations (SVs) within non-coding regions have not been previously reported. METHODS We investigated two male siblings with severe neurodevelopmental disorders and spasticity, who had remained undiagnosed for over a decade and were negative from exome sequencing, utilizing long-read HiFi genome sequencing. We conducted a comprehensive analysis including short-tandem repeats (STRs) and SVs to identify the genetic cause in this familial case. RESULTS While coding variant and STR analyses yielded negative results, SV analysis revealed a novel hemizygous deletion in intron 1 of the SLC16A2 gene (chrX:74,460,691 - 74,463,566; 2,876 bp), inherited from their carrier mother and shared by the siblings. Determination of the breakpoints indicates that the deletion probably resulted from Alu/Alu-mediated rearrangements between homologous AluY pairs. The deleted region is predicted to include multiple transcription factor binding sites, such as Stat2, Zic1, Zic2, and FOXD3, which are crucial for the neurodevelopmental process, as well as a regulatory element including an eQTL (rs1263181) that is implicated in the tissue-specific regulation of SLC16A2 expression, notably in skeletal muscle and thyroid tissues. CONCLUSIONS This report, to our knowledge, is the first to describe a non-coding deletion associated with AHDS, demonstrating the potential utility of long-read sequencing for undiagnosed patients. Although interpreting variants in non-coding regions remains challenging, our study highlights this region as a high priority for future investigation and functional studies.
Collapse
Affiliation(s)
- Jihoon G Yoon
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Laboratory Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seungbok Lee
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Soojin Park
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Se Song Jang
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jaeso Cho
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Pediatrics, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Man Jin Kim
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Soo Yeon Kim
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Woo Joong Kim
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jin Sook Lee
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jong-Hee Chae
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Groopman E, Milo Rasouly H. Navigating Genetic Testing in Nephrology: Options and Decision-Making Strategies. Kidney Int Rep 2025; 10:673-695. [PMID: 40225372 PMCID: PMC11993218 DOI: 10.1016/j.ekir.2024.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 04/15/2025] Open
Abstract
Technological advances such as next-generation sequencing (NGS) have enabled high-throughput assessment of the human genome, supporting the usage of genetic testing as a first-line tool across clinical medicine. Although individually rare, genetic causes account for end-stage renal disease in 10% to 15% of adults and 70% of children, and in many of these individuals, genetic testing can identify a specific etiology and meaningfully impact management. However, with numerous options for genetic testing available, nephrologists may feel uncomfortable integrating genetics into their clinical practice. Here, we aim to demystify the process of genetic test selection and highlight the opportunities for interdisciplinary collaboration between nephrologists and genetics professionals, thereby supporting precision medicine for patients with kidney disease. We first detail the various clinical genetic testing modalities, highlighting their technical advantages and limitations, and then discuss indications for their usage. Next, we provide a generalized workflow for genetic test selection among individuals with kidney disease and illustrate how this workflow can be applied to genetic test selection across diverse clinical contexts. We then discuss key areas related to the usage of genetic testing in clinical nephrology that merit further research and approaches to investigate them.
Collapse
Affiliation(s)
- Emily Groopman
- Pediatrics and Medical Genetics Combined Residency Program, Children’s National Hospital, Washington, DC, USA
| | - Hila Milo Rasouly
- Division of Nephrology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
9
|
Negi S, Stenton SL, Berger SI, Canigiula P, McNulty B, Violich I, Gardner J, Hillaker T, O'Rourke SM, O'Leary MC, Carbonell E, Austin-Tse C, Lemire G, Serrano J, Mangilog B, VanNoy G, Kolmogorov M, Vilain E, O'Donnell-Luria A, Délot E, Miga KH, Monlong J, Paten B. Advancing long-read nanopore genome assembly and accurate variant calling for rare disease detection. Am J Hum Genet 2025; 112:428-449. [PMID: 39862869 PMCID: PMC11866955 DOI: 10.1016/j.ajhg.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/22/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
More than 50% of families with suspected rare monogenic diseases remain unsolved after whole-genome analysis by short-read sequencing (SRS). Long-read sequencing (LRS) could help bridge this diagnostic gap by capturing variants inaccessible to SRS, facilitating long-range mapping and phasing and providing haplotype-resolved methylation profiling. To evaluate LRS's additional diagnostic yield, we sequenced a rare-disease cohort of 98 samples from 41 families, using nanopore sequencing, achieving per sample ∼36× average coverage and 32-kb read N50 from a single flow cell. Our Napu pipeline generated assemblies, phased variants, and methylation calls. LRS covered, on average, coding exons in ∼280 genes and ∼5 known Mendelian disease-associated genes that were not covered by SRS. In comparison to SRS, LRS detected additional rare, functionally annotated variants, including structural variants (SVs) and tandem repeats, and completely phased 87% of protein-coding genes. LRS detected additional de novo variants and could be used to distinguish postzygotic mosaic variants from prezygotic de novos. Diagnostic variants were established by LRS in 11 probands, with diverse underlying genetic causes including de novo and compound heterozygous variants, large-scale SVs, and epigenetic modifications. Our study demonstrates LRS's potential to enhance diagnostic yield for rare monogenic diseases, implying utility in future clinical genomics workflows.
Collapse
Affiliation(s)
- Shloka Negi
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Sarah L Stenton
- Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Seth I Berger
- Children's National Research Institute, Washington, DC, USA
| | | | - Brandy McNulty
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Ivo Violich
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Joshua Gardner
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Todd Hillaker
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Sara M O'Rourke
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Melanie C O'Leary
- Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Elizabeth Carbonell
- Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christina Austin-Tse
- Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Gabrielle Lemire
- Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jillian Serrano
- Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Brian Mangilog
- Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Grace VanNoy
- Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mikhail Kolmogorov
- Cancer Data Science Laboratory, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Eric Vilain
- Institute for Clinical and Translational Science, University of California, Irvine, Irvine, CA, USA
| | - Anne O'Donnell-Luria
- Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Emmanuèle Délot
- Institute for Clinical and Translational Science, University of California, Irvine, Irvine, CA, USA
| | - Karen H Miga
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Jean Monlong
- Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France.
| | - Benedict Paten
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA.
| |
Collapse
|
10
|
Laurie S, Steyaert W, de Boer E, Polavarapu K, Schuermans N, Sommer AK, Demidov G, Ellwanger K, Paramonov I, Thomas C, Aretz S, Baets J, Benetti E, Bullich G, Chinnery PF, Clayton-Smith J, Cohen E, Danis D, de Sainte Agathe JM, Denommé-Pichon AS, Diaz-Manera J, Efthymiou S, Faivre L, Fernandez-Callejo M, Freeberg M, Garcia-Pelaez J, Guillot-Noel L, Haack TB, Hanna M, Hengel H, Horvath R, Houlden H, Jackson A, Johansson L, Johari M, Kamsteeg EJ, Kellner M, Kleefstra T, Lacombe D, Lochmüller H, López-Martín E, Macaya A, Marcé-Grau A, Maver A, Morsy H, Muntoni F, Musacchia F, Nelson I, Nigro V, Olimpio C, Oliveira C, Paulasová Schwabová J, Pauly MG, Peterlin B, Peters S, Pfundt R, Piluso G, Piscia D, Posada M, Reich S, Renieri A, Ryba L, Šablauskas K, Savarese M, Schöls L, Schütz L, Steinke-Lange V, Stevanin G, Straub V, Sturm M, Swertz MA, Tartaglia M, Te Paske IBAW, Thompson R, Torella A, Trainor C, Udd B, Van de Vondel L, van de Warrenburg B, van Reeuwijk J, Vandrovcova J, Vitobello A, Vos J, Vyhnálková E, Wijngaard R, Wilke C, William D, Xu J, Yaldiz B, Zalatnai L, Zurek B, Brookes AJ, Evangelista T, Gilissen C, Graessner H, Hoogerbrugge N, Ossowski S, Riess O, Schüle R, Synofzik M, et alLaurie S, Steyaert W, de Boer E, Polavarapu K, Schuermans N, Sommer AK, Demidov G, Ellwanger K, Paramonov I, Thomas C, Aretz S, Baets J, Benetti E, Bullich G, Chinnery PF, Clayton-Smith J, Cohen E, Danis D, de Sainte Agathe JM, Denommé-Pichon AS, Diaz-Manera J, Efthymiou S, Faivre L, Fernandez-Callejo M, Freeberg M, Garcia-Pelaez J, Guillot-Noel L, Haack TB, Hanna M, Hengel H, Horvath R, Houlden H, Jackson A, Johansson L, Johari M, Kamsteeg EJ, Kellner M, Kleefstra T, Lacombe D, Lochmüller H, López-Martín E, Macaya A, Marcé-Grau A, Maver A, Morsy H, Muntoni F, Musacchia F, Nelson I, Nigro V, Olimpio C, Oliveira C, Paulasová Schwabová J, Pauly MG, Peterlin B, Peters S, Pfundt R, Piluso G, Piscia D, Posada M, Reich S, Renieri A, Ryba L, Šablauskas K, Savarese M, Schöls L, Schütz L, Steinke-Lange V, Stevanin G, Straub V, Sturm M, Swertz MA, Tartaglia M, Te Paske IBAW, Thompson R, Torella A, Trainor C, Udd B, Van de Vondel L, van de Warrenburg B, van Reeuwijk J, Vandrovcova J, Vitobello A, Vos J, Vyhnálková E, Wijngaard R, Wilke C, William D, Xu J, Yaldiz B, Zalatnai L, Zurek B, Brookes AJ, Evangelista T, Gilissen C, Graessner H, Hoogerbrugge N, Ossowski S, Riess O, Schüle R, Synofzik M, Verloes A, Matalonga L, Brunner HG, Lohmann K, de Voer RM, Töpf A, Vissers LELM, Beltran S, Hoischen A. Genomic reanalysis of a pan-European rare-disease resource yields new diagnoses. Nat Med 2025; 31:478-489. [PMID: 39825153 PMCID: PMC11835725 DOI: 10.1038/s41591-024-03420-w] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 11/14/2024] [Indexed: 01/20/2025]
Abstract
Genetic diagnosis of rare diseases requires accurate identification and interpretation of genomic variants. Clinical and molecular scientists from 37 expert centers across Europe created the Solve-Rare Diseases Consortium (Solve-RD) resource, encompassing clinical, pedigree and genomic rare-disease data (94.5% exomes, 5.5% genomes), and performed systematic reanalysis for 6,447 individuals (3,592 male, 2,855 female) with previously undiagnosed rare diseases from 6,004 families. We established a collaborative, two-level expert review infrastructure that allowed a genetic diagnosis in 506 (8.4%) families. Of 552 disease-causing variants identified, 464 (84.1%) were single-nucleotide variants or short insertions/deletions. These variants were either located in recently published novel disease genes (n = 67), recently reclassified in ClinVar (n = 187) or reclassified by consensus expert decision within Solve-RD (n = 210). Bespoke bioinformatics analyses identified the remaining 15.9% of causative variants (n = 88). Ad hoc expert review, parallel to the systematic reanalysis, diagnosed 249 (4.1%) additional families for an overall diagnostic yield of 12.6%. The infrastructure and collaborative networks set up by Solve-RD can serve as a blueprint for future further scalable international efforts. The resource is open to the global rare-disease community, allowing phenotype, variant and gene queries, as well as genome-wide discoveries.
Collapse
Grants
- The Solve-RD consortium is grateful to all involved rare disease patients and their families as well as other contributors to Solve-RD. The Solve-RD project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 779257 (to all authors). This research is supported (not financially) by four ERNs: (1) The ERN for Intellectual Disability, Telehealth and Congenital Anomalies (ERN ITHACA)—Project ID No 101085231; (2) The ERN on Rare Neurological Diseases (ERN RND)—Project ID No 101155994; (3) The ERN for Neuromuscular Diseases (ERN Euro-NMD)—Project ID No 101156434; (4) The ERN on Genetic Tumour Risk Syndromes (ERN GENTURIS)—Project ID No 101155809. The ERNs are co-funded by the European Union within the framework of the Third Health Programme. The RD-Connect Genome-Phenome Analysis platform developed under FP7/2007–2013 funded project (grant agreement n° 305444) and ongoing funding from EJP-RD (grant numbers H2020 779257, H2020 825575), Instituto de Salud Carlos III (Grant numbers PT13/0001/0044, PT17/0009/0019; Instituto Nacional de Bioinformática, INB), ELIXIR-EXCELERATE (Grant number EU H2020 #676559) and ELIXIR Implementation Studies (Remote real-time visualisation of human rare disease genomics data (RD-Connect) stored at the EGA ELIXIR. 2017-2018; ELIXIR IT-2017-INTEGRATION, Rare Disease Infrastructure ELIXIR, 2019-2020 and the Beacon ELIXIR, 2019-2021). The RD-Connect GPAP has leveraged developments funded through project VEIS (001-P-001647 co-financed by the European Regional Development Fund of the European Union in the framework of the Operational Program FEDER of Catalonia 2014-2020 with the support of the Secretaria d'Universitats i Recerca del Departament d'Empresa i Coneixement de la Generalitat de Catalunya) and URD-Cat (PERIS SLT002/16/00174, Departament de Salut, Generalitat de Catalunya). The Spanish academic and research network RedIris (https://www.rediris.es/) provided the Aspera service used for uploading raw data for processing to the RD-Connect GPAP, and for transferring data between centres. Netherlands Science Organisations (NWO VIDI 917.164.55 to C.G.). Ministero della Salute (Genoma mEdiciNa pERsonalizzatA, T3-AN-04, to V.N., A.R., and M.T.). The “Network for Italian Genomes - NIG”, “Cell lines and DNA bank of Rett Syndrome, X-linked mental retardation and other genetic diseases”, member of the Telethon Network of Genetic Biobanks (project no. GTB12001), and EuroBioBank network. H.L. receives support from the Canadian Institutes of Health Research (CIHR) for Foundation Grant FDN-167281 (Precision Health for Neuromuscular Diseases), Transnational Team Grant ERT-174211 (ProDGNE) and Network Grant OR2-189333 (NMD4C), from the Canada Foundation for Innovation (CFI-JELF 38412), the Canada Research Chairs program (Canada Research Chair in Neuromuscular Genomics and Health, 950-232279), the European Commission (grant number 101080249) and the Canada Research Coordinating Committee New Frontiers in Research Fund (NFRFG-2022-00033) for SIMPATHIC, and from the Government of Canada Canada First Research Excellence Fund (CFREF) for the Brain-Heart Interconnectome (CFREF-2022-00007). K.P. is a recipient of a Canadian Institutes of Health Research (CIHR) postdoctoral fellowship award under award no: MFE-491707 This work was furthermore supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) No 441409627, as part of the PROSPAX consortium under the frame of EJP RD, the European Joint Programme on Rare Diseases, under the EJP RD COFUND-EJP N° 825575 (to M.Sy., R.S., and R.H.,) and the Clinician Scientist programme "PRECISE.net" funded by the Else Kröner-Fresenius-Stiftung (to C.W., M.K., R.S. and M.Sy.). J.P.S. was financed by Programme EXCELES, (ID Project No. LX22NPO5107) - Funded by the European Union – Next Generation EU. B.v.d.W. is supported by ZonMW, the Gossweiler Foundation, and the ‘Hersenstichting’. The work of F.Mun. was also supported by Muscular Dystrophy UK, and Muscular Dystrophy USA. H.G. and T.B.H. are supported by the European Union's Horizon 2020 research and innovation program project Recon4IMD (grant number 101080997). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.
Collapse
Affiliation(s)
- Steven Laurie
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Wouter Steyaert
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Institute for Medical Innovation, Nijmegen, the Netherlands
| | - Elke de Boer
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Kiran Polavarapu
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Nika Schuermans
- Program for Undiagnosed Rare Diseases (UD-PrOZA), Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Anna K Sommer
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, Germany
| | - German Demidov
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Kornelia Ellwanger
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Ida Paramonov
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Coline Thomas
- European Bioinformatics Institute, European Molecular Biology Laboratory, Cambridge, UK
| | - Stefan Aretz
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, Germany
- Center for Hereditary Tumor Syndromes, University Hospital Bonn, Bonn, Germany
| | - Jonathan Baets
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Elisa Benetti
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Medical Genetics, University of Siena, Siena, Italy
| | - Gemma Bullich
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Patrick F Chinnery
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Jill Clayton-Smith
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University Hospitals NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Enzo Cohen
- Centre de Recherche en Myologie, Sorbonne Université, Inserm, Institut de Myologie, Paris, France
| | - Daniel Danis
- Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Jean-Madeleine de Sainte Agathe
- Department of Genetics, Assistance Publique-Hôpitaux de Paris, Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris, France
| | - Anne-Sophie Denommé-Pichon
- University of Burgundy, Dijon, France
- Functional Unit for Diagnostic Innovation in Rare Diseases, Dijon Bourgogne University Hospital, Dijon, France
| | - Jordi Diaz-Manera
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Stephanie Efthymiou
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Laurence Faivre
- University of Burgundy, Dijon, France
- Genetics Department, Dijon University Hospital, Dijon, France
- Centre of Reference for Rare Diseases: Development Disorders and Malformation Syndromes, Dijon University Hospital, Dijon, France
- University of Burgundy-Franche Comté, Dijon, France
- GIMI institute, Dijon University Hospital, Dijon, France
| | - Marcos Fernandez-Callejo
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Mallory Freeberg
- European Bioinformatics Institute, European Molecular Biology Laboratory, Cambridge, UK
| | - José Garcia-Pelaez
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| | | | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Mike Hanna
- MRC Centre for Neuromuscular Diseases and National Hospital for Neurology and Neurosurgery, UCL Queen Square Institute of Neurology, London, UK
| | - Holger Hengel
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research (HIH), University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Adam Jackson
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University Hospitals NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Lennart Johansson
- Department of Genetics, Genomics Coordination Center, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Mridul Johari
- Folkhälsan Research Centre and Medicum, University of Helsinki, Helsinki, Finland
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Melanie Kellner
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research (HIH), University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Tjitske Kleefstra
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Clinical Genetics, Erasmus MC, Rotterdam, the Netherlands
- Center of Excellence for Neuropsychiatry, Vincent van Gogh Institute for Psychiatry, Venray, the Netherlands
| | - Didier Lacombe
- MRGM, Maladies Rares: Génétique et Métabolisme, INSERM U1211, Université de Bordeaux, Bordeaux, France
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Hanns Lochmüller
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
- Department of Neuropediatrics and Muscle Disorders, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, Ontario, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Estrella López-Martín
- Institute of Rare Diseases Research, Spanish Undiagnosed Rare Diseases Cases Program (SpainUDP) & Undiagnosed Diseases Network International (UDNI), Instituto de Salud Carlos III, Madrid, Spain
| | - Alfons Macaya
- Pediatric Neurology Research Group, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anna Marcé-Grau
- Pediatric Neurology Research Group, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Aleš Maver
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Heba Morsy
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Hospital, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Francesco Musacchia
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Isabelle Nelson
- Centre de Recherche en Myologie, Sorbonne Université, Inserm, Institut de Myologie, Paris, France
| | - Vincenzo Nigro
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Catarina Olimpio
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- East Anglian Medical Genetics Service, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Carla Oliveira
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institut du Cerveau, Sorbonne University, Paris, France
| | - Jaroslava Paulasová Schwabová
- Centre of Hereditary Ataxia, Department of Neurology, Charles University Prague-2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Martje G Pauly
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Neurology, University Hospital Schleswig Holstein, Lübeck, Germany
| | - Borut Peterlin
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Sophia Peters
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Rolph Pfundt
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Giulio Piluso
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Davide Piscia
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Manuel Posada
- Institute of Rare Diseases Research, Spanish Undiagnosed Rare Diseases Cases Program (SpainUDP) & Undiagnosed Diseases Network International (UDNI), Instituto de Salud Carlos III, Madrid, Spain
| | - Selina Reich
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research (HIH), University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Alessandra Renieri
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Medical Genetics, University of Siena, Siena, Italy
- Genetica Medica, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Lukas Ryba
- Department of Biology and Medical Genetics, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Karolis Šablauskas
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Institute of Data Science and Digital Technologies, Vilnius University, Vilnius, Lithuania
| | - Marco Savarese
- Folkhälsan Research Centre and Medicum, University of Helsinki, Helsinki, Finland
| | - Ludger Schöls
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research (HIH), University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Leon Schütz
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Verena Steinke-Lange
- Medizinische Klinik und Poliklinik IV - Campus Innenstadt, Klinikum der Universität München, Munich, Germany
- MGZ - Medical Genetics Center, Munich, Germany
| | | | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Marc Sturm
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Morris A Swertz
- Department of Genetics, Genomics Coordination Center, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Iris B A W Te Paske
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Institute for Medical Innovation, Nijmegen, the Netherlands
| | - Rachel Thompson
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Annalaura Torella
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Christina Trainor
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Bjarne Udd
- Folkhälsan Research Centre and Medicum, University of Helsinki, Helsinki, Finland
- Tampere Neuromuscular Center, Tampere, Finland
- Vasa Central Hospital, Vaasa, Finland
| | - Liedewei Van de Vondel
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Peripheral Neuropathy Research Group, University of Antwerp, Antwerp, Belgium
| | - Bart van de Warrenburg
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Neurology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jeroen van Reeuwijk
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jana Vandrovcova
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Antonio Vitobello
- University of Burgundy, Dijon, France
- Functional Unit for Diagnostic Innovation in Rare Diseases, Dijon Bourgogne University Hospital, Dijon, France
| | - Janet Vos
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Institute for Medical Innovation, Nijmegen, the Netherlands
| | - Emílie Vyhnálková
- Department of Biology and Medical Genetics, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Robin Wijngaard
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Institute for Medical Innovation, Nijmegen, the Netherlands
| | - Carlo Wilke
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research (HIH), University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Doreen William
- Institute of Clinical Genetics, University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Dresden, Germany
| | - Jishu Xu
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research (HIH), University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Burcu Yaldiz
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Luca Zalatnai
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Birte Zurek
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Anthony J Brookes
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Teresinha Evangelista
- Centre de Recherche en Myologie, Sorbonne Université, Inserm, Institut de Myologie, Paris, France
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Institute for Medical Innovation, Nijmegen, the Netherlands
| | - Holm Graessner
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Nicoline Hoogerbrugge
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Institute for Medical Innovation, Nijmegen, the Netherlands
| | - Stephan Ossowski
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- NGS Competence Center Tübingen (NCCT), University of Tübingen, Tübingen, Germany
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Rebecca Schüle
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research (HIH), University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Matthis Synofzik
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research (HIH), University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Alain Verloes
- Dept of Genetics, Assistance Publique-Hôpitaux de Paris, Université de Paris, Robert DEBRE University Hospital, Paris, France
- INSERM UMR 1141 "NeuroDiderot", Hôpital Robert DEBRE, Paris, France
| | - Leslie Matalonga
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Han G Brunner
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Clinical Genetics, Maastricht University Medical Centre and GROW School for Development and Oncology, University of Maastricht, Maastricht, the Netherlands
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Richarda M de Voer
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Institute for Medical Innovation, Nijmegen, the Netherlands
| | - Ana Töpf
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Lisenka E L M Vissers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Sergi Beltran
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain.
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain.
| | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands.
- Radboud Institute for Medical Innovation, Nijmegen, the Netherlands.
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
11
|
Means JC, Martinez-Bengochea AL, Louiselle DA, Nemechek JM, Perry JM, Farrow EG, Pastinen T, Younger ST. Rapid and scalable personalized ASO screening in patient-derived organoids. Nature 2025; 638:237-243. [PMID: 39843740 PMCID: PMC11798851 DOI: 10.1038/s41586-024-08462-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 11/27/2024] [Indexed: 01/24/2025]
Abstract
Personalized antisense oligonucleotides (ASOs) have achieved positive results in the treatment of rare genetic disease1. As clinical sequencing technologies continue to advance, the ability to identify patients with rare disease harbouring pathogenic genetic variants amenable to this therapeutic strategy will probably improve. Here we describe a scalable platform for generating patient-derived cellular models and demonstrate that these personalized models can be used for preclinical evaluation of patient-specific ASOs. We describe protocols for delivery of ASOs to patient-derived organoid models and confirm reversal of disease-associated phenotypes in cardiac organoids derived from a patient with Duchenne muscular dystrophy (DMD) with a structural deletion in the gene encoding dystrophin (DMD) that is amenable to treatment with existing ASO therapeutics. Furthermore, we designed novel patient-specific ASOs for two additional patients with DMD (siblings) with a deep intronic variant in the DMD gene that gives rise to a novel splice acceptor site, incorporation of a cryptic exon and premature transcript termination. We showed that treatment of patient-derived cardiac organoids with patient-specific ASOs results in restoration of DMD expression and reversal of disease-associated phenotypes. The approach outlined here provides the foundation for an expedited path towards the design and preclinical evaluation of personalized ASO therapeutics for a broad range of rare diseases.
Collapse
Affiliation(s)
- John C Means
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
- Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Anabel L Martinez-Bengochea
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
- Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Daniel A Louiselle
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
- Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Jacqelyn M Nemechek
- Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, USA
| | - John M Perry
- Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
- Department of Pediatrics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Emily G Farrow
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
- Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Tomi Pastinen
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
- Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
- Department of Pediatrics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Scott T Younger
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA.
- Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, USA.
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA.
- Department of Pediatrics, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
12
|
Vollger MR, Korlach J, Eldred KC, Swanson E, Underwood JG, Bohaczuk SC, Mao Y, Cheng YHH, Ranchalis J, Blue EE, Schwarze U, Munson KM, Saunders CT, Wenger AM, Allworth A, Chanprasert S, Duerden BL, Glass I, Horike-Pyne M, Kim M, Leppig KA, McLaughlin IJ, Ogawa J, Rosenthal EA, Sheppeard S, Sherman SM, Strohbehn S, Yuen AL, Stacey AW, Reh TA, Byers PH, Bamshad MJ, Hisama FM, Jarvik GP, Sancak Y, Dipple KM, Stergachis AB. Synchronized long-read genome, methylome, epigenome and transcriptome profiling resolve a Mendelian condition. Nat Genet 2025; 57:469-479. [PMID: 39880924 PMCID: PMC12077378 DOI: 10.1038/s41588-024-02067-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/19/2024] [Indexed: 01/31/2025]
Abstract
Resolving the molecular basis of a Mendelian condition remains challenging owing to the diverse mechanisms by which genetic variants cause disease. To address this, we developed a synchronized long-read genome, methylome, epigenome and transcriptome sequencing approach, which enables accurate single-nucleotide, insertion-deletion and structural variant calling and diploid de novo genome assembly. This permits the simultaneous elucidation of haplotype-resolved CpG methylation, chromatin accessibility and full-length transcript information in a single long-read sequencing run. Application of this approach to an Undiagnosed Diseases Network participant with a chromosome X;13-balanced translocation of uncertain significance revealed that this translocation disrupted the functioning of four separate genes (NBEA, PDK3, MAB21L1 and RB1) previously associated with single-gene Mendelian conditions. Notably, the function of each gene was disrupted via a distinct mechanism that required integration of the four 'omes' to resolve. These included fusion transcript formation, enhancer adoption, transcriptional readthrough silencing and inappropriate X-chromosome inactivation of autosomal genes. Overall, this highlights the utility of synchronized long-read multi-omic profiling for mechanistically resolving complex phenotypes.
Collapse
Affiliation(s)
- Mitchell R Vollger
- University of Washington School of Medicine Department of Genome Sciences, Seattle, WA, USA
- University of Washington School of Medicine Department of Medicine, Seattle, WA, USA
| | | | - Kiara C Eldred
- University of Washington School of Medicine Department of Biological Structure, Seattle, WA, USA
| | - Elliott Swanson
- University of Washington School of Medicine Department of Genome Sciences, Seattle, WA, USA
| | | | - Stephanie C Bohaczuk
- University of Washington School of Medicine Department of Genome Sciences, Seattle, WA, USA
| | - Yizi Mao
- University of Washington School of Medicine Department of Medicine, Seattle, WA, USA
| | - Yong-Han H Cheng
- University of Washington School of Medicine Department of Genome Sciences, Seattle, WA, USA
| | - Jane Ranchalis
- University of Washington School of Medicine Department of Medicine, Seattle, WA, USA
| | - Elizabeth E Blue
- University of Washington School of Medicine Department of Medicine, Seattle, WA, USA
- Institute for Public Health Genetics, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Ulrike Schwarze
- University of Washington School of Medicine Department of Laboratory Medicine and Pathology, Seattle, WA, USA
| | - Katherine M Munson
- University of Washington School of Medicine Department of Genome Sciences, Seattle, WA, USA
| | | | | | - Aimee Allworth
- University of Washington School of Medicine Department of Medicine, Seattle, WA, USA
| | - Sirisak Chanprasert
- University of Washington School of Medicine Department of Medicine, Seattle, WA, USA
| | | | - Ian Glass
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- University of Washington Department of Pediatrics, Seattle, WA, USA
| | - Martha Horike-Pyne
- University of Washington School of Medicine Department of Medicine, Seattle, WA, USA
| | | | | | | | | | - Elisabeth A Rosenthal
- University of Washington School of Medicine Department of Medicine, Seattle, WA, USA
| | - Sam Sheppeard
- University of Washington School of Medicine Department of Medicine, Seattle, WA, USA
| | - Stephanie M Sherman
- University of Washington School of Medicine Department of Medicine, Seattle, WA, USA
| | - Samuel Strohbehn
- University of Washington School of Medicine Department of Medicine, Seattle, WA, USA
| | - Amy L Yuen
- Genetic Services, Kaiser Permanente Washington, Seattle, WA, USA
| | - Andrew W Stacey
- University of Washington Department of Ophthalmology, Seattle, WA, USA
| | - Thomas A Reh
- University of Washington School of Medicine Department of Biological Structure, Seattle, WA, USA
| | - Peter H Byers
- University of Washington School of Medicine Department of Medicine, Seattle, WA, USA
- University of Washington School of Medicine Department of Laboratory Medicine and Pathology, Seattle, WA, USA
| | - Michael J Bamshad
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- University of Washington Department of Pediatrics, Seattle, WA, USA
| | - Fuki M Hisama
- University of Washington School of Medicine Department of Medicine, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Gail P Jarvik
- University of Washington School of Medicine Department of Genome Sciences, Seattle, WA, USA
- University of Washington School of Medicine Department of Medicine, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Yasemin Sancak
- University of Washington School of Medicine Department of Pharmacology, Seattle, WA, USA
| | - Katrina M Dipple
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- University of Washington Department of Pediatrics, Seattle, WA, USA
| | - Andrew B Stergachis
- University of Washington School of Medicine Department of Genome Sciences, Seattle, WA, USA.
- University of Washington School of Medicine Department of Medicine, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.
| |
Collapse
|
13
|
Danis D, Bamshad MJ, Bridges Y, Caballero-Oteyza A, Cacheiro P, Carmody LC, Chimirri L, Chong JX, Coleman B, Dalgleish R, Freeman PJ, Graefe ASL, Groza T, Hansen P, Jacobsen JOB, Klocperk A, Kusters M, Ladewig MS, Marcello AJ, Mattina T, Mungall CJ, Munoz-Torres MC, Reese JT, Rehburg F, Reis BCS, Schuetz C, Smedley D, Strauss T, Sundaramurthi JC, Thun S, Wissink K, Wagstaff JF, Zocche D, Haendel MA, Robinson PN. A corpus of GA4GH phenopackets: Case-level phenotyping for genomic diagnostics and discovery. HGG ADVANCES 2025; 6:100371. [PMID: 39394689 PMCID: PMC11564936 DOI: 10.1016/j.xhgg.2024.100371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024] Open
Abstract
The Global Alliance for Genomics and Health (GA4GH) Phenopacket Schema was released in 2022 and approved by ISO as a standard for sharing clinical and genomic information about an individual, including phenotypic descriptions, numerical measurements, genetic information, diagnoses, and treatments. A phenopacket can be used as an input file for software that supports phenotype-driven genomic diagnostics and for algorithms that facilitate patient classification and stratification for identifying new diseases and treatments. There has been a great need for a collection of phenopackets to test software pipelines and algorithms. Here, we present Phenopacket Store. Phenopacket Store v.0.1.19 includes 6,668 phenopackets representing 475 Mendelian and chromosomal diseases associated with 423 genes and 3,834 unique pathogenic alleles curated from 959 different publications. This represents the first large-scale collection of case-level, standardized phenotypic information derived from case reports in the literature with detailed descriptions of the clinical data and will be useful for many purposes, including the development and testing of software for prioritizing genes and diseases in diagnostic genomics, machine learning analysis of clinical phenotype data, patient stratification, and genotype-phenotype correlations. This corpus also provides best-practice examples for curating literature-derived data using the GA4GH Phenopacket Schema.
Collapse
Affiliation(s)
- Daniel Danis
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany; The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington CT 06032, USA
| | - Michael J Bamshad
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, 1959 NE Pacific Street, Box 357371, Seattle, WA 98195, USA; Brotman-Baty Institute for Precision Medicine, 1959 NE Pacific Street, Box 357657, Seattle, WA 98195, USA; Department of Pediatrics, Division of Genetic Medicine, Seattle Children's Hospital, Seattle, WA 98195, USA
| | - Yasemin Bridges
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Andrés Caballero-Oteyza
- Clinic for Immunology and Rheumatology, Hanover Medical School, Hanover, Germany; RESiST-Cluster of Excellence 2155, Hanover Medical School, Hanover, Germany
| | - Pilar Cacheiro
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Leigh C Carmody
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington CT 06032, USA
| | - Leonardo Chimirri
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jessica X Chong
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, 1959 NE Pacific Street, Box 357371, Seattle, WA 98195, USA; Brotman-Baty Institute for Precision Medicine, 1959 NE Pacific Street, Box 357657, Seattle, WA 98195, USA
| | - Ben Coleman
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington CT 06032, USA
| | - Raymond Dalgleish
- Department of Genetics, Genomics and Cancer Sciences, University of Leicester, Leicester, UK
| | - Peter J Freeman
- Division of Informatics, Imaging and Data Science, The University of Manchester, Manchester, UK
| | - Adam S L Graefe
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Tudor Groza
- Rare Care Centre, Perth Children's Hospital, Nedlands, WA 6009, Australia; SingHealth Duke-NUS Institute of Precision Medicine, 5 Hospital Drive Level 9, Singapore 169609, Singapore; Telethon Kids Institute, Nedlands, WA 6009, Australia
| | - Peter Hansen
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Julius O B Jacobsen
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Adam Klocperk
- Department of Immunology, 2nd Faculty of Medicine, Charles University and University Hospital in Motol, Prague, Czech Republic
| | - Maaike Kusters
- Department of Paediatric Immunology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK; University College London Institute of Child Health, London, UK
| | - Markus S Ladewig
- Department of Ophthalmology, University Clinic Marburg - Campus Fulda, Fulda, Germany
| | - Allison J Marcello
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, 1959 NE Pacific Street, Box 357371, Seattle, WA 98195, USA
| | - Teresa Mattina
- Medica Genetics University of Catania Italy, Catania, Italy; Morgagni Foundation and Clinic, Catania, Italy
| | - Christopher J Mungall
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Monica C Munoz-Torres
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Justin T Reese
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Filip Rehburg
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Bárbara C S Reis
- Department of Allergy and Immunology, National Institute of Women's, Children's and Adolescents' Health Fernandes Figueira, Rio de Janeiro, Brazil; High Complexity Laboratory, National Institute of Women's, Children's and Adolescents' Health Fernandes Figueira, Rio de Janeiro, Brazil
| | - Catharina Schuetz
- Department of Pediatrics, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; University Center for Rare Diseases, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; German Center for Child and Adolescent Health (DZKJ), partner site Leipzig/Dresden, Dresden, Germany
| | - Damian Smedley
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Timmy Strauss
- Department of Pediatrics, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; University Center for Rare Diseases, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | - Sylvia Thun
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Kyran Wissink
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany; Utrecht University, Utrecht, the Netherlands
| | - John F Wagstaff
- Department of Genetics, Genomics and Cancer Sciences, University of Leicester, Leicester, UK
| | - David Zocche
- North West Thames Regional Genetics Service, Northwick Park & St Mark's Hospitals, London, UK
| | | | - Peter N Robinson
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany; The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington CT 06032, USA; ELLIS-European Laboratory for Learning and Intelligent Systems.
| |
Collapse
|
14
|
French CE, Andrews NC, Beggs AH, Boone PM, Brownstein CA, Chopra M, Chou J, Chung WK, D'Gama AM, Doan RN, Ebrahimi-Fakhari D, Goldstein RD, Irons M, Jacobsen C, Kenna M, Lee T, Madden JA, Majmundar AJ, Mann N, Morton SU, Poduri A, Randolph AG, Roberts AE, Roberts S, Sampson MG, Shao DD, Shao W, Sharma A, Shearer E, Shimamura A, Snapper SB, Srivastava S, Thiagarajah JR, Whitman MC, Wojcik MH, Rockowitz S, Sliz P. Hospital-wide access to genomic data advanced pediatric rare disease research and clinical outcomes. NPJ Genom Med 2024; 9:60. [PMID: 39622807 PMCID: PMC11612168 DOI: 10.1038/s41525-024-00441-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 10/14/2024] [Indexed: 12/06/2024] Open
Abstract
Boston Children's Hospital has established a genomic sequencing and analysis research initiative to improve clinical care for pediatric rare disease patients. Through the Children's Rare Disease Collaborative (CRDC), the hospital offers CLIA-grade exome and genome sequencing, along with other sequencing types, to patients enrolled in specialized rare disease research studies. The data, consented for broad research use, are harmonized and analyzed with CRDC-supported variant interpretation tools. Since its launch, 66 investigators representing 26 divisions and 45 phenotype-based cohorts have joined the CRDC. These studies enrolled 4653 families, with 35% of analyzed cases having a finding either confirmed or under further investigation. This accessible and harmonized genomics platform also supports additional institutional data collections, research and clinical, and now encompasses 13,800+ patients and their families. This has fostered new research projects and collaborations, increased genetic diagnoses and accelerated innovative research via integration of genomics research with clinical care.
Collapse
Affiliation(s)
- Courtney E French
- Children's Rare Disease Collaborative, Boston Children's Hospital, Boston, MA, USA
| | - Nancy C Andrews
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Alan H Beggs
- Children's Rare Disease Collaborative, Boston Children's Hospital, Boston, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Philip M Boone
- Children's Rare Disease Collaborative, Boston Children's Hospital, Boston, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Catherine A Brownstein
- Children's Rare Disease Collaborative, Boston Children's Hospital, Boston, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
| | - Maya Chopra
- Children's Rare Disease Collaborative, Boston Children's Hospital, Boston, MA, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, USA
| | - Janet Chou
- Children's Rare Disease Collaborative, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA
| | - Wendy K Chung
- Children's Rare Disease Collaborative, Boston Children's Hospital, Boston, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alissa M D'Gama
- Children's Rare Disease Collaborative, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Ryan N Doan
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Darius Ebrahimi-Fakhari
- Children's Rare Disease Collaborative, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Richard D Goldstein
- Children's Rare Disease Collaborative, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Division of General Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Mira Irons
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Christina Jacobsen
- Children's Rare Disease Collaborative, Boston Children's Hospital, Boston, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, USA
| | - Margaret Kenna
- Children's Rare Disease Collaborative, Boston Children's Hospital, Boston, MA, USA
- Department of Otolaryngology and Communication Enhancement, Boston Children's Hospital, Boston, MA, USA
- Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Ted Lee
- Children's Rare Disease Collaborative, Boston Children's Hospital, Boston, MA, USA
- Department of Urology, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Jill A Madden
- Children's Rare Disease Collaborative, Boston Children's Hospital, Boston, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
| | - Amar J Majmundar
- Children's Rare Disease Collaborative, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Division of Nephrology, Boston Children's Hospital, Boston, MA, USA
| | - Nina Mann
- Children's Rare Disease Collaborative, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Division of Nephrology, Boston Children's Hospital, Boston, MA, USA
| | - Sarah U Morton
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Annapurna Poduri
- Children's Rare Disease Collaborative, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Adrienne G Randolph
- Children's Rare Disease Collaborative, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
| | - Amy E Roberts
- Children's Rare Disease Collaborative, Boston Children's Hospital, Boston, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - Stephanie Roberts
- Children's Rare Disease Collaborative, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, USA
| | - Matthew G Sampson
- Children's Rare Disease Collaborative, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Nephrology, Boston Children's Hospital, Boston, MA, USA
- Division of Nephrology, Brigham and Women's Hospital, Boston, MA, USA
| | - Diane D Shao
- Children's Rare Disease Collaborative, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Wanqing Shao
- Children's Rare Disease Collaborative, Boston Children's Hospital, Boston, MA, USA
| | - Aditi Sharma
- Children's Rare Disease Collaborative, Boston Children's Hospital, Boston, MA, USA
| | - Eliot Shearer
- Children's Rare Disease Collaborative, Boston Children's Hospital, Boston, MA, USA
- Department of Otolaryngology and Communication Enhancement, Boston Children's Hospital, Boston, MA, USA
- Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Akiko Shimamura
- Children's Rare Disease Collaborative, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Hematology and Oncology, Boston Children's Hospital, Boston, MA, USA
- Dana Farber Cancer Institute, Boston, MA, USA
| | - Scott B Snapper
- Children's Rare Disease Collaborative, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, USA
| | - Siddharth Srivastava
- Children's Rare Disease Collaborative, Boston Children's Hospital, Boston, MA, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Jay R Thiagarajah
- Children's Rare Disease Collaborative, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, USA
| | - Mary C Whitman
- Children's Rare Disease Collaborative, Boston Children's Hospital, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Ophthalmology, Boston Children's Hospital, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Monica H Wojcik
- Children's Rare Disease Collaborative, Boston Children's Hospital, Boston, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Shira Rockowitz
- Children's Rare Disease Collaborative, Boston Children's Hospital, Boston, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
| | - Piotr Sliz
- Children's Rare Disease Collaborative, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA.
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
15
|
Randhawa H, Knoll MM, McPhaul M, Dileepan K, McDonough R, Turpin A, Jacobson JD. Prevalence of Intersex/Differences in Sex Development and Primary Gonadal Insufficiency in a Pediatric Transgender Population. Transgend Health 2024; 9:544-552. [PMID: 39735381 PMCID: PMC11669621 DOI: 10.1089/trgh.2023.0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2024] Open
Abstract
Purpose This study aims to assess the prevalence of intersex variations/differences in sex development (I/DSDs), associated adrenal conditions, and primary gonadal insufficiency in children with gender dysphoria. Methods We performed a comprehensive review of the medical records for individuals who carried the diagnostic codes for gender dysphoria in addition to intersex and/or other conditions associated with sex steroid variations among patients evaluated by pediatric endocrinologists from 2013 to 2022. Results We found that 9 of 612 (1.5%) transmasculine (TM) and 4 of 215 (1.9%) transfeminine patients had detectable I/DSDs. Although most patients were diagnosed with I/DSDs before evaluation of gender dysphoria, 4 of 13 (30.7%) were diagnosed with I/DSDs after being referred to endocrinology for gender dysphoria. In all cases, diagnoses were made by the endocrinologists evaluating for gender dysphoria. An additional 0.7% of TM patients were diagnosed with distinct hyperandrogenic adrenal conditions, and 1% of TM patients were diagnosed with primary ovarian insufficiency. Conclusion The low, but clinically relevant, prevalence of I/DSDs, distinct adrenal conditions, and primary gonadal insufficiency in this transgender population supports the need for access to individualized expert medical care. Specifically, multidisciplinary clinics with experience in endocrinology may provide specialized support for the transgender community.
Collapse
Affiliation(s)
- Hari Randhawa
- University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Michelle M. Knoll
- University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
- Division of Endocrinology and Diabetes, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, Missouri, USA
| | - Michael McPhaul
- Quest Diagnostics' Nichols Institute, San Juan Capistrano, California, USA
| | - Kavitha Dileepan
- University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
- Division of Endocrinology and Diabetes, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, Missouri, USA
| | - Ryan McDonough
- University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
- Division of Endocrinology and Diabetes, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, Missouri, USA
- Department of Medical Informatics, Children's Mercy Kansas City, Kansas City, Missouri, USA
| | - Angela Turpin
- University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
- Division of Endocrinology and Diabetes, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, Missouri, USA
| | - Jill D. Jacobson
- University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
- Division of Endocrinology and Diabetes, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, Missouri, USA
| |
Collapse
|
16
|
Hiatt SM, Lawlor JMJ, Handley LH, Latner DR, Bonnstetter ZT, Finnila CR, Thompson ML, Boston LB, Williams M, Rodriguez Nunez I, Jenkins J, Kelley WV, Bebin EM, Lopez MA, Hurst ACE, Korf BR, Schmutz J, Grimwood J, Cooper GM. Long-read genome sequencing and variant reanalysis increase diagnostic yield in neurodevelopmental disorders. Genome Res 2024; 34:1747-1762. [PMID: 39299904 PMCID: PMC11610584 DOI: 10.1101/gr.279227.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/19/2024] [Indexed: 09/22/2024]
Abstract
Variant detection from long-read genome sequencing (lrGS) has proven to be more accurate and comprehensive than variant detection from short-read genome sequencing (srGS). However, the rate at which lrGS can increase molecular diagnostic yield for rare disease is not yet precisely characterized. We performed lrGS using Pacific Biosciences "HiFi" technology on 96 short-read-negative probands with rare diseases that were suspected to be genetic. We generated hg38-aligned variants and de novo phased genome assemblies, and subsequently annotated, filtered, and curated variants using clinical standards. New disease-relevant or potentially relevant genetic findings were identified in 16/96 (16.7%) probands, nine of which (8/96, ∼9.4%) harbored pathogenic or likely pathogenic variants. Nine probands (∼9.4%) had variants that were accurately called in both srGS and lrGS and represent changes to clinical interpretation, mostly from recently published gene-disease associations. Seven cases included variants that were only correctly interpreted in lrGS, including copy-number variants (CNVs), an inversion, a mobile element insertion, two low-complexity repeat expansions, and a 1 bp deletion. While evidence for each of these variants is, in retrospect, visible in srGS, they were either not called within srGS data, were represented by calls with incorrect sizes or structures, or failed quality control and filtration. Thus, while reanalysis of older srGS data clearly increases diagnostic yield, we find that lrGS allows for substantial additional yield (7/96, 7.3%) beyond srGS. We anticipate that as lrGS analysis improves, and as lrGS data sets grow allowing for better variant-frequency annotation, the additional lrGS-only rare disease yield will grow over time.
Collapse
Affiliation(s)
- Susan M Hiatt
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA;
| | - James M J Lawlor
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Lori H Handley
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Donald R Latner
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | | | - Candice R Finnila
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | | | - Lori Beth Boston
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Melissa Williams
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | | | - Jerry Jenkins
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Whitley V Kelley
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - E Martina Bebin
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama 35924, USA
| | - Michael A Lopez
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama 35924, USA
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama 35924, USA
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35924, USA
| | - Anna C E Hurst
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35924, USA
| | - Bruce R Korf
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35924, USA
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Gregory M Cooper
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA;
| |
Collapse
|
17
|
Gustafson JA, Gibson SB, Damaraju N, Zalusky MPG, Hoekzema K, Twesigomwe D, Yang L, Snead AA, Richmond PA, De Coster W, Olson ND, Guarracino A, Li Q, Miller AL, Goffena J, Anderson ZB, Storz SHR, Ward SA, Sinha M, Gonzaga-Jauregui C, Clarke WE, Basile AO, Corvelo A, Reeves C, Helland A, Musunuri RL, Revsine M, Patterson KE, Paschal CR, Zakarian C, Goodwin S, Jensen TD, Robb E, McCombie WR, Sedlazeck FJ, Zook JM, Montgomery SB, Garrison E, Kolmogorov M, Schatz MC, McLaughlin RN, Dashnow H, Zody MC, Loose M, Jain M, Eichler EE, Miller DE. High-coverage nanopore sequencing of samples from the 1000 Genomes Project to build a comprehensive catalog of human genetic variation. Genome Res 2024; 34:2061-2073. [PMID: 39358015 DOI: 10.1101/gr.279273.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024]
Abstract
Fewer than half of individuals with a suspected Mendelian or monogenic condition receive a precise molecular diagnosis after comprehensive clinical genetic testing. Improvements in data quality and costs have heightened interest in using long-read sequencing (LRS) to streamline clinical genomic testing, but the absence of control data sets for variant filtering and prioritization has made tertiary analysis of LRS data challenging. To address this, the 1000 Genomes Project (1KGP) Oxford Nanopore Technologies Sequencing Consortium aims to generate LRS data from at least 800 of the 1KGP samples. Our goal is to use LRS to identify a broader spectrum of variation so we may improve our understanding of normal patterns of human variation. Here, we present data from analysis of the first 100 samples, representing all 5 superpopulations and 19 subpopulations. These samples, sequenced to an average depth of coverage of 37× and sequence read N50 of 54 kbp, have high concordance with previous studies for identifying single nucleotide and indel variants outside of homopolymer regions. Using multiple structural variant (SV) callers, we identify an average of 24,543 high-confidence SVs per genome, including shared and private SVs likely to disrupt gene function as well as pathogenic expansions within disease-associated repeats that were not detected using short reads. Evaluation of methylation signatures revealed expected patterns at known imprinted loci, samples with skewed X-inactivation patterns, and novel differentially methylated regions. All raw sequencing data, processed data, and summary statistics are publicly available, providing a valuable resource for the clinical genetics community to discover pathogenic SVs.
Collapse
Affiliation(s)
- Jonas A Gustafson
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington 98195, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington 98195, USA
| | - Sophia B Gibson
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington 98195, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Nikhita Damaraju
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington 98195, USA
- Institute for Public Health Genetics, University of Washington, Seattle, Washington 98195, USA
| | - Miranda P G Zalusky
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington 98195, USA
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - David Twesigomwe
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Lei Yang
- Pacific Northwest Research Institute, Seattle, Washington 98122, USA
| | - Anthony A Snead
- Department of Biology, New York University, New York, New York 10003, USA
| | | | - Wouter De Coster
- Applied and Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, Antwerp 2650, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp 2000, Belgium
| | - Nathan D Olson
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Andrea Guarracino
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
- Human Technopole, Milan 20157, Italy
| | - Qiuhui Li
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Angela L Miller
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington 98195, USA
| | - Joy Goffena
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington 98195, USA
| | - Zachary B Anderson
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington 98195, USA
| | - Sophie H R Storz
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington 98195, USA
| | - Sydney A Ward
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington 98195, USA
| | - Maisha Sinha
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington 98195, USA
| | - Claudia Gonzaga-Jauregui
- International Laboratory for Human Genome Research, Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Mexico City 76230, Mexico
| | - Wayne E Clarke
- New York Genome Center, New York, New York 10013, USA
- Outlier Informatics Inc., Saskatoon, Saskatchewan S7H 1L4, Canada
| | - Anna O Basile
- New York Genome Center, New York, New York 10013, USA
| | - André Corvelo
- New York Genome Center, New York, New York 10013, USA
| | | | | | | | - Mahler Revsine
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Karynne E Patterson
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Cate R Paschal
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington 98195, USA
- Department of Laboratories, Seattle Children's Hospital, Seattle, Washington 98195, USA
| | - Christina Zakarian
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Sara Goodwin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Tanner D Jensen
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Esther Robb
- Department of Computer Science, Stanford University, Stanford, California 94305, USA
| | | | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Computer Science, Rice University, Houston, Texas 77251, USA
| | - Justin M Zook
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | | | - Erik Garrison
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - Mikhail Kolmogorov
- Cancer Data Science Laboratory, National Cancer Institute, NIH, Bethesda, Maryland 20892, USA
| | | | - Richard N McLaughlin
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington 98195, USA
- Pacific Northwest Research Institute, Seattle, Washington 98122, USA
| | - Harriet Dashnow
- Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112, USA
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Michael C Zody
- International Laboratory for Human Genome Research, Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Mexico City 76230, Mexico
| | - Matt Loose
- Deep Seq, School of Life Sciences, University of Nottingham, Nottingham NG7 2TQ, UK
| | - Miten Jain
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, USA
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA
- Khoury College of Computer Sciences, Northeastern University, Boston, Massachusetts 02115, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, Washington 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA
| | - Danny E Miller
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington 98195, USA;
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington 98195, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
18
|
Dolzhenko E, English A, Dashnow H, De Sena Brandine G, Mokveld T, Rowell WJ, Karniski C, Kronenberg Z, Danzi MC, Cheung WA, Bi C, Farrow E, Wenger A, Chua KP, Martínez-Cerdeño V, Bartley TD, Jin P, Nelson DL, Zuchner S, Pastinen T, Quinlan AR, Sedlazeck FJ, Eberle MA. Characterization and visualization of tandem repeats at genome scale. Nat Biotechnol 2024; 42:1606-1614. [PMID: 38168995 PMCID: PMC11921810 DOI: 10.1038/s41587-023-02057-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/06/2023] [Indexed: 01/05/2024]
Abstract
Tandem repeat (TR) variation is associated with gene expression changes and numerous rare monogenic diseases. Although long-read sequencing provides accurate full-length sequences and methylation of TRs, there is still a need for computational methods to profile TRs across the genome. Here we introduce the Tandem Repeat Genotyping Tool (TRGT) and an accompanying TR database. TRGT determines the consensus sequences and methylation levels of specified TRs from PacBio HiFi sequencing data. It also reports reads that support each repeat allele. These reads can be subsequently visualized with a companion TR visualization tool. Assessing 937,122 TRs, TRGT showed a Mendelian concordance of 98.38%, allowing a single repeat unit difference. In six samples with known repeat expansions, TRGT detected all expansions while also identifying methylation signals and mosaicism and providing finer repeat length resolution than existing methods. Additionally, we released a database with allele sequences and methylation levels for 937,122 TRs across 100 genomes.
Collapse
Affiliation(s)
| | - Adam English
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Harriet Dashnow
- Departments of Human Genetics and Biomedical Informatics, University of Utah, Salt Lake City, UT, USA
| | | | - Tom Mokveld
- Pacific Biosciences of California, Menlo Park, CA, USA
| | | | | | | | - Matt C Danzi
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Warren A Cheung
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Chengpeng Bi
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Emily Farrow
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Aaron Wenger
- Pacific Biosciences of California, Menlo Park, CA, USA
| | - Khi Pin Chua
- Pacific Biosciences of California, Menlo Park, CA, USA
| | - Verónica Martínez-Cerdeño
- Institute for Pediatric Regenerative Medicine, Shriner's Hospital for Children and UC Davis School of Medicine, Sacramento, CA, USA
- Department of Pathology & Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA, USA
- MIND Institute, UC Davis School of Medicine, Sacramento, CA, USA
| | - Trevor D Bartley
- Institute for Pediatric Regenerative Medicine, Shriner's Hospital for Children and UC Davis School of Medicine, Sacramento, CA, USA
- Department of Pathology & Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA, USA
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - David L Nelson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Stephan Zuchner
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Tomi Pastinen
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Aaron R Quinlan
- Departments of Human Genetics and Biomedical Informatics, University of Utah, Salt Lake City, UT, USA
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Computer Science, Rice University, Houston, TX, USA
| | | |
Collapse
|
19
|
van Karnebeek CDM, O'Donnell-Luria A, Baynam G, Baudot A, Groza T, Jans JJM, Lassmann T, Letinturier MCV, Montgomery SB, Robinson PN, Sansen S, Mehrian-Shai R, Steward C, Kosaki K, Durao P, Sadikovic B. Leaving no patient behind! Expert recommendation in the use of innovative technologies for diagnosing rare diseases. Orphanet J Rare Dis 2024; 19:357. [PMID: 39334316 PMCID: PMC11438178 DOI: 10.1186/s13023-024-03361-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Genetic diagnosis plays a crucial role in rare diseases, particularly with the increasing availability of emerging and accessible treatments. The International Rare Diseases Research Consortium (IRDiRC) has set its primary goal as: "Ensuring that all patients who present with a suspected rare disease receive a diagnosis within one year if their disorder is documented in the medical literature". Despite significant advances in genomic sequencing technologies, more than half of the patients with suspected Mendelian disorders remain undiagnosed. In response, IRDiRC proposes the establishment of "a globally coordinated diagnostic and research pipeline". To help facilitate this, IRDiRC formed the Task Force on Integrating New Technologies for Rare Disease Diagnosis. This multi-stakeholder Task Force aims to provide an overview of the current state of innovative diagnostic technologies for clinicians and researchers, focusing on the patient's diagnostic journey. Herein, we provide an overview of a broad spectrum of emerging diagnostic technologies involving genomics, epigenomics and multi-omics, functional testing and model systems, data sharing, bioinformatics, and Artificial Intelligence (AI), highlighting their advantages, limitations, and the current state of clinical adaption. We provide expert recommendations outlining the stepwise application of these innovative technologies in the diagnostic pathways while considering global differences in accessibility. The importance of FAIR (Findability, Accessibility, Interoperability, and Reusability) and CARE (Collective benefit, Authority to control, Responsibility, and Ethics) data management is emphasized, along with the need for enhanced and continuing education in medical genomics. We provide a perspective on future technological developments in genome diagnostics and their integration into clinical practice. Lastly, we summarize the challenges related to genomic diversity and accessibility, highlighting the significance of innovative diagnostic technologies, global collaboration, and equitable access to diagnosis and treatment for people living with rare disease.
Collapse
Affiliation(s)
- Clara D M van Karnebeek
- Departments of Pediatrics and Human Genetics, Emma Center for Personalized Medicine, Amsterdam Gastro-Enterology Endocrinology Metabolism, Amsterdam University Medical Centers, Amsterdam, The Netherlands.
| | - Anne O'Donnell-Luria
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, USA
| | - Gareth Baynam
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, MMG, Marseille, France
| | - Anaïs Baudot
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, MMG, Marseille, France
| | - Tudor Groza
- Rare Care Centre, Perth Children's Hospital and Western Australian Register of Developmental Anomalies, King Edward Memorial Hospital, Perth, Australia
- European Molecular Biology Laboratory (EMBL-EBI), European Bioinformatics Institute, Hinxton, UK
| | - Judith J M Jans
- Department of Genetics, Section Metabolic Diagnostics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | - Ruty Mehrian-Shai
- Pediatric Brain Cancer Molecular Lab, Sheba Medical Center, Ramat Gan, Israel
| | | | | | - Patricia Durao
- The Cure and Action for Tay-Sachs (CATS) Foundation, Altringham, UK
| | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre, London Health Sciences, London, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, Canada
| |
Collapse
|
20
|
Smail C, Ge B, Keever-Keigher MR, Schwendinger-Schreck C, Cheung WA, Johnston JJ, Barrett C, Feldman K, Cohen ASA, Farrow EG, Thiffault I, Grundberg E, Pastinen T. Complex trait associations in rare diseases and impacts on Mendelian variant interpretation. Nat Commun 2024; 15:8196. [PMID: 39294130 PMCID: PMC11411080 DOI: 10.1038/s41467-024-52407-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 09/05/2024] [Indexed: 09/20/2024] Open
Abstract
Emerging evidence implicates common genetic variation - aggregated into polygenic scores (PGS) - in the onset and phenotypic presentation of rare diseases. Here, we comprehensively map individual polygenic liability for 1102 open-source PGS in a cohort of 3059 probands enrolled in the Genomic Answers for Kids (GA4K) rare disease study, revealing widespread associations between rare disease phenotypes and PGSs for common complex diseases and traits, blood protein levels, and brain and other organ morphological measurements. Using this resource, we demonstrate increased polygenic liability in probands with an inherited candidate disease variant (VUS) compared to unaffected carrier parents. Further, we show an enrichment for large-effect rare variants in putative core PGS genes for associated complex traits. Overall, our study supports and expands on previous findings of complex trait associations in rare diseases, implicates polygenic liability as a potential mechanism underlying variable penetrance of candidate causal variants, and provides a framework for identifying novel candidate rare disease genes.
Collapse
Affiliation(s)
- Craig Smail
- Genomic Medicine Center, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, USA.
- UKMC School of Medicine, University of Missouri Kansas City, Kansas City, USA.
| | - Bing Ge
- Department of Human Genetics, McGill University, Montreal, Canada
| | - Marissa R Keever-Keigher
- Genomic Medicine Center, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, USA
| | | | - Warren A Cheung
- Genomic Medicine Center, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, USA
| | - Jeffrey J Johnston
- Genomic Medicine Center, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, USA
| | - Cassandra Barrett
- Genomic Medicine Center, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, USA
| | - Keith Feldman
- UKMC School of Medicine, University of Missouri Kansas City, Kansas City, USA
- Health Outcomes and Health Services Research, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, USA
| | - Ana S A Cohen
- Genomic Medicine Center, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, USA
- UKMC School of Medicine, University of Missouri Kansas City, Kansas City, USA
- Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, USA
| | - Emily G Farrow
- Genomic Medicine Center, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, USA
- UKMC School of Medicine, University of Missouri Kansas City, Kansas City, USA
- Department of Pediatrics, Children's Mercy Kansas City, Kansas City, USA
| | - Isabelle Thiffault
- Genomic Medicine Center, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, USA
- UKMC School of Medicine, University of Missouri Kansas City, Kansas City, USA
- Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, USA
| | - Elin Grundberg
- Genomic Medicine Center, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, USA
- UKMC School of Medicine, University of Missouri Kansas City, Kansas City, USA
| | - Tomi Pastinen
- Genomic Medicine Center, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, USA.
- UKMC School of Medicine, University of Missouri Kansas City, Kansas City, USA.
| |
Collapse
|
21
|
Negi S, Stenton SL, Berger SI, McNulty B, Violich I, Gardner J, Hillaker T, O'Rourke SM, O'Leary MC, Carbonell E, Austin-Tse C, Lemire G, Serrano J, Mangilog B, VanNoy G, Kolmogorov M, Vilain E, O'Donnell-Luria A, Délot E, Miga KH, Monlong J, Paten B. Advancing long-read nanopore genome assembly and accurate variant calling for rare disease detection. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.22.24312327. [PMID: 39228712 PMCID: PMC11370519 DOI: 10.1101/2024.08.22.24312327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
More than 50% of families with suspected rare monogenic diseases remain unsolved after whole genome analysis by short read sequencing (SRS). Long-read sequencing (LRS) could help bridge this diagnostic gap by capturing variants inaccessible to SRS, facilitating long-range mapping and phasing, and providing haplotype-resolved methylation profiling. To evaluate LRS's additional diagnostic yield, we sequenced a rare disease cohort of 98 samples, including 41 probands and some family members, using nanopore sequencing, achieving per sample ∼36x average coverage and 32 kilobase (kb) read N50 from a single flow cell. Our Napu pipeline generated assemblies, phased variants, and methylation calls. LRS covered, on average, coding exons in ∼280 genes and ∼5 known Mendelian disease genes that were not covered by SRS. In comparison to SRS, LRS detected additional rare, functionally annotated variants, including SVs and tandem repeats, and completely phased 87% of protein-coding genes. LRS detected additional de novo variants, and could be used to distinguish postzygotic mosaic variants from prezygotic de novos . Eleven probands were solved, with diverse underlying genetic causes including de novo and compound heterozygous variants, large-scale SVs, and epigenetic modifications. Our study demonstrates LRS's potential to enhance diagnostic yield for rare monogenic diseases, implying utility in future clinical genomics workflows.
Collapse
|
22
|
Taylor DJ, Eizenga JM, Li Q, Das A, Jenike KM, Kenny EE, Miga KH, Monlong J, McCoy RC, Paten B, Schatz MC. Beyond the Human Genome Project: The Age of Complete Human Genome Sequences and Pangenome References. Annu Rev Genomics Hum Genet 2024; 25:77-104. [PMID: 38663087 PMCID: PMC11451085 DOI: 10.1146/annurev-genom-021623-081639] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The Human Genome Project was an enormous accomplishment, providing a foundation for countless explorations into the genetics and genomics of the human species. Yet for many years, the human genome reference sequence remained incomplete and lacked representation of human genetic diversity. Recently, two major advances have emerged to address these shortcomings: complete gap-free human genome sequences, such as the one developed by the Telomere-to-Telomere Consortium, and high-quality pangenomes, such as the one developed by the Human Pangenome Reference Consortium. Facilitated by advances in long-read DNA sequencing and genome assembly algorithms, complete human genome sequences resolve regions that have been historically difficult to sequence, including centromeres, telomeres, and segmental duplications. In parallel, pangenomes capture the extensive genetic diversity across populations worldwide. Together, these advances usher in a new era of genomics research, enhancing the accuracy of genomic analysis, paving the path for precision medicine, and contributing to deeper insights into human biology.
Collapse
Affiliation(s)
- Dylan J Taylor
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA; , ,
| | - Jordan M Eizenga
- Genomics Institute, University of California, Santa Cruz, California, USA; , ,
| | - Qiuhui Li
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland, USA; ,
| | - Arun Das
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland, USA; ,
| | - Katharine M Jenike
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA;
| | - Eimear E Kenny
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA;
| | - Karen H Miga
- Department of Biomolecular Engineering, University of California, Santa Cruz, California, USA
- Genomics Institute, University of California, Santa Cruz, California, USA; , ,
| | - Jean Monlong
- Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France;
| | - Rajiv C McCoy
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA; , ,
| | - Benedict Paten
- Department of Biomolecular Engineering, University of California, Santa Cruz, California, USA
- Genomics Institute, University of California, Santa Cruz, California, USA; , ,
| | - Michael C Schatz
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland, USA; ,
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA; , ,
| |
Collapse
|
23
|
Kolesnikov A, Cook D, Nattestad M, Brambrink L, McNulty B, Gorzynski J, Goenka S, Ashley EA, Jain M, Miga KH, Paten B, Chang PC, Carroll A, Shafin K. Local read haplotagging enables accurate long-read small variant calling. Nat Commun 2024; 15:5907. [PMID: 39003259 PMCID: PMC11246426 DOI: 10.1038/s41467-024-50079-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 06/28/2024] [Indexed: 07/15/2024] Open
Abstract
Long-read sequencing technology has enabled variant detection in difficult-to-map regions of the genome and enabled rapid genetic diagnosis in clinical settings. Rapidly evolving third-generation sequencing platforms like Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT) are introducing newer platforms and data types. It has been demonstrated that variant calling methods based on deep neural networks can use local haplotyping information with long-reads to improve the genotyping accuracy. However, using local haplotype information creates an overhead as variant calling needs to be performed multiple times which ultimately makes it difficult to extend to new data types and platforms as they get introduced. In this work, we have developed a local haplotype approximate method that enables state-of-the-art variant calling performance with multiple sequencing platforms including PacBio Revio system, ONT R10.4 simplex and duplex data. This addition of local haplotype approximation simplifies long-read variant calling with DeepVariant.
Collapse
Affiliation(s)
| | - Daniel Cook
- Google Inc, 1600 Amphitheatre Pkwy, Mountain View, CA, USA
| | | | | | - Brandy McNulty
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, CA, USA
| | | | | | | | - Miten Jain
- Northeastern university, Boston, MA, USA
| | - Karen H Miga
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, CA, USA
| | - Benedict Paten
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, CA, USA
| | - Pi-Chuan Chang
- Google Inc, 1600 Amphitheatre Pkwy, Mountain View, CA, USA
| | - Andrew Carroll
- Google Inc, 1600 Amphitheatre Pkwy, Mountain View, CA, USA.
| | - Kishwar Shafin
- Google Inc, 1600 Amphitheatre Pkwy, Mountain View, CA, USA.
| |
Collapse
|
24
|
Lee S, Yoon JG, Hong J, Kim T, Kim N, Vandrovcova J, Yau WY, Cho J, Kim S, Kim MJ, Kim SY, Lee ST, Chu K, Lee SK, Kim HJ, Choi J, Moon J, Chae JH. Prevalence and Characterization of NOTCH2NLC GGC Repeat Expansions in Koreans: From a Hospital Cohort Analysis to a Population-Wide Study. Neurol Genet 2024; 10:e200147. [PMID: 38779172 PMCID: PMC11110025 DOI: 10.1212/nxg.0000000000200147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/16/2024] [Indexed: 05/25/2024]
Abstract
Background and Objectives GGC repeat expansions in the NOTCH2NLC gene are associated with a broad spectrum of progressive neurologic disorders, notably, neuronal intranuclear inclusion disease (NIID). We aimed to investigate the population-wide prevalence and clinical manifestations of NOTCH2NLC-related disorders in Koreans. Methods We conducted a study using 2 different cohorts from the Korean population. Patients with available brain MRI scans from Seoul National University Hospital (SNUH) were thoroughly reviewed, and NIID-suspected patients presenting the zigzag edging signs underwent genetic evaluation for NOTCH2NLC repeats by Cas9-mediated nanopore sequencing. In addition, we analyzed whole-genome sequencing data from 3,887 individuals in the Korea Biobank cohort to estimate the distribution of the repeat counts in Koreans and to identify putative patients with expanded alleles and neurologic phenotypes. Results In the SNUH cohort, among 90 adult-onset leukoencephalopathy patients with unknown etiologies, we found 20 patients with zigzag edging signs. Except for 2 diagnosed with fragile X-associated tremor/ataxia syndrome and 2 with unavailable samples, all 16 patients (17.8%) were diagnosed with NIID (repeat range: 87-217). By analyzing the Korea Biobank cohort, we estimated the distribution of repeat counts and threshold (>64) for Koreans, identifying 6 potential patients with NIID. Furthermore, long-read sequencing enabled the elucidation of transmission and epigenetic patterns of NOTCH2NLC repeats within a family affected by pediatric-onset NIID. Discussion This study presents the population-wide distribution of NOTCH2NLC repeats and the estimated prevalence of NIID in Koreans, providing valuable insights into the association between repeat counts and disease manifestations in diverse neurologic disorders.
Collapse
Affiliation(s)
| | | | | | - Taekeun Kim
- From the Department of Genomic Medicine (S.L., J.G.Y., Jaeso Cho, S.K., M.J.K., S.Y.K., J.M., J.-H.C.), Seoul National University Hospital; Department of Pediatrics (S.L., Jaeso Cho, S.Y.K., J.-H.C.), Seoul National University College of Medicine, Seoul National University Children's Hospital; Department of Biomedical Sciences (J.H., T.K., Jungmin Choi), Korea University College of Medicine; Department of Neurology (N.K., S.-T.L., K.C., S.K.L., H.-J.K., J.M.), Seoul National University Hospital, Korea; Department of Neuromuscular Diseases (J.V.), Institute of Neurology, University College London, United Kingdom; Perron Institute for Neurological and Translational Science (W.Y.Y.), the University of Western Australia, Nedlands, Australia; and Department of Laboratory Medicine (M.J.K.), Seoul National University Hospital, Korea
| | - Narae Kim
- From the Department of Genomic Medicine (S.L., J.G.Y., Jaeso Cho, S.K., M.J.K., S.Y.K., J.M., J.-H.C.), Seoul National University Hospital; Department of Pediatrics (S.L., Jaeso Cho, S.Y.K., J.-H.C.), Seoul National University College of Medicine, Seoul National University Children's Hospital; Department of Biomedical Sciences (J.H., T.K., Jungmin Choi), Korea University College of Medicine; Department of Neurology (N.K., S.-T.L., K.C., S.K.L., H.-J.K., J.M.), Seoul National University Hospital, Korea; Department of Neuromuscular Diseases (J.V.), Institute of Neurology, University College London, United Kingdom; Perron Institute for Neurological and Translational Science (W.Y.Y.), the University of Western Australia, Nedlands, Australia; and Department of Laboratory Medicine (M.J.K.), Seoul National University Hospital, Korea
| | - Jana Vandrovcova
- From the Department of Genomic Medicine (S.L., J.G.Y., Jaeso Cho, S.K., M.J.K., S.Y.K., J.M., J.-H.C.), Seoul National University Hospital; Department of Pediatrics (S.L., Jaeso Cho, S.Y.K., J.-H.C.), Seoul National University College of Medicine, Seoul National University Children's Hospital; Department of Biomedical Sciences (J.H., T.K., Jungmin Choi), Korea University College of Medicine; Department of Neurology (N.K., S.-T.L., K.C., S.K.L., H.-J.K., J.M.), Seoul National University Hospital, Korea; Department of Neuromuscular Diseases (J.V.), Institute of Neurology, University College London, United Kingdom; Perron Institute for Neurological and Translational Science (W.Y.Y.), the University of Western Australia, Nedlands, Australia; and Department of Laboratory Medicine (M.J.K.), Seoul National University Hospital, Korea
| | - Wai Yan Yau
- From the Department of Genomic Medicine (S.L., J.G.Y., Jaeso Cho, S.K., M.J.K., S.Y.K., J.M., J.-H.C.), Seoul National University Hospital; Department of Pediatrics (S.L., Jaeso Cho, S.Y.K., J.-H.C.), Seoul National University College of Medicine, Seoul National University Children's Hospital; Department of Biomedical Sciences (J.H., T.K., Jungmin Choi), Korea University College of Medicine; Department of Neurology (N.K., S.-T.L., K.C., S.K.L., H.-J.K., J.M.), Seoul National University Hospital, Korea; Department of Neuromuscular Diseases (J.V.), Institute of Neurology, University College London, United Kingdom; Perron Institute for Neurological and Translational Science (W.Y.Y.), the University of Western Australia, Nedlands, Australia; and Department of Laboratory Medicine (M.J.K.), Seoul National University Hospital, Korea
| | - Jaeso Cho
- From the Department of Genomic Medicine (S.L., J.G.Y., Jaeso Cho, S.K., M.J.K., S.Y.K., J.M., J.-H.C.), Seoul National University Hospital; Department of Pediatrics (S.L., Jaeso Cho, S.Y.K., J.-H.C.), Seoul National University College of Medicine, Seoul National University Children's Hospital; Department of Biomedical Sciences (J.H., T.K., Jungmin Choi), Korea University College of Medicine; Department of Neurology (N.K., S.-T.L., K.C., S.K.L., H.-J.K., J.M.), Seoul National University Hospital, Korea; Department of Neuromuscular Diseases (J.V.), Institute of Neurology, University College London, United Kingdom; Perron Institute for Neurological and Translational Science (W.Y.Y.), the University of Western Australia, Nedlands, Australia; and Department of Laboratory Medicine (M.J.K.), Seoul National University Hospital, Korea
| | - Sheehyun Kim
- From the Department of Genomic Medicine (S.L., J.G.Y., Jaeso Cho, S.K., M.J.K., S.Y.K., J.M., J.-H.C.), Seoul National University Hospital; Department of Pediatrics (S.L., Jaeso Cho, S.Y.K., J.-H.C.), Seoul National University College of Medicine, Seoul National University Children's Hospital; Department of Biomedical Sciences (J.H., T.K., Jungmin Choi), Korea University College of Medicine; Department of Neurology (N.K., S.-T.L., K.C., S.K.L., H.-J.K., J.M.), Seoul National University Hospital, Korea; Department of Neuromuscular Diseases (J.V.), Institute of Neurology, University College London, United Kingdom; Perron Institute for Neurological and Translational Science (W.Y.Y.), the University of Western Australia, Nedlands, Australia; and Department of Laboratory Medicine (M.J.K.), Seoul National University Hospital, Korea
| | - Man Jin Kim
- From the Department of Genomic Medicine (S.L., J.G.Y., Jaeso Cho, S.K., M.J.K., S.Y.K., J.M., J.-H.C.), Seoul National University Hospital; Department of Pediatrics (S.L., Jaeso Cho, S.Y.K., J.-H.C.), Seoul National University College of Medicine, Seoul National University Children's Hospital; Department of Biomedical Sciences (J.H., T.K., Jungmin Choi), Korea University College of Medicine; Department of Neurology (N.K., S.-T.L., K.C., S.K.L., H.-J.K., J.M.), Seoul National University Hospital, Korea; Department of Neuromuscular Diseases (J.V.), Institute of Neurology, University College London, United Kingdom; Perron Institute for Neurological and Translational Science (W.Y.Y.), the University of Western Australia, Nedlands, Australia; and Department of Laboratory Medicine (M.J.K.), Seoul National University Hospital, Korea
| | - Soo Yeon Kim
- From the Department of Genomic Medicine (S.L., J.G.Y., Jaeso Cho, S.K., M.J.K., S.Y.K., J.M., J.-H.C.), Seoul National University Hospital; Department of Pediatrics (S.L., Jaeso Cho, S.Y.K., J.-H.C.), Seoul National University College of Medicine, Seoul National University Children's Hospital; Department of Biomedical Sciences (J.H., T.K., Jungmin Choi), Korea University College of Medicine; Department of Neurology (N.K., S.-T.L., K.C., S.K.L., H.-J.K., J.M.), Seoul National University Hospital, Korea; Department of Neuromuscular Diseases (J.V.), Institute of Neurology, University College London, United Kingdom; Perron Institute for Neurological and Translational Science (W.Y.Y.), the University of Western Australia, Nedlands, Australia; and Department of Laboratory Medicine (M.J.K.), Seoul National University Hospital, Korea
| | - Soon-Tae Lee
- From the Department of Genomic Medicine (S.L., J.G.Y., Jaeso Cho, S.K., M.J.K., S.Y.K., J.M., J.-H.C.), Seoul National University Hospital; Department of Pediatrics (S.L., Jaeso Cho, S.Y.K., J.-H.C.), Seoul National University College of Medicine, Seoul National University Children's Hospital; Department of Biomedical Sciences (J.H., T.K., Jungmin Choi), Korea University College of Medicine; Department of Neurology (N.K., S.-T.L., K.C., S.K.L., H.-J.K., J.M.), Seoul National University Hospital, Korea; Department of Neuromuscular Diseases (J.V.), Institute of Neurology, University College London, United Kingdom; Perron Institute for Neurological and Translational Science (W.Y.Y.), the University of Western Australia, Nedlands, Australia; and Department of Laboratory Medicine (M.J.K.), Seoul National University Hospital, Korea
| | - Kon Chu
- From the Department of Genomic Medicine (S.L., J.G.Y., Jaeso Cho, S.K., M.J.K., S.Y.K., J.M., J.-H.C.), Seoul National University Hospital; Department of Pediatrics (S.L., Jaeso Cho, S.Y.K., J.-H.C.), Seoul National University College of Medicine, Seoul National University Children's Hospital; Department of Biomedical Sciences (J.H., T.K., Jungmin Choi), Korea University College of Medicine; Department of Neurology (N.K., S.-T.L., K.C., S.K.L., H.-J.K., J.M.), Seoul National University Hospital, Korea; Department of Neuromuscular Diseases (J.V.), Institute of Neurology, University College London, United Kingdom; Perron Institute for Neurological and Translational Science (W.Y.Y.), the University of Western Australia, Nedlands, Australia; and Department of Laboratory Medicine (M.J.K.), Seoul National University Hospital, Korea
| | - Sang Kun Lee
- From the Department of Genomic Medicine (S.L., J.G.Y., Jaeso Cho, S.K., M.J.K., S.Y.K., J.M., J.-H.C.), Seoul National University Hospital; Department of Pediatrics (S.L., Jaeso Cho, S.Y.K., J.-H.C.), Seoul National University College of Medicine, Seoul National University Children's Hospital; Department of Biomedical Sciences (J.H., T.K., Jungmin Choi), Korea University College of Medicine; Department of Neurology (N.K., S.-T.L., K.C., S.K.L., H.-J.K., J.M.), Seoul National University Hospital, Korea; Department of Neuromuscular Diseases (J.V.), Institute of Neurology, University College London, United Kingdom; Perron Institute for Neurological and Translational Science (W.Y.Y.), the University of Western Australia, Nedlands, Australia; and Department of Laboratory Medicine (M.J.K.), Seoul National University Hospital, Korea
| | - Han-Joon Kim
- From the Department of Genomic Medicine (S.L., J.G.Y., Jaeso Cho, S.K., M.J.K., S.Y.K., J.M., J.-H.C.), Seoul National University Hospital; Department of Pediatrics (S.L., Jaeso Cho, S.Y.K., J.-H.C.), Seoul National University College of Medicine, Seoul National University Children's Hospital; Department of Biomedical Sciences (J.H., T.K., Jungmin Choi), Korea University College of Medicine; Department of Neurology (N.K., S.-T.L., K.C., S.K.L., H.-J.K., J.M.), Seoul National University Hospital, Korea; Department of Neuromuscular Diseases (J.V.), Institute of Neurology, University College London, United Kingdom; Perron Institute for Neurological and Translational Science (W.Y.Y.), the University of Western Australia, Nedlands, Australia; and Department of Laboratory Medicine (M.J.K.), Seoul National University Hospital, Korea
| | | | | | | |
Collapse
|
25
|
Pucel J, Briere LC, Reuter C, Gochyyev P, LeBlanc K. Exome and genome sequencing in a heterogeneous population of patients with rare disease: Identifying predictors of a diagnosis. Genet Med 2024; 26:101115. [PMID: 38436216 PMCID: PMC11161308 DOI: 10.1016/j.gim.2024.101115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 02/24/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024] Open
Abstract
PURPOSE Exome (ES) and genome sequencing (GS) are increasingly being utilized for individuals with rare and undiagnosed diseases; however, guidelines on their use remain limited. This study aimed to identify factors associated with diagnosis by ES and/or GS in a heterogeneous population of patients with rare and undiagnosed diseases. METHODS In this case control study, we reviewed data from 400 diagnosed and 400 undiagnosed randomly selected participants in the Undiagnosed Diseases Network, all of whom had undergone ES and/or GS. We analyzed factors associated with receiving a diagnosis by ES and/or GS. RESULTS Factors associated with a decreased odds of being diagnosed included adult symptom onset, singleton sequencing, and having undergone ES and/or GS before acceptance to the Undiagnosed Diseases Network (48%, 51%, and 32% lower odds, respectively). Factors that increased the odds of being diagnosed by ES and/or GS included having primarily neurological symptoms and having undergone prior chromosomal microarray testing (44% and 59% higher odds, respectively). CONCLUSION We identified several factors that were associated with receiving a diagnosis by ES and/or GS. This will ideally inform the utilization of ES and/or GS and help manage expectations of individuals and families undergoing these tests.
Collapse
Affiliation(s)
- Jenna Pucel
- MGH Institute of Health Professions, Boston, MA.
| | - Lauren C Briere
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
| | - Chloe Reuter
- Stanford Center for Undiagnosed Diseases, Cardiovascular Medicine, Stanford University, Palo Alto, CA
| | | | - Kimberly LeBlanc
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA
| |
Collapse
|
26
|
Danis D, Bamshad MJ, Bridges Y, Cacheiro P, Carmody LC, Chong JX, Coleman B, Dalgleish R, Freeman PJ, Graefe ASL, Groza T, Jacobsen JOB, Klocperk A, Kusters M, Ladewig MS, Marcello AJ, Mattina T, Mungall CJ, Munoz-Torres MC, Reese JT, Rehburg F, Reis BCS, Schuetz C, Smedley D, Strauss T, Sundaramurthi JC, Thun S, Wissink K, Wagstaff JF, Zocche D, Haendel MA, Robinson PN. A corpus of GA4GH Phenopackets: case-level phenotyping for genomic diagnostics and discovery. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.29.24308104. [PMID: 38854034 PMCID: PMC11160806 DOI: 10.1101/2024.05.29.24308104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The Global Alliance for Genomics and Health (GA4GH) Phenopacket Schema was released in 2022 and approved by ISO as a standard for sharing clinical and genomic information about an individual, including phenotypic descriptions, numerical measurements, genetic information, diagnoses, and treatments. A phenopacket can be used as an input file for software that supports phenotype-driven genomic diagnostics and for algorithms that facilitate patient classification and stratification for identifying new diseases and treatments. There has been a great need for a collection of phenopackets to test software pipelines and algorithms. Here, we present phenopacket-store. Version 0.1.12 of phenopacket-store includes 4916 phenopackets representing 277 Mendelian and chromosomal diseases associated with 236 genes, and 2872 unique pathogenic alleles curated from 605 different publications. This represents the first large-scale collection of case-level, standardized phenotypic information derived from case reports in the literature with detailed descriptions of the clinical data and will be useful for many purposes, including the development and testing of software for prioritizing genes and diseases in diagnostic genomics, machine learning analysis of clinical phenotype data, patient stratification, and genotype-phenotype correlations. This corpus also provides best-practice examples for curating literature-derived data using the GA4GH Phenopacket Schema.
Collapse
Affiliation(s)
- Daniel Danis
- The Jackson Institute for Genomic Medicine, 10 Discovery Drive, Farmington CT 06032, USA
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Michael J Bamshad
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, 1959 NE Pacific Street, Box 357371, Seattle, WA 98195, USA
- Brotman-Baty Institute for Precision Medicine, 1959 NE Pacific Street, Box 357657, Seattle WA 98195, USA
- Department of Pediatrics, Division of Genetic Medicine, Seattle Children's Hospital, Seattle, WA 98195, USA
| | - Yasemin Bridges
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Pilar Cacheiro
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Leigh C Carmody
- The Jackson Institute for Genomic Medicine, 10 Discovery Drive, Farmington CT 06032, USA
| | - Jessica X Chong
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, 1959 NE Pacific Street, Box 357371, Seattle, WA 98195, USA
- Brotman-Baty Institute for Precision Medicine, 1959 NE Pacific Street, Box 357657, Seattle WA 98195, USA
| | - Ben Coleman
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
- The Jackson Institute for Genomic Medicine, 10 Discovery Drive, Farmington CT 06032, USA
| | - Raymond Dalgleish
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Peter J Freeman
- Division of Informatics, Imaging and Data Science, The University of Manchester, Manchester, UK
| | - Adam S L Graefe
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Tudor Groza
- Rare Care Centre, Perth Children's Hospital, Nedlands, WA 6009, Australia
- SingHealth Duke-NUS Institute of Precision Medicine, 5 Hospital Drive Level 9, Singapore 169609, Singapore
- Telethon Kids Institute, Nedlands, WA 6009, Australia
| | - Julius O B Jacobsen
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Adam Klocperk
- Department of Immunology, 2nd Faculty of Medicine, Charles University and University Hospital in Motol, Prague, Czech Republic
| | - Maaike Kusters
- Department of Paediatric Immunology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- University College London Institute of Child Health, London, United Kingdom
| | - Markus S Ladewig
- Department of Ophthalmology, University Clinic Marburg - Campus Fulda, Fulda, Germany
| | - Anthony J Marcello
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, 1959 NE Pacific Street, Box 357371, Seattle, WA 98195, USA
| | - Teresa Mattina
- Medica Genetics University of Catania Italy
- Morgagni foundation and Clinic, Catania, Italy
| | - Christopher J Mungall
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Monica C Munoz-Torres
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Ccampus
| | - Justin T Reese
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Filip Rehburg
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Bárbara C S Reis
- Department of Immunology, National Institute of Women's, Children's and Adolescents' Health Fernandes Figueira, Rio de Janeiro, Brazil
- High Complexity Laboratory, National Institute of Women's, Children's and Adolescents' Health Fernandes Figueira, Rio de Janeiro, Brazil
| | - Catharina Schuetz
- Department of Pediatrics, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- University Center for Rare Diseases, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Damian Smedley
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Timmy Strauss
- Department of Pediatrics, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- University Center for Rare Diseases, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | - Sylvia Thun
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Kyran Wissink
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Utrecht University, Utrecht, the Netherlands
| | | | - David Zocche
- North West Thames Regional Genetics Service, Northwick Park & St Mark's Hospitals, London, UK
| | | | - Peter N Robinson
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- The Jackson Institute for Genomic Medicine, 10 Discovery Drive, Farmington CT 06032, USA
- ELLIS-European Laboratory for Learning and Intelligent Systems
| |
Collapse
|
27
|
LeMaster C, Schwendinger-Schreck C, Ge B, Cheung WA, McLennan R, Johnston JJ, Pastinen T, Smail C. Mapping structural variants to rare disease genes using long-read whole genome sequencing and trait-relevant polygenic scores. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.15.24304216. [PMID: 38562793 PMCID: PMC10984062 DOI: 10.1101/2024.03.15.24304216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Recent studies have revealed the pervasive landscape of rare structural variants (rSVs) present in human genomes. rSVs can have extreme effects on the expression of proximal genes and, in a rare disease context, have been implicated in patient cases where no diagnostic single nucleotide variant (SNV) was found. Approaches for integrating rSVs to date have focused on targeted approaches in known Mendelian rare disease genes. This approach is intractable for rare diseases with many causal loci or patients with complex, multi-phenotype syndromes. We hypothesized that integrating trait-relevant polygenic scores (PGS) would provide a substantial reduction in the number of candidate disease genes in which to assess rSV effects. We further implemented a method for ranking PGS genes to define a set of core/key genes where a rSV has the potential to exert relatively larger effects on disease risk. Among a subset of patients enrolled in the Genomic Answers for Kids (GA4K) rare disease program (N=497), we used PacBio HiFi long-read whole genome sequencing (lrWGS) to identify rSVs intersecting genes in trait-relevant PGSs. Illustrating our approach in Autism (N=54 cases), we identified 22, 019 deletions, 2,041 duplications, 87,826 insertions, and 214 inversions overlapping putative core/key PGS genes. Additionally, by integrating genomic constraint annotations from gnomAD, we observed that rare duplications overlapping putative core/key PGS genes were frequently in higher constraint regions compared to controls (P = 1×10-03). This difference was not observed in the lowest-ranked gene set (P = 0.15). Overall, our study provides a framework for the annotation of long-read rSVs from lrWGS data and prioritization of disease-linked genomic regions for downstream functional validation of rSV impacts. To enable reuse by other researchers, we have made SV allele frequencies and gene associations freely available.
Collapse
Affiliation(s)
- Cas LeMaster
- Genomic Medicine Center, Children’s Mercy Research Institute and Children’s Mercy Kansas City, Kansas City, MO, USA
| | - Carl Schwendinger-Schreck
- Genomic Medicine Center, Children’s Mercy Research Institute and Children’s Mercy Kansas City, Kansas City, MO, USA
| | - Bing Ge
- McGill University, Montreal, Quebec, Canada
| | - Warren A. Cheung
- Genomic Medicine Center, Children’s Mercy Research Institute and Children’s Mercy Kansas City, Kansas City, MO, USA
| | - Rebecca McLennan
- Genomic Medicine Center, Children’s Mercy Research Institute and Children’s Mercy Kansas City, Kansas City, MO, USA
| | - Jeffrey J. Johnston
- Genomic Medicine Center, Children’s Mercy Research Institute and Children’s Mercy Kansas City, Kansas City, MO, USA
| | - Tomi Pastinen
- Genomic Medicine Center, Children’s Mercy Research Institute and Children’s Mercy Kansas City, Kansas City, MO, USA
| | - Craig Smail
- Genomic Medicine Center, Children’s Mercy Research Institute and Children’s Mercy Kansas City, Kansas City, MO, USA
| |
Collapse
|
28
|
De Pace R, Maroofian R, Paimboeuf A, Zamani M, Zaki MS, Sadeghian S, Azizimalamiri R, Galehdari H, Zeighami J, Williamson CD, Fleming E, Zhou D, Gannon JL, Thiffault I, Roze E, Suri M, Zifarelli G, Bauer P, Houlden H, Severino M, Patten SA, Farrow E, Bonifacino JS. Biallelic BORCS8 variants cause an infantile-onset neurodegenerative disorder with altered lysosome dynamics. Brain 2024; 147:1751-1767. [PMID: 38128568 PMCID: PMC11068110 DOI: 10.1093/brain/awad427] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/30/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023] Open
Abstract
BLOC-one-related complex (BORC) is a multiprotein complex composed of eight subunits named BORCS1-8. BORC associates with the cytosolic face of lysosomes, where it sequentially recruits the small GTPase ARL8 and kinesin-1 and -3 microtubule motors to promote anterograde transport of lysosomes toward the peripheral cytoplasm in non-neuronal cells and the distal axon in neurons. The physiological and pathological importance of BORC in humans, however, remains to be determined. Here, we report the identification of compound heterozygous variants [missense c.85T>C (p.Ser29Pro) and frameshift c.71-75dupTGGCC (p.Asn26Trpfs*51)] and homozygous variants [missense c.196A>C (p.Thr66Pro) and c.124T>C (p.Ser42Pro)] in BORCS8 in five children with a severe early-infantile neurodegenerative disorder from three unrelated families. The children exhibit global developmental delay, severe-to-profound intellectual disability, hypotonia, limb spasticity, muscle wasting, dysmorphic facies, optic atrophy, leuko-axonopathy with hypomyelination, and neurodegenerative features with prevalent supratentorial involvement. Cellular studies using a heterologous transfection system show that the BORCS8 missense variants p.Ser29Pro, p.Ser42Pro and p.Thr66Pro are expressed at normal levels but exhibit reduced assembly with other BORC subunits and reduced ability to drive lysosome distribution toward the cell periphery. The BORCS8 frameshift variant p.Asn26Trpfs*51, on the other hand, is expressed at lower levels and is completely incapable of assembling with other BORC subunits and promoting lysosome distribution toward the cell periphery. Therefore, all the BORCS8 variants are partial or total loss-of-function alleles and are thus likely pathogenic. Knockout of the orthologous borcs8 in zebrafish causes decreased brain and eye size, neuromuscular anomalies and impaired locomotion, recapitulating some of the key traits of the human disease. These findings thus identify BORCS8 as a novel genetic locus for an early-infantile neurodegenerative disorder and highlight the critical importance of BORC and lysosome dynamics for the development and function of the central nervous system.
Collapse
Affiliation(s)
- Raffaella De Pace
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child, Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Reza Maroofian
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Adeline Paimboeuf
- Institut National de la Recherche Scientifique (INRS), Centre Armand Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada
| | - Mina Zamani
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 83151-61355, Iran
- Department of Molecular Genetics, Narges Medical Genetics and Prenatal Diagnosis Laboratory, Ahvaz 61556-89467, Iran
| | - Maha S Zaki
- Human Genetics and Genome Research Institute, Clinical Genetics Department, National Research Centre, Cairo 12622, Egypt
| | - Saeid Sadeghian
- Department of Pediatric Neurology, Golestan Medical, Educational, and Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-33184, Iran
| | - Reza Azizimalamiri
- Department of Pediatric Neurology, Golestan Medical, Educational, and Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-33184, Iran
| | - Hamid Galehdari
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 83151-61355, Iran
| | - Jawaher Zeighami
- Department of Molecular Genetics, Narges Medical Genetics and Prenatal Diagnosis Laboratory, Ahvaz 61556-89467, Iran
| | - Chad D Williamson
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child, Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Emily Fleming
- Department of Genetics, Children’s Mercy Kansas City, Kansas City, MO 64108, USA
| | - Dihong Zhou
- Department of Genetics, Children’s Mercy Kansas City, Kansas City, MO 64108, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| | - Jennifer L Gannon
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
- Division of Clinical Genetics, Children’s Mercy Kansas City, Kansas City, MO 64108, USA
| | - Isabelle Thiffault
- Department of Genetics, Children’s Mercy Kansas City, Kansas City, MO 64108, USA
- Department of Pathology, Children's Mercy Kansas City, Kansas City, MO 64108, USA
| | - Emmanuel Roze
- Sorbonne Université, CNRS, INSERM, Institut du Cerveau (ICM), and Assistance Publique-Hôpitaux de Paris, Department of Neurology, Hôpital de la Pitié-Salpêtrière, Paris 75013, France
| | - Mohnish Suri
- Nottingham Clinical Genetics Service, Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham NG5 1PB, UK
| | | | | | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | | | - Shunmoogum A Patten
- Institut National de la Recherche Scientifique (INRS), Centre Armand Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada
- Départementde Neurosciences, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Emily Farrow
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
- Genomic Medicine Center, Children’s Mercy Kansas City, Kansas City, MO 64108, USA
| | - Juan S Bonifacino
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child, Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
29
|
Cohen ASA, Berrios CD, Zion TN, Barrett CM, Moore R, Boillat E, Belden B, Farrow EG, Thiffault I, Zuccarelli BD, Pastinen T. Genomic Answers for Kids: Toward more equitable access to genomic testing for rare diseases in rural populations. Am J Hum Genet 2024; 111:825-832. [PMID: 38636509 PMCID: PMC11080604 DOI: 10.1016/j.ajhg.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/20/2024] Open
Abstract
Next-generation sequencing has revolutionized the speed of rare disease (RD) diagnoses. While clinical exome and genome sequencing represent an effective tool for many RD diagnoses, there is room to further improve the diagnostic odyssey of many RD patients. One recognizable intervention lies in increasing equitable access to genomic testing. Rural communities represent a significant portion of underserved and underrepresented individuals facing additional barriers to diagnosis and treatment. Primary care providers (PCPs) at local clinics, though sometimes suspicious of a potential benefit of genetic testing for their patients, have significant constraints in pursuing it themselves and rely on referrals to specialists. Yet, these referrals are typically followed by long waitlists and significant delays in clinical assessment, insurance clearance, testing, and initiation of diagnosis-informed care management. Not only is this process time intensive, but it also often requires multiple visits to urban medical centers for which distance may be a significant barrier to rural families. Therefore, providing early, "direct-to-provider" (DTP) local access to unrestrictive genomic testing is likely to help speed up diagnostic times and access to care for RD patients in rural communities. In a pilot study with a PCP clinic in rural Kansas, we observed a minimum 5.5 months shortening of time to diagnosis through the DTP exome sequencing program as compared to rural patients receiving genetic testing through the "traditional" PCP-referral-to-specialist scheme. We share our experience to encourage future partnerships beyond our center. Our efforts represent just one step in fostering greater diversity and equity in genomic studies.
Collapse
Affiliation(s)
- Ana S A Cohen
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO 64108, USA; Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO 64108, USA; UKMC School of Medicine, University of Missouri Kansas City, Kansas City, MO 64108, USA.
| | - Courtney D Berrios
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO 64108, USA; UKMC School of Medicine, University of Missouri Kansas City, Kansas City, MO 64108, USA
| | - Tricia N Zion
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO 64108, USA
| | - Cassandra M Barrett
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO 64108, USA
| | - Riley Moore
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO 64108, USA
| | - Emelia Boillat
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO 64108, USA
| | - Bradley Belden
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO 64108, USA
| | - Emily G Farrow
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO 64108, USA; Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO 64108, USA; UKMC School of Medicine, University of Missouri Kansas City, Kansas City, MO 64108, USA
| | - Isabelle Thiffault
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO 64108, USA; Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO 64108, USA; UKMC School of Medicine, University of Missouri Kansas City, Kansas City, MO 64108, USA
| | - Britton D Zuccarelli
- Salina Pediatric Care, Salina Regional Health Center, Salina, KS 67401, USA; Department of Pediatrics, University of Kansas School of Medicine - Salina Campus, Salina, KS 67401, USA
| | - Tomi Pastinen
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO 64108, USA; UKMC School of Medicine, University of Missouri Kansas City, Kansas City, MO 64108, USA; Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO 64108, USA
| |
Collapse
|
30
|
Del Gobbo GF, Wang X, Couse M, Mackay L, Goldsmith C, Marshall AE, Liang Y, Lambert C, Zhang S, Dhillon H, Fanslow C, Rowell WJ, Marshall CR, Kernohan KD, Boycott KM. Long-read genome sequencing reveals a novel intronic retroelement insertion in NR5A1 associated with 46,XY differences of sexual development. Am J Med Genet A 2024; 194:e63522. [PMID: 38131126 DOI: 10.1002/ajmg.a.63522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Despite significant advancements in rare genetic disease diagnostics, many patients with rare genetic disease remain without a molecular diagnosis. Novel tools and methods are needed to improve the detection of disease-associated variants and understand the genetic basis of many rare diseases. Long-read genome sequencing provides improved sequencing in highly repetitive, homologous, and low-complexity regions, and improved assessment of structural variation and complex genomic rearrangements compared to short-read genome sequencing. As such, it is a promising method to explore overlooked genetic variants in rare diseases with a high suspicion of a genetic basis. We therefore applied PacBio HiFi sequencing in a large multi-generational family presenting with autosomal dominant 46,XY differences of sexual development (DSD), for whom extensive molecular testing over multiple decades had failed to identify a molecular diagnosis. This revealed a rare SINE-VNTR-Alu retroelement insertion in intron 4 of NR5A1, a gene in which loss-of-function variants are an established cause of 46,XY DSD. The insertion segregated among affected family members and was associated with loss-of-expression of alleles in cis, demonstrating a functional impact on NR5A1. This case highlights the power of long-read genome sequencing to detect genomic variants that have previously been intractable to detection by standard short-read genomic testing.
Collapse
Affiliation(s)
- Giulia F Del Gobbo
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
| | - Xueqi Wang
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
| | - Madeline Couse
- Centre for Computational Medicine, The Hospital for Sick Children, Toronto, Canada
| | - Layla Mackay
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Claire Goldsmith
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Aren E Marshall
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
| | - Yijing Liang
- Centre for Computational Medicine, The Hospital for Sick Children, Toronto, Canada
| | | | - Siyuan Zhang
- PacBio of California, Inc, Menlo Park, California, USA
| | | | | | | | | | - Kristin D Kernohan
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
- Newborn Screening Ontario, Ottawa, Canada
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Canada
| |
Collapse
|
31
|
Marchant RG, Bryen SJ, Bahlo M, Cairns A, Chao KR, Corbett A, Davis MR, Ganesh VS, Ghaoui R, Jones KJ, Kornberg AJ, Lek M, Liang C, MacArthur DG, Oates EC, O'Donnell-Luria A, O'Grady GL, Osei-Owusu IA, Rafehi H, Reddel SW, Roxburgh RH, Ryan MM, Sandaradura SA, Scott LW, Valkanas E, Weisburd B, Young H, Evesson FJ, Waddell LB, Cooper ST. Genome and RNA sequencing boost neuromuscular diagnoses to 62% from 34% with exome sequencing alone. Ann Clin Transl Neurol 2024; 11:1250-1266. [PMID: 38544359 DOI: 10.1002/acn3.52041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 02/24/2024] [Indexed: 05/15/2024] Open
Abstract
OBJECTIVE Most families with heritable neuromuscular disorders do not receive a molecular diagnosis. Here we evaluate diagnostic utility of exome, genome, RNA sequencing, and protein studies and provide evidence-based recommendations for their integration into practice. METHODS In total, 247 families with suspected monogenic neuromuscular disorders who remained without a genetic diagnosis after standard diagnostic investigations underwent research-led massively parallel sequencing: neuromuscular disorder gene panel, exome, genome, and/or RNA sequencing to identify causal variants. Protein and RNA studies were also deployed when required. RESULTS Integration of exome sequencing and auxiliary genome, RNA and/or protein studies identified causal or likely causal variants in 62% (152 out of 247) of families. Exome sequencing alone informed 55% (83 out of 152) of diagnoses, with remaining diagnoses (45%; 69 out of 152) requiring genome sequencing, RNA and/or protein studies to identify variants and/or support pathogenicity. Arrestingly, novel disease genes accounted for <4% (6 out of 152) of diagnoses while 36.2% of solved families (55 out of 152) harbored at least one splice-altering or structural variant in a known neuromuscular disorder gene. We posit that contemporary neuromuscular disorder gene-panel sequencing could likely provide 66% (100 out of 152) of our diagnoses today. INTERPRETATION Our results emphasize thorough clinical phenotyping to enable deep scrutiny of all rare genetic variation in phenotypically consistent genes. Post-exome auxiliary investigations extended our diagnostic yield by 81% overall (34-62%). We present a diagnostic algorithm that details deployment of genomic and auxiliary investigations to obtain these diagnoses today most effectively. We hope this provides a practical guide for clinicians as they gain greater access to clinical genome and transcriptome sequencing.
Collapse
Affiliation(s)
- Rhett G Marchant
- Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
- Kids Neuroscience Centre, Kids Research, Children's Hospital at Westmead, Westmead, New South Wales, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Samantha J Bryen
- Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
- Kids Neuroscience Centre, Kids Research, Children's Hospital at Westmead, Westmead, New South Wales, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Melanie Bahlo
- Functional Neuromics, Children's Medical Research Institute, Westmead, New South Wales, Australia
- Population Health and Immunity, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Anita Cairns
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
- Neurosciences Department, Queensland Children's Hospital, Brisbane, Queensland, Australia
| | - Katherine R Chao
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Alastair Corbett
- Neurology Department, Repatriation General Hospital Concord, Concord, New South Wales, Australia
| | - Mark R Davis
- Department of Diagnostic Genomics, PathWest Laboratory Medicine, Perth, WA, Australia
| | - Vijay S Ganesh
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Neuromuscular Division, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Roula Ghaoui
- Department of Neurology, Central Adelaide Local Health Network/Royal Adelaide Hospital, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Department of Genetics & Molecular Pathology, SA Pathology, Adelaide, South Australia, Australia
| | - Kristi J Jones
- Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
- Kids Neuroscience Centre, Kids Research, Children's Hospital at Westmead, Westmead, New South Wales, Australia
- Clinical Genetics, Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Andrew J Kornberg
- Department of Neurology, Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
- Neurosciences Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Monkol Lek
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Christina Liang
- Department of Neurology, Royal North Shore Hospital, St Leonards, New South Wales, Australia
- Neurogenetics, Northern Clinical School, Kolling Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Daniel G MacArthur
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Centre for Population Genomics, Garvan Institute of Medical Research/University of New South Wales, Sydney, New South Wales, Australia
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Emily C Oates
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Randwick, New South Wales, Australia
| | - Anne O'Donnell-Luria
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Gina L O'Grady
- Starship Children's Health, Auckland District Health Board, Auckland, New Zealand
| | - Ikeoluwa A Osei-Owusu
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Haloom Rafehi
- Functional Neuromics, Children's Medical Research Institute, Westmead, New South Wales, Australia
- Population Health and Immunity, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Stephen W Reddel
- Neurology Department, Repatriation General Hospital Concord, Concord, New South Wales, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Richard H Roxburgh
- Department of Neurology, Auckland District Health Board, Auckland, New Zealand
- Centre of Brain Research Neurogenetics Research Clinic, University of Auckland, Auckland, New Zealand
| | - Monique M Ryan
- Department of Neurology, Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
- Neurosciences Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Sarah A Sandaradura
- Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
- Kids Neuroscience Centre, Kids Research, Children's Hospital at Westmead, Westmead, New South Wales, Australia
- Clinical Genetics, Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Liam W Scott
- Functional Neuromics, Children's Medical Research Institute, Westmead, New South Wales, Australia
- Population Health and Immunity, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Elise Valkanas
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, Massachusetts, USA
| | - Ben Weisburd
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Helen Young
- Kids Neuroscience Centre, Kids Research, Children's Hospital at Westmead, Westmead, New South Wales, Australia
- Department of Neurology, Children's Hospital at Westmead, Westmead, New South Wales, Australia
- Paediatrics, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Frances J Evesson
- Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
- Kids Neuroscience Centre, Kids Research, Children's Hospital at Westmead, Westmead, New South Wales, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Leigh B Waddell
- Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
- Kids Neuroscience Centre, Kids Research, Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Sandra T Cooper
- Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
- Kids Neuroscience Centre, Kids Research, Children's Hospital at Westmead, Westmead, New South Wales, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
32
|
Bhat S, Rousseau J, Michaud C, Lourenço CM, Stoler JM, Louie RJ, Clarkson LK, Lichty A, Koboldt DC, Reshmi SC, Sisodiya SM, Hoytema van Konijnenburg EMM, Koop K, van Hasselt PM, Démurger F, Dubourg C, Sullivan BR, Hughes SS, Thiffault I, Tremblay ES, Accogli A, Srour M, Blunck R, Campeau PM. Mono-allelic KCNB2 variants lead to a neurodevelopmental syndrome caused by altered channel inactivation. Am J Hum Genet 2024; 111:761-777. [PMID: 38503299 PMCID: PMC11023922 DOI: 10.1016/j.ajhg.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/21/2024] Open
Abstract
Ion channels mediate voltage fluxes or action potentials that are central to the functioning of excitable cells such as neurons. The KCNB family of voltage-gated potassium channels (Kv) consists of two members (KCNB1 and KCNB2) encoded by KCNB1 and KCNB2, respectively. These channels are major contributors to delayed rectifier potassium currents arising from the neuronal soma which modulate overall excitability of neurons. In this study, we identified several mono-allelic pathogenic missense variants in KCNB2, in individuals with a neurodevelopmental syndrome with epilepsy and autism in some individuals. Recurrent dysmorphisms included a broad forehead, synophrys, and digital anomalies. Additionally, we selected three variants where genetic transmission has not been assessed, from two epilepsy studies, for inclusion in our experiments. We characterized channel properties of these variants by expressing them in oocytes of Xenopus laevis and conducting cut-open oocyte voltage clamp electrophysiology. Our datasets indicate no significant change in absolute conductance and conductance-voltage relationships of most disease variants as compared to wild type (WT), when expressed either alone or co-expressed with WT-KCNB2. However, variants c.1141A>G (p.Thr381Ala) and c.641C>T (p.Thr214Met) show complete abrogation of currents when expressed alone with the former exhibiting a left shift in activation midpoint when expressed alone or with WT-KCNB2. The variants we studied, nevertheless, show collective features of increased inactivation shifted to hyperpolarized potentials. We suggest that the effects of the variants on channel inactivation result in hyper-excitability of neurons, which contributes to disease manifestations.
Collapse
Affiliation(s)
- Shreyas Bhat
- Center for Interdisciplinary Research on Brain and Learning (CIRCA), Department of Physics and Department of Pharmacology and Physiology, Université de Montréal, Montréal, QC, Canada
| | - Justine Rousseau
- Centre de Recherche Du Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montréal, QC H3T 1C5, Canada
| | - Coralie Michaud
- Centre de Recherche Du Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montréal, QC H3T 1C5, Canada
| | | | - Joan M Stoler
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | | | | | - Angie Lichty
- Greenwood Genetic Center, Greenwood, SC 29646, USA
| | - Daniel C Koboldt
- Steve and Cindy Rasmussen Institute for Genomic Medicine at Nationwide Children's Hospital, Columbus, OH, USA
| | - Shalini C Reshmi
- Steve and Cindy Rasmussen Institute for Genomic Medicine at Nationwide Children's Hospital, Columbus, OH, USA; Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London WC1N 3BG, UK
| | | | - Klaas Koop
- Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Peter M van Hasselt
- Department of Genetics, Section Metabolic Diagnostics, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Christèle Dubourg
- Department of Molecular Genetics and Genomics, Rennes University Hospital, Rennes, France; Université de Rennes, CNRS, IGDR, UMR 6290 Rennes, France
| | - Bonnie R Sullivan
- Division of Clinical Genetics, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Susan S Hughes
- Division of Clinical Genetics, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Isabelle Thiffault
- Departments of Pediatrics and of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Elisabeth Simard Tremblay
- Department of Neurology and Neurosurgery, McGill University Health Centre, Montréal, QC, Canada; Department of Pediatrics, Division of Pediatric Neurology, McGill University, Montréal, QC, Canada
| | - Andrea Accogli
- Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Centre, Montréal, QC, Canada; Department of Human Genetics, Faculty of Medicine, McGill University, Montral, QC H3A 1B1, Canada
| | - Myriam Srour
- Department of Pediatrics, Division of Pediatric Neurology, McGill University, Montréal, QC, Canada; Department of Human Genetics, Faculty of Medicine, McGill University, Montral, QC H3A 1B1, Canada
| | - Rikard Blunck
- Center for Interdisciplinary Research on Brain and Learning (CIRCA), Department of Physics and Department of Pharmacology and Physiology, Université de Montréal, Montréal, QC, Canada.
| | | |
Collapse
|
33
|
Keskus A, Bryant A, Ahmad T, Yoo B, Aganezov S, Goretsky A, Donmez A, Lansdon LA, Rodriguez I, Park J, Liu Y, Cui X, Gardner J, McNulty B, Sacco S, Shetty J, Zhao Y, Tran B, Narzisi G, Helland A, Cook DE, Chang PC, Kolesnikov A, Carroll A, Molloy EK, Pushel I, Guest E, Pastinen T, Shafin K, Miga KH, Malikic S, Day CP, Robine N, Sahinalp C, Dean M, Farooqi MS, Paten B, Kolmogorov M. Severus: accurate detection and characterization of somatic structural variation in tumor genomes using long reads. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.22.24304756. [PMID: 38585974 PMCID: PMC10996739 DOI: 10.1101/2024.03.22.24304756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Most current studies rely on short-read sequencing to detect somatic structural variation (SV) in cancer genomes. Long-read sequencing offers the advantage of better mappability and long-range phasing, which results in substantial improvements in germline SV detection. However, current long-read SV detection methods do not generalize well to the analysis of somatic SVs in tumor genomes with complex rearrangements, heterogeneity, and aneuploidy. Here, we present Severus: a method for the accurate detection of different types of somatic SVs using a phased breakpoint graph approach. To benchmark various short- and long-read SV detection methods, we sequenced five tumor/normal cell line pairs with Illumina, Nanopore, and PacBio sequencing platforms; on this benchmark Severus showed the highest F1 scores (harmonic mean of the precision and recall) as compared to long-read and short-read methods. We then applied Severus to three clinical cases of pediatric cancer, demonstrating concordance with known genetic findings as well as revealing clinically relevant cryptic rearrangements missed by standard genomic panels.
Collapse
Affiliation(s)
- Ayse Keskus
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Asher Bryant
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Tanveer Ahmad
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Byunggil Yoo
- Children’s Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | | | - Anton Goretsky
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
- Department of Computer Science, University of Maryland, College Park, MD, USA
| | - Ataberk Donmez
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
- Department of Computer Science, University of Maryland, College Park, MD, USA
| | - Lisa A. Lansdon
- Children’s Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Isabel Rodriguez
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Rockville, MD, USA
| | - Jimin Park
- UC Santa Cruz Genomics Institute, Santa Cruz, CA, USA
| | - Yuelin Liu
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
- Department of Computer Science, University of Maryland, College Park, MD, USA
| | - Xiwen Cui
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | | | | | - Samuel Sacco
- UC Santa Cruz Genomics Institute, Santa Cruz, CA, USA
| | - Jyoti Shetty
- Sequencing Facility, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Yongmei Zhao
- Sequencing Facility Bioinformatics Group, Biomedical Informatics and Data Science Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Bao Tran
- Sequencing Facility, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | | | | | | | | | | | | - Erin K. Molloy
- Department of Computer Science, University of Maryland, College Park, MD, USA
| | - Irina Pushel
- Children’s Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Erin Guest
- Children’s Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Tomi Pastinen
- Children’s Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Kishwar Shafin
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Rockville, MD, USA
| | - Karen H. Miga
- UC Santa Cruz Genomics Institute, Santa Cruz, CA, USA
| | - Salem Malikic
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Chi-Ping Day
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | | | - Cenk Sahinalp
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Michael Dean
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Rockville, MD, USA
| | - Midhat S. Farooqi
- Children’s Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | | | - Mikhail Kolmogorov
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
34
|
Yang Y, del Gaudio D, Santani A, Scott SA. Applications of genome sequencing as a single platform for clinical constitutional genetic testing. GENETICS IN MEDICINE OPEN 2024; 2:101840. [PMID: 39822265 PMCID: PMC11736070 DOI: 10.1016/j.gimo.2024.101840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/02/2024] [Accepted: 03/11/2024] [Indexed: 01/19/2025]
Abstract
The number of human disease genes has dramatically increased over the past decade, largely fueled by ongoing advances in sequencing technologies. In parallel, the number of available clinical genetic tests has also increased, including the utilization of exome sequencing for undiagnosed diseases. Although most clinical sequencing tests have been centered on enrichment-based multigene panels and exome sequencing, the continued improvements in performance and throughput of genome sequencing suggest that this technology is emerging as a potential platform for routine clinical genetic testing. A notable advantage is a single workflow with the opportunity to reflexively interrogate content as clinically indicated; however, challenges with implementing routine clinical genome sequencing still remain. This review is centered on evaluating the applications of genome sequencing as a single platform for clinical constitutional genetic testing, including its potential utility for diagnostic testing, carrier screening, cytogenomic molecular karyotyping, prenatal testing, mitochondrial genome interrogation, and pharmacogenomic and polygenic risk score testing.
Collapse
Affiliation(s)
- Yao Yang
- Department of Pathology, Stanford University, Stanford, CA
- Clinical Genomics Laboratory, Stanford Medicine, Palo Alto, CA
| | | | | | - Stuart A. Scott
- Department of Pathology, Stanford University, Stanford, CA
- Clinical Genomics Laboratory, Stanford Medicine, Palo Alto, CA
| |
Collapse
|
35
|
Porubsky D, Eichler EE. A 25-year odyssey of genomic technology advances and structural variant discovery. Cell 2024; 187:1024-1037. [PMID: 38290514 PMCID: PMC10932897 DOI: 10.1016/j.cell.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024]
Abstract
This perspective focuses on advances in genome technology over the last 25 years and their impact on germline variant discovery within the field of human genetics. The field has witnessed tremendous technological advances from microarrays to short-read sequencing and now long-read sequencing. Each technology has provided genome-wide access to different classes of human genetic variation. We are now on the verge of comprehensive variant detection of all forms of variation for the first time with a single assay. We predict that this transition will further transform our understanding of human health and biology and, more importantly, provide novel insights into the dynamic mutational processes shaping our genomes.
Collapse
Affiliation(s)
- David Porubsky
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
36
|
Groza C, Schwendinger-Schreck C, Cheung WA, Farrow EG, Thiffault I, Lake J, Rizzo WB, Evrony G, Curran T, Bourque G, Pastinen T. Pangenome graphs improve the analysis of structural variants in rare genetic diseases. Nat Commun 2024; 15:657. [PMID: 38253606 PMCID: PMC10803329 DOI: 10.1038/s41467-024-44980-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Rare DNA alterations that cause heritable diseases are only partially resolvable by clinical next-generation sequencing due to the difficulty of detecting structural variation (SV) in all genomic contexts. Long-read, high fidelity genome sequencing (HiFi-GS) detects SVs with increased sensitivity and enables assembling personal and graph genomes. We leverage standard reference genomes, public assemblies (n = 94) and a large collection of HiFi-GS data from a rare disease program (Genomic Answers for Kids, GA4K, n = 574 assemblies) to build a graph genome representing a unified SV callset in GA4K, identify common variation and prioritize SVs that are more likely to cause genetic disease (MAF < 0.01). Using graphs, we obtain a higher level of reproducibility than the standard reference approach. We observe over 200,000 SV alleles unique to GA4K, including nearly 1000 rare variants that impact coding sequence. With improved specificity for rare SVs, we isolate 30 candidate SVs in phenotypically prioritized genes, including known disease SVs. We isolate a novel diagnostic SV in KMT2E, demonstrating use of personal assemblies coupled with pangenome graphs for rare disease genomics. The community may interrogate our pangenome with additional assemblies to discover new SVs within the allele frequency spectrum relevant to genetic diseases.
Collapse
Affiliation(s)
- Cristian Groza
- Quantitative Life Sciences, McGill University, Montréal, QC, Canada
| | | | - Warren A Cheung
- Genomic Medicine Center, Children's Mercy Hospital and Research Institute, KC, MO, USA
| | - Emily G Farrow
- Genomic Medicine Center, Children's Mercy Hospital and Research Institute, KC, MO, USA
| | - Isabelle Thiffault
- Genomic Medicine Center, Children's Mercy Hospital and Research Institute, KC, MO, USA
| | | | - William B Rizzo
- Child Health Research Institute, Department of Pediatrics, Nebraska Medical Center, Omaha, NE, USA
| | - Gilad Evrony
- Center for Human Genetics and Genomics, Department of Pediatrics, Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Tom Curran
- Children's Mercy Research Institute, Kansas City, MO, USA
| | - Guillaume Bourque
- Canadian Center for Computational Genomics, McGill University, Montréal, QC, Canada.
- Department of Human Genetics, McGill University, Montréal, QC, Canada.
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan.
- Victor Phillip Dahdaleh Institute of Genomic Medicine at McGill University, Montréal, QC, Canada.
| | - Tomi Pastinen
- Genomic Medicine Center, Children's Mercy Hospital and Research Institute, KC, MO, USA.
| |
Collapse
|
37
|
Smail C, Ge B, Keever-Keigher MR, Schwendinger-Schreck C, Cheung W, Johnston JJ, Barrett C, Feldman K, Cohen AS, Farrow EG, Thiffault I, Grundberg E, Pastinen T. Complex trait associations in rare diseases and impacts on Mendelian variant interpretation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.10.24301111. [PMID: 38260377 PMCID: PMC10802745 DOI: 10.1101/2024.01.10.24301111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Emerging evidence implicates common genetic variation - aggregated into polygenic scores (PGS) - impacting the onset and phenotypic presentation of rare diseases. In this study, we quantified individual polygenic liability for 1,151 previously published PGS in a cohort of 2,374 probands enrolled in the Genomic Answers for Kids (GA4K) rare disease study, revealing widespread associations between rare disease phenotypes and PGSs for common complex diseases and traits, blood protein levels, and brain and other organ morphological measurements. We observed increased polygenic burden in probands with variants of unknown significance (VUS) compared to unaffected carrier parents. We further observed an enrichment in overlap between diagnostic and candidate rare disease genes and large-effect PGS genes. Overall, our study supports and expands on previous findings of complex trait associations in rare disease phenotypes and provides a framework for identifying novel candidate rare disease genes and in understanding variable penetrance of candidate Mendelian disease variants.
Collapse
Affiliation(s)
- Craig Smail
- Genomic Medicine Center, Department of Pediatrics, Children’s Mercy Kansas City, Kansas City, MO, USA
- UKMC School of Medicine, University of Missouri Kansas City, Kansas City, MO, USA
| | - Bing Ge
- Department of Human Genetics, McGill University, Montreal, Canada
| | - Marissa R. Keever-Keigher
- Genomic Medicine Center, Department of Pediatrics, Children’s Mercy Kansas City, Kansas City, MO, USA
| | - Carl Schwendinger-Schreck
- Genomic Medicine Center, Department of Pediatrics, Children’s Mercy Kansas City, Kansas City, MO, USA
| | - Warren Cheung
- Genomic Medicine Center, Department of Pediatrics, Children’s Mercy Kansas City, Kansas City, MO, USA
| | - Jeffrey J. Johnston
- Genomic Medicine Center, Department of Pediatrics, Children’s Mercy Kansas City, Kansas City, MO, USA
| | - Cassandra Barrett
- Genomic Medicine Center, Department of Pediatrics, Children’s Mercy Kansas City, Kansas City, MO, USA
| | | | - Keith Feldman
- UKMC School of Medicine, University of Missouri Kansas City, Kansas City, MO, USA
- Health Outcomes and Health Services Research, Department of Pediatrics, Children’s Mercy Kansas City, Kansas City, MO, USA
| | - Ana S.A. Cohen
- Genomic Medicine Center, Department of Pediatrics, Children’s Mercy Kansas City, Kansas City, MO, USA
- UKMC School of Medicine, University of Missouri Kansas City, Kansas City, MO, USA
- Department of Pathology and Laboratory Medicine, Children’s Mercy Kansas City, Kansas City, MO, USA
| | - Emily G. Farrow
- Genomic Medicine Center, Department of Pediatrics, Children’s Mercy Kansas City, Kansas City, MO, USA
- UKMC School of Medicine, University of Missouri Kansas City, Kansas City, MO, USA
- Department of Pediatrics, Children’s Mercy Kansas City, Kansas City, MO, USA
| | - Isabelle Thiffault
- Genomic Medicine Center, Department of Pediatrics, Children’s Mercy Kansas City, Kansas City, MO, USA
- UKMC School of Medicine, University of Missouri Kansas City, Kansas City, MO, USA
- Department of Pathology and Laboratory Medicine, Children’s Mercy Kansas City, Kansas City, MO, USA
| | - Elin Grundberg
- Genomic Medicine Center, Department of Pediatrics, Children’s Mercy Kansas City, Kansas City, MO, USA
- UKMC School of Medicine, University of Missouri Kansas City, Kansas City, MO, USA
| | - Tomi Pastinen
- Genomic Medicine Center, Department of Pediatrics, Children’s Mercy Kansas City, Kansas City, MO, USA
- UKMC School of Medicine, University of Missouri Kansas City, Kansas City, MO, USA
| |
Collapse
|
38
|
Farrow E, Jay A, Means J, Younger S, Biswell R, Koseva B, Thiffault I, Pastinen T, Pappas K, Toriello H. Case of CLPB deficiency solved by HiFi long read genome sequencing and RNAseq. Am J Med Genet A 2023; 191:2908-2912. [PMID: 37548286 DOI: 10.1002/ajmg.a.63365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/03/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023]
Affiliation(s)
- Emily Farrow
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, Missouri, USA
| | | | - John Means
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, Missouri, USA
| | - Scott Younger
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, Missouri, USA
| | - Rebecca Biswell
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, Missouri, USA
| | - Boryana Koseva
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, Missouri, USA
| | - Isabelle Thiffault
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, Missouri, USA
| | - Tomi Pastinen
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, Missouri, USA
| | - Kara Pappas
- Genetics, Dayton Children's Hospital, Dayton, Ohio, USA
| | - Helga Toriello
- College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA
| |
Collapse
|
39
|
Henly M, Phillips KG, Smith SL, Kloza EM, Brucker DL. Referral networks for pediatric patients with genetic conditions: The perspective of occupational therapists. J Genet Couns 2023; 32:982-992. [PMID: 37062897 DOI: 10.1002/jgc4.1706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/28/2023] [Accepted: 03/12/2023] [Indexed: 04/18/2023]
Abstract
Families of children with developmental delays but no diagnosed genetic condition may benefit from connection to genetic systems of care. This work examines the role of occupational therapy as a space for families of pediatric patients to gain access to genetic services. Between September 2021 and February 2022, we interviewed 20 occupational therapists in New England who work primarily with pediatric patients. We transcribed the interviews and used a grounded theory approach to identify and code recurring themes. The data reveal several barriers to linking pediatric patients to genetic systems of care, including lack of insurance coverage, wait times for appointments and test results, hesitant primary care providers, and familial and cultural stigma of disability. We discuss the unique role of occupational therapists as professionals who spend substantial time with patients, often in their everyday environments, to bridge these barriers. We also address challenges associated with occupational therapists facilitating connections to genetics services, including their lack of specialized knowledge of genetics and barriers fully integrating with others on the medical team.
Collapse
Affiliation(s)
- Megan Henly
- Institute on Disability, University of New Hampshire, New Hampshire, Durham, USA
| | - Kimberly G Phillips
- Institute on Disability, University of New Hampshire, New Hampshire, Durham, USA
| | - Sarah L Smith
- Department of Occupational Therapy, University of New Hampshire, New Hampshire, Durham, USA
| | - Edward M Kloza
- Women & Infants Hospital of Rhode Island, Rhode Island, Providence, USA
| | - Debra L Brucker
- Institute on Disability, University of New Hampshire, New Hampshire, Durham, USA
| |
Collapse
|
40
|
Lenahan AL, Squire AE, Miller DE. Panels, Exomes, Genomes, and More-Finding the Best Path Through the Diagnostic Odyssey. Pediatr Clin North Am 2023; 70:905-916. [PMID: 37704349 DOI: 10.1016/j.pcl.2023.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Selecting the ideal test to evaluate an individual with a suspected genetic disorder can be challenging. While several clinical testing options are available, no single test yet captures all potentially causative genetic variants. Thus, clinicians may order testing in a stepwise fashion, and what to order after non-diagnostic testing can be challenging to determine. Here, we provide an overview of commonly used clinical genetic tests, guidance on when they are best used, and what they may miss. We conclude with a discussion of how new technologies might be used to identify challenging variants and simplify clinical testing in the future.
Collapse
Affiliation(s)
- Arthur L Lenahan
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, 4800 Sand Point Way, Seattle, WA 98105, USA
| | - Audrey E Squire
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, 4800 Sand Point Way, Seattle, WA 98105, USA
| | - Danny E Miller
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, 4800 Sand Point Way, Seattle, WA 98105, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
41
|
Vollger MR, Korlach J, Eldred KC, Swanson E, Underwood JG, Cheng YHH, Ranchalis J, Mao Y, Blue EE, Schwarze U, Munson KM, Saunders CT, Wenger AM, Allworth A, Chanprasert S, Duerden BL, Glass I, Horike-Pyne M, Kim M, Leppig KA, McLaughlin IJ, Ogawa J, Rosenthal EA, Sheppeard S, Sherman SM, Strohbehn S, Yuen AL, Reh TA, Byers PH, Bamshad MJ, Hisama FM, Jarvik GP, Sancak Y, Dipple KM, Stergachis AB. Synchronized long-read genome, methylome, epigenome, and transcriptome for resolving a Mendelian condition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.26.559521. [PMID: 37808736 PMCID: PMC10557686 DOI: 10.1101/2023.09.26.559521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Resolving the molecular basis of a Mendelian condition (MC) remains challenging owing to the diverse mechanisms by which genetic variants cause disease. To address this, we developed a synchronized long-read genome, methylome, epigenome, and transcriptome sequencing approach, which enables accurate single-nucleotide, insertion-deletion, and structural variant calling and diploid de novo genome assembly, and permits the simultaneous elucidation of haplotype-resolved CpG methylation, chromatin accessibility, and full-length transcript information in a single long-read sequencing run. Application of this approach to an Undiagnosed Diseases Network (UDN) participant with a chromosome X;13 balanced translocation of uncertain significance revealed that this translocation disrupted the functioning of four separate genes (NBEA, PDK3, MAB21L1, and RB1) previously associated with single-gene MCs. Notably, the function of each gene was disrupted via a distinct mechanism that required integration of the four 'omes' to resolve. These included nonsense-mediated decay, fusion transcript formation, enhancer adoption, transcriptional readthrough silencing, and inappropriate X chromosome inactivation of autosomal genes. Overall, this highlights the utility of synchronized long-read multi-omic profiling for mechanistically resolving complex phenotypes.
Collapse
Affiliation(s)
- Mitchell R. Vollger
- University of Washington School of Medicine, Department of Genome Sciences, Seattle, WA, USA
- University of Washington School of Medicine, Department of Medicine, Seattle, WA, USA
| | | | - Kiara C. Eldred
- University of Washington School of Medicine, Department of Biological Structure, Seattle, WA, USA
| | - Elliott Swanson
- University of Washington School of Medicine, Department of Genome Sciences, Seattle, WA, USA
| | | | - Yong-Han H. Cheng
- University of Washington School of Medicine, Department of Genome Sciences, Seattle, WA, USA
| | - Jane Ranchalis
- University of Washington School of Medicine, Department of Medicine, Seattle, WA, USA
| | - Yizi Mao
- University of Washington School of Medicine, Department of Medicine, Seattle, WA, USA
| | - Elizabeth E. Blue
- University of Washington School of Medicine, Department of Medicine, Seattle, WA, USA
- Institute for Public Health Genetics, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Ulrike Schwarze
- University of Washington School of Medicine, Department of Laboratory Medicine and Pathology, Seattle, WA, USA
| | - Katherine M. Munson
- University of Washington School of Medicine, Department of Genome Sciences, Seattle, WA, USA
| | | | | | - Aimee Allworth
- University of Washington School of Medicine, Department of Medicine, Seattle, WA, USA
| | - Sirisak Chanprasert
- University of Washington School of Medicine, Department of Medicine, Seattle, WA, USA
| | | | - Ian Glass
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- University of Washington, Department of Pediatrics, Seattle, WA, USA
| | - Martha Horike-Pyne
- University of Washington School of Medicine, Department of Medicine, Seattle, WA, USA
| | | | - Kathleen A. Leppig
- Genetic Services, Kaiser Permanente Washington, Seattle, Washington, USA
| | | | | | | | - Sam Sheppeard
- University of Washington School of Medicine, Department of Medicine, Seattle, WA, USA
| | - Stephanie M. Sherman
- University of Washington School of Medicine, Department of Medicine, Seattle, WA, USA
| | - Samuel Strohbehn
- University of Washington School of Medicine, Department of Medicine, Seattle, WA, USA
| | - Amy L. Yuen
- Genetic Services, Kaiser Permanente Washington, Seattle, Washington, USA
| | | | - Thomas A. Reh
- University of Washington School of Medicine, Department of Biological Structure, Seattle, WA, USA
| | - Peter H. Byers
- University of Washington School of Medicine, Department of Medicine, Seattle, WA, USA
- University of Washington School of Medicine, Department of Laboratory Medicine and Pathology, Seattle, WA, USA
| | - Michael J. Bamshad
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- University of Washington, Department of Pediatrics, Seattle, WA, USA
| | - Fuki M. Hisama
- University of Washington School of Medicine, Department of Medicine, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Gail P. Jarvik
- University of Washington School of Medicine, Department of Genome Sciences, Seattle, WA, USA
- University of Washington School of Medicine, Department of Medicine, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Yasemin Sancak
- University of Washington School of Medicine, Department of Pharmacology, Seattle, WA, USA
| | - Katrina M. Dipple
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- University of Washington, Department of Pediatrics, Seattle, WA, USA
| | - Andrew B. Stergachis
- University of Washington School of Medicine, Department of Genome Sciences, Seattle, WA, USA
- University of Washington School of Medicine, Department of Medicine, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| |
Collapse
|
42
|
Berntsson SG, Matsson H, Kristoffersson A, Niemelä V, van Duyvenvoorde HA, Richel-van Assenbergh C, van der Klift HM, Casar-Borota O, Frykholm C, Landtblom AM. Case report: a novel deep intronic splice-altering variant in DMD as a cause of Becker muscular dystrophy. Front Genet 2023; 14:1226766. [PMID: 37795243 PMCID: PMC10546389 DOI: 10.3389/fgene.2023.1226766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/04/2023] [Indexed: 10/06/2023] Open
Abstract
We present the case of a male patient who was ultimately diagnosed with Becker muscular dystrophy (BMD; MIM# 300376) after the onset of muscle weakness in his teens progressively led to significant walking difficulties in his twenties. A genetic diagnosis was pursued but initial investigation revealed no aberrations in the dystrophin gene (DMD), although immunohistochemistry and Western blot analysis suggested the diagnosis of dystrophinopathy. Eventually, after more than 10 years, an RNA analysis captured abnormal splicing where 154 nucleotides from intron 43 were inserted between exon 43 and 44 resulting in a frameshift and a premature stop codon. Normal splicing of the DMD gene was also observed. Additionally, a novel variant c.6291-13537A>G in DMD was confirmed in the genomic DNA of the patient. The predicted function of the variant aligns with the mRNA results. To conclude, we here demonstrate that mRNA analysis can guide the diagnosis of non-coding genetic variants in DMD.
Collapse
Affiliation(s)
| | - Hans Matsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Clinical Genetics, Rudbeck Laboratory, Uppsala University Hospital, Uppsala, Sweden
| | - Anna Kristoffersson
- Department of Medical Sciences, Neurology, Uppsala University, Uppsala, Sweden
| | - Valter Niemelä
- Department of Medical Sciences, Neurology, Uppsala University, Uppsala, Sweden
| | | | | | | | - Olivera Casar-Borota
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Department of Clinical Pathology, Uppsala University Hospital, Uppsala, Sweden
| | - Carina Frykholm
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Clinical Genetics, Rudbeck Laboratory, Uppsala University Hospital, Uppsala, Sweden
| | - Anne-Marie Landtblom
- Department of Medical Sciences, Neurology, Uppsala University, Uppsala, Sweden
- Department of Clinical Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health, Linköping University, Linköping, Sweden
| |
Collapse
|
43
|
Kolesnikov A, Cook D, Nattestad M, McNulty B, Gorzynski J, Goenka S, Ashley EA, Jain M, Miga KH, Paten B, Chang PC, Carroll A, Shafin K. Local read haplotagging enables accurate long-read small variant calling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.07.556731. [PMID: 37745389 PMCID: PMC10515762 DOI: 10.1101/2023.09.07.556731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Long-read sequencing technology has enabled variant detection in difficult-to-map regions of the genome and enabled rapid genetic diagnosis in clinical settings. Rapidly evolving third-generation sequencing platforms like Pacific Biosciences (PacBio) and Oxford nanopore technologies (ONT) are introducing newer platforms and data types. It has been demonstrated that variant calling methods based on deep neural networks can use local haplotyping information with long-reads to improve the genotyping accuracy. However, using local haplotype information creates an overhead as variant calling needs to be performed multiple times which ultimately makes it difficult to extend to new data types and platforms as they get introduced. In this work, we have developed a local haplotype approximate method that enables state-of-the-art variant calling performance with multiple sequencing platforms including PacBio Revio system, ONT R10.4 simplex and duplex data. This addition of local haplotype approximation makes DeepVariant a universal variant calling solution for long-read sequencing platforms.
Collapse
Affiliation(s)
| | - Daniel Cook
- Google Inc, 1600 Amphitheatre Pkwy, Mountain View, CA
| | | | - Brandy McNulty
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, California, USA
| | | | | | | | - Miten Jain
- Northeastern university, Boston, MA, USA
| | - Karen H Miga
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, California, USA
| | - Benedict Paten
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, California, USA
| | | | | | | |
Collapse
|
44
|
Kane NJ, Cohen ASA, Berrios C, Jones B, Pastinen T, Hoffman MA. Committing to genomic answers for all kids: Evaluating inequity in genomic research enrollment. Genet Med 2023; 25:100895. [PMID: 37194653 PMCID: PMC10524770 DOI: 10.1016/j.gim.2023.100895] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/18/2023] Open
Abstract
PURPOSE Persistent inequities in genomic medicine and research contribute to health disparities. This analysis uses a context-specific and equity-focused strategy to evaluate enrollment patterns for Genomic Answers for Kids (GA4K), a large, metropolitan-wide genomic study on children. METHODS Electronic health records for 2247 GA4K study participants were used to evaluate the distribution of individuals by demographics (race, ethnicity, and payor type) and location (residential address). Addresses were geocoded to produce point density and 3-digit zip code maps showing local and regional enrollment patterns. Health system reports and census data were used to compare participant characteristics with reference populations at different spatial scales. RESULTS Racial and ethnic minoritized and populations with low-income were underrepresented in the GA4K study cohort. Geographic variation demonstrates inequity in enrollment and participation among children from historically segregated and socially disadvantaged communities. CONCLUSION Our findings illustrate inequity in enrollment related to both GA4K study design and structural inequalities, which we suspect may exist for similar US-based studies. Our methods provide a scalable framework for continually evaluating and improving study design to ensure equitable participation in and benefits from genomic research and medicine. The use of high-resolution, place-based data represents a novel and practical means of identifying and characterizing inequities and targeting community engagement.
Collapse
|
45
|
Abstract
DNA sequencing has revolutionized medicine over recent decades. However, analysis of large structural variation and repetitive DNA, a hallmark of human genomes, has been limited by short-read technology, with read lengths of 100-300 bp. Long-read sequencing (LRS) permits routine sequencing of human DNA fragments tens to hundreds of kilobase pairs in size, using both real-time sequencing by synthesis and nanopore-based direct electronic sequencing. LRS permits analysis of large structural variation and haplotypic phasing in human genomes and has enabled the discovery and characterization of rare pathogenic structural variants and repeat expansions. It has also recently enabled the assembly of a complete, gapless human genome that includes previously intractable regions, such as highly repetitive centromeres and homologous acrocentric short arms. With the addition of protocols for targeted enrichment, direct epigenetic DNA modification detection, and long-range chromatin profiling, LRS promises to launch a new era of understanding of genetic diversity and pathogenic mutations in human populations.
Collapse
Affiliation(s)
- Peter E Warburton
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; ,
- Center for Advanced Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert P Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; ,
- Center for Advanced Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
46
|
Thewamit R, Khongkhatithum C, Thampratankul L, Kamolvisit W, Khongkrapan A, Wattanasirichaigoon D. Case report: Severe nonketotic hyperglycinemia in a neonate without apparent seizures but concomitant cleft palate and cerebral sinovenous thrombosis. Front Pediatr 2023; 11:1155035. [PMID: 37614902 PMCID: PMC10442541 DOI: 10.3389/fped.2023.1155035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/20/2023] [Indexed: 08/25/2023] Open
Abstract
Nonketotic hyperglycinemia (NKH) is in most cases a fatal inborn error of metabolism which usually presents during the neonatal period as encephalopathy and refractory seizures. The reported congenital anomalies associated with NKH included corpus callosal agenesis, club foot, cleft palate, and congenital heart disease. Here, we report a newborn who presented with encephalopathy without overt seizures, cerebral venous sinus thrombosis, and cleft palate. Electroencephalography showed a burst suppression pattern, which suggests the etiology could be due to a metabolic or genetic disorder. The amino acid analysis of plasma and cerebrospinal fluid showed elevated glycine. Whole exome sequencing identified a heterozygous c.492C > G; p.Tyr164Ter variant in exon 4 of the GLDC gene inherited from the patient's father. Further long-read whole genome sequencing revealed an exon 1-2 deletion in the GLDC gene inherited from the patient's mother. Additional analyses revealed no pathogenic variants of the cleft palate-related genes. The cleft palate may be an associated congenital anomaly in NKH. Regarding cerebral venous sinus thrombosis, we found a heterozygous variant (p.Arg189Trp) of the PROC gene, which is a common cause of thrombophilia among Thai newborns. A neonate with NKH could present with severe encephalopathy without seizures. A close follow up for clinical changes and further next generation sequencing are crucial for definite diagnosis in neonates with encephalopathy of unclear cause.
Collapse
Affiliation(s)
- Rapeepat Thewamit
- Division of Neurology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Chaiyos Khongkhatithum
- Division of Neurology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Lunliya Thampratankul
- Division of Neurology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Wuttichart Kamolvisit
- Division of Medical Genetics and Metabolism, Department of Pediatrics, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Arthaporn Khongkrapan
- Division of Medical Genetics, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Duangrurdee Wattanasirichaigoon
- Division of Medical Genetics, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
47
|
Wojcik MH, Reuter CM, Marwaha S, Mahmoud M, Duyzend MH, Barseghyan H, Yuan B, Boone PM, Groopman EE, Délot EC, Jain D, Sanchis-Juan A, Starita LM, Talkowski M, Montgomery SB, Bamshad MJ, Chong JX, Wheeler MT, Berger SI, O'Donnell-Luria A, Sedlazeck FJ, Miller DE. Beyond the exome: What's next in diagnostic testing for Mendelian conditions. Am J Hum Genet 2023; 110:1229-1248. [PMID: 37541186 PMCID: PMC10432150 DOI: 10.1016/j.ajhg.2023.06.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 08/06/2023] Open
Abstract
Despite advances in clinical genetic testing, including the introduction of exome sequencing (ES), more than 50% of individuals with a suspected Mendelian condition lack a precise molecular diagnosis. Clinical evaluation is increasingly undertaken by specialists outside of clinical genetics, often occurring in a tiered fashion and typically ending after ES. The current diagnostic rate reflects multiple factors, including technical limitations, incomplete understanding of variant pathogenicity, missing genotype-phenotype associations, complex gene-environment interactions, and reporting differences between clinical labs. Maintaining a clear understanding of the rapidly evolving landscape of diagnostic tests beyond ES, and their limitations, presents a challenge for non-genetics professionals. Newer tests, such as short-read genome or RNA sequencing, can be challenging to order, and emerging technologies, such as optical genome mapping and long-read DNA sequencing, are not available clinically. Furthermore, there is no clear guidance on the next best steps after inconclusive evaluation. Here, we review why a clinical genetic evaluation may be negative, discuss questions to be asked in this setting, and provide a framework for further investigation, including the advantages and disadvantages of new approaches that are nascent in the clinical sphere. We present a guide for the next best steps after inconclusive molecular testing based upon phenotype and prior evaluation, including when to consider referral to research consortia focused on elucidating the underlying cause of rare unsolved genetic disorders.
Collapse
Affiliation(s)
- Monica H Wojcik
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Chloe M Reuter
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shruti Marwaha
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Medhat Mahmoud
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Michael H Duyzend
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Hayk Barseghyan
- Center for Genetics Medicine Research, Children's National Research Institute, Children's National Hospital, Washington, DC 20010, USA; Department of Genomics and Precision Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA
| | - Bo Yuan
- Department of Molecular and Human Genetics and Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Philip M Boone
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Emily E Groopman
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Emmanuèle C Délot
- Department of Genomics and Precision Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA; Center for Genetics Medicine Research, Children's National Research and Innovation Campus, Washington, DC, USA; Department of Pediatrics, George Washington University, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA
| | - Deepti Jain
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA 98195, USA
| | - Alba Sanchis-Juan
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lea M Starita
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Michael Talkowski
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Stephen B Montgomery
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael J Bamshad
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA 98195, USA
| | - Jessica X Chong
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA; Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA 98195, USA
| | - Matthew T Wheeler
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Seth I Berger
- Center for Genetics Medicine Research and Rare Disease Institute, Children's National Hospital, Washington, DC 20010, USA
| | - Anne O'Donnell-Luria
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Computer Science, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Danny E Miller
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA; Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA 98195, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
48
|
Cheung WA, Johnson AF, Rowell WJ, Farrow E, Hall R, Cohen ASA, Means JC, Zion TN, Portik DM, Saunders CT, Koseva B, Bi C, Truong TK, Schwendinger-Schreck C, Yoo B, Johnston JJ, Gibson M, Evrony G, Rizzo WB, Thiffault I, Younger ST, Curran T, Wenger AM, Grundberg E, Pastinen T. Direct haplotype-resolved 5-base HiFi sequencing for genome-wide profiling of hypermethylation outliers in a rare disease cohort. Nat Commun 2023; 14:3090. [PMID: 37248219 DOI: 10.1038/s41467-023-38782-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 05/15/2023] [Indexed: 05/31/2023] Open
Abstract
Long-read HiFi genome sequencing allows for accurate detection and direct phasing of single nucleotide variants, indels, and structural variants. Recent algorithmic development enables simultaneous detection of CpG methylation for analysis of regulatory element activity directly in HiFi reads. We present a comprehensive haplotype resolved 5-base HiFi genome sequencing dataset from a rare disease cohort of 276 samples in 152 families to identify rare (~0.5%) hypermethylation events. We find that 80% of these events are allele-specific and predicted to cause loss of regulatory element activity. We demonstrate heritability of extreme hypermethylation including rare cis variants associated with short (~200 bp) and large hypermethylation events (>1 kb), respectively. We identify repeat expansions in proximal promoters predicting allelic gene silencing via hypermethylation and demonstrate allelic transcriptional events downstream. On average 30-40 rare hypermethylation tiles overlap rare disease genes per patient, providing indications for variation prioritization including a previously undiagnosed pathogenic allele in DIP2B causing global developmental delay. We propose that use of HiFi genome sequencing in unsolved rare disease cases will allow detection of unconventional diseases alleles due to loss of regulatory element activity.
Collapse
Affiliation(s)
- Warren A Cheung
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Adam F Johnson
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
| | | | - Emily Farrow
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
- Department of Pediatrics, School of Medicine, University of Missouri Kansas City, Kansas City, MO, USA
| | | | - Ana S A Cohen
- Department of Pediatrics, School of Medicine, University of Missouri Kansas City, Kansas City, MO, USA
- Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO, USA
| | - John C Means
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Tricia N Zion
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
| | | | | | - Boryana Koseva
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Chengpeng Bi
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Tina K Truong
- Center for Human Genetics and Genomics, Department of Pediatrics, Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Carl Schwendinger-Schreck
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Byunggil Yoo
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Jeffrey J Johnston
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Margaret Gibson
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Gilad Evrony
- Center for Human Genetics and Genomics, Department of Pediatrics, Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
| | - William B Rizzo
- Child Health Research Institute, Department of Pediatrics, Nebraska Medical Center, Omaha, NE, USA
| | - Isabelle Thiffault
- Department of Pediatrics, School of Medicine, University of Missouri Kansas City, Kansas City, MO, USA
- Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Scott T Younger
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
- Department of Pediatrics, School of Medicine, University of Missouri Kansas City, Kansas City, MO, USA
| | - Tom Curran
- Children's Mercy Research Institute, Kansas City, MO, USA
| | | | - Elin Grundberg
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA.
- Department of Pediatrics, School of Medicine, University of Missouri Kansas City, Kansas City, MO, USA.
| | - Tomi Pastinen
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA.
- Department of Pediatrics, School of Medicine, University of Missouri Kansas City, Kansas City, MO, USA.
| |
Collapse
|
49
|
Zion TN, Berrios CD, Cohen ASA, Bartik L, Cross LA, Engleman KL, Fleming EA, Gadea RN, Hughes SS, Jenkins JL, Kussmann J, Lawson C, Schwager C, Strenk ME, Welsh H, Rush ET, Amudhavalli SM, Sullivan BR, Zhou D, Gannon JL, Heese BA, Moore R, Boillat E, Biswell RL, Louiselle DA, Puckett LMB, Beyer S, Neal SH, Sierant V, McBeth M, Belden B, Walter AM, Gibson M, Cheung WA, Johnston JJ, Thiffault I, Farrow EG, Grundberg E, Pastinen T. Insurance denials and diagnostic rates in a pediatric genomic research cohort. Genet Med 2023; 25:100020. [PMID: 36718845 PMCID: PMC10584034 DOI: 10.1016/j.gim.2023.100020] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/29/2023] Open
Abstract
PURPOSE This study aimed to assess the amount and types of clinical genetic testing denied by insurance and the rate of diagnostic and candidate genetic findings identified through research in patients who faced insurance denials. METHODS Analysis consisted of review of insurance denials in 801 patients enrolled in a pediatric genomic research repository with either no previous genetic testing or previous negative genetic testing result identified through cross-referencing with insurance prior-authorizations in patient medical records. Patients and denials were also categorized by type of insurance coverage. Diagnostic findings and candidate genetic findings in these groups were determined through review of our internal variant database and patient charts. RESULTS Of the 801 patients analyzed, 147 had insurance prior-authorization denials on record (18.3%). Exome sequencing and microarray were the most frequently denied genetic tests. Private insurance was significantly more likely to deny testing than public insurance (odds ratio = 2.03 [95% CI = 1.38-2.99] P = .0003). Of the 147 patients with insurance denials, 53.7% had at least 1 diagnostic or candidate finding and 10.9% specifically had a clinically diagnostic finding. Fifty percent of patients with clinically diagnostic results had immediate medical management changes (5.4% of all patients experiencing denials). CONCLUSION Many patients face a major barrier to genetic testing in the form of lack of insurance coverage. A number of these patients have clinically diagnostic findings with medical management implications that would not have been identified without access to research testing. These findings support re-evaluation of insurance carriers' coverage policies.
Collapse
Affiliation(s)
- Tricia N Zion
- Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO; Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO; Division of Clinical Genetics, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO.
| | - Courtney D Berrios
- Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO; Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO
| | - Ana S A Cohen
- Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO; Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO
| | - Lauren Bartik
- Division of Clinical Genetics, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO; University of Kansas Medical Center, School of Professional Health Sciences, Kansas City, MO
| | - Laura A Cross
- Division of Clinical Genetics, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO
| | - Kendra L Engleman
- Division of Clinical Genetics, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO
| | - Emily A Fleming
- Division of Clinical Genetics, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO
| | - Randi N Gadea
- Division of Clinical Genetics, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO
| | - Susan S Hughes
- Division of Clinical Genetics, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO
| | - Janda L Jenkins
- Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO; Division of Clinical Genetics, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO
| | - Jennifer Kussmann
- Division of Clinical Genetics, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO
| | - Caitlin Lawson
- Division of Clinical Genetics, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO
| | - Caitlin Schwager
- Division of Clinical Genetics, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO
| | - Meghan E Strenk
- Division of Clinical Genetics, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO
| | - Holly Welsh
- Division of Clinical Genetics, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO
| | - Eric T Rush
- Division of Clinical Genetics, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO; Department of Internal Medicine, University of Kansas Medical Center, Kansas City, MO
| | - Shivarajan M Amudhavalli
- Division of Clinical Genetics, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO
| | - Bonnie R Sullivan
- Division of Clinical Genetics, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO
| | - Dihong Zhou
- Division of Clinical Genetics, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO
| | - Jennifer L Gannon
- Division of Clinical Genetics, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO
| | - Bryce A Heese
- Division of Clinical Genetics, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO
| | - Riley Moore
- Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO; Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO
| | - Emelia Boillat
- Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO; Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO
| | - Rebecca L Biswell
- Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO; Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO
| | - Daniel A Louiselle
- Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO; Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO
| | - Laura M B Puckett
- Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO; Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO
| | - Shanna Beyer
- Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO; Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO
| | - Shelby H Neal
- Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO; Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO
| | - Victoria Sierant
- Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO; Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO
| | - Macy McBeth
- Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO; Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO
| | - Bradley Belden
- Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO; Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO
| | - Adam M Walter
- Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO; Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO
| | - Margaret Gibson
- Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO; Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO
| | - Warren A Cheung
- Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO; Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO
| | - Jeffrey J Johnston
- Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO; Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO
| | - Isabelle Thiffault
- Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO; Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO
| | - Emily G Farrow
- Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO; Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO
| | - Elin Grundberg
- Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO; Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO
| | - Tomi Pastinen
- Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO; Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO
| |
Collapse
|
50
|
Perrier S, Guerrero K, Tran LT, Michell-Robinson MA, Legault G, Brais B, Sylvain M, Dorman J, Demos M, Köhler W, Pastinen T, Thiffault I, Bernard G. Solving inherited white matter disorder etiologies in the neurology clinic: Challenges and lessons learned using next-generation sequencing. Front Neurol 2023; 14:1148377. [PMID: 37077564 PMCID: PMC10108901 DOI: 10.3389/fneur.2023.1148377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/23/2023] [Indexed: 04/05/2023] Open
Abstract
IntroductionRare neurodevelopmental disorders, including inherited white matter disorders or leukodystrophies, often present a diagnostic challenge on a genetic level given the large number of causal genes associated with a range of disease subtypes. This study aims to demonstrate the challenges and lessons learned in the genetic investigations of leukodystrophies through presentation of a series of cases solved using exome or genome sequencing.MethodsEach of the six patients had a leukodystrophy associated with hypomyelination or delayed myelination on MRI, and inconclusive clinical diagnostic genetic testing results. We performed next generation sequencing (case-based exome or genome sequencing) to further investigate the genetic cause of disease.ResultsFollowing different lines of investigation, molecular diagnoses were obtained for each case, with patients harboring pathogenic variants in a range of genes including TMEM106B, GJA1, AGA, POLR3A, and TUBB4A. We describe the lessons learned in reaching the genetic diagnosis, including the importance of (a) utilizing proper multi-gene panels in clinical testing, (b) assessing the reliability of biochemical assays in supporting diagnoses, and (c) understanding the limitations of exome sequencing methods in regard to CNV detection and region coverage in GC-rich areas.DiscussionThis study illustrates the importance of applying a collaborative diagnostic approach by combining detailed phenotyping data and metabolic results from the clinical environment with advanced next generation sequencing analysis techniques from the research environment to increase the diagnostic yield in patients with genetically unresolved leukodystrophies.
Collapse
Affiliation(s)
- Stefanie Perrier
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Kether Guerrero
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Luan T. Tran
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Mackenzie A. Michell-Robinson
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Geneviève Legault
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pediatrics, McGill University, Montreal, QC, Canada
| | - Bernard Brais
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Michel Sylvain
- Division of Pediatric Neurology, Centre Mère-Enfant Soleil du CHU de Québec - Université Laval, Québec City, QC, Canada
| | - James Dorman
- John H. Stroger Jr. Hospital of Cook County, Chicago, IL, United States
- Department of Neurological Sciences, Rush Medical College, Chicago, IL, United States
| | - Michelle Demos
- Division of Neurology, Department of Pediatrics, University of British Columbia, BC Children's Hospital, Vancouver, BC, Canada
| | - Wolfgang Köhler
- Leukodystrophy Center, University of Leipzig Medical Center, Leipzig, Germany
| | - Tomi Pastinen
- Genomic Medicine Center, Children's Mercy Hospital, Kansas City, MO, United States
- University of Missouri Kansas City School of Medicine, Kansas City, MO, United States
| | - Isabelle Thiffault
- Genomic Medicine Center, Children's Mercy Hospital, Kansas City, MO, United States
- University of Missouri Kansas City School of Medicine, Kansas City, MO, United States
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, MO, United States
- Isabelle Thiffault
| | - Geneviève Bernard
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pediatrics, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Center, Montreal, QC, Canada
- *Correspondence: Geneviève Bernard
| |
Collapse
|