1
|
Velde HM, Vaseghi-Shanjani M, Smits JJ, Ramakrishnan G, Oostrik J, Wesdorp M, Astuti G, Yntema HG, Hoefsloot L, Lanting CP, Huynen MA, Lehman A, Turvey SE, Pennings RJE, Kremer H. Exome variant prioritization in a large cohort of hearing-impaired individuals indicates IKZF2 to be associated with non-syndromic hearing loss and guides future research of unsolved cases. Hum Genet 2024; 143:1379-1399. [PMID: 39406892 PMCID: PMC11522133 DOI: 10.1007/s00439-024-02706-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/27/2024] [Indexed: 10/30/2024]
Abstract
Although more than 140 genes have been associated with non-syndromic hereditary hearing loss (HL), at least half of the cases remain unexplained in medical genetic testing. One reason is that pathogenic variants are located in 'novel' deafness genes. A variant prioritization approach was used to identify novel (candidate) genes for HL. Exome-wide sequencing data were assessed for subjects with presumed hereditary HL that remained unexplained in medical genetic testing by gene-panel analysis. Cases in group AD had presumed autosomal dominantly inherited HL (n = 124), and in group AR, presumed autosomal recessive HL (n = 337). Variants in known and candidate deafness genes were prioritized based on allele frequencies and predicted effects. Selected variants were tested for their co-segregation with HL. Two cases were solved by variants in recently identified deafness genes (ABHD12, TRRAP). Variant prioritization also revealed potentially causative variants in candidate genes associated with recessive and X-linked HL. Importantly, missense variants in IKZF2 were found to co-segregate with dominantly inherited non-syndromic HL in three families. These variants specifically affected Zn2+-coordinating cysteine or histidine residues of the zinc finger motifs 2 and 3 of the encoded protein Helios. This finding indicates a complex genotype-phenotype correlation for IKZF2 defects, as this gene was previously associated with non-syndromic dysfunction of the immune system and ICHAD syndrome, including HL. The designed strategy for variant prioritization revealed that IKZF2 variants can underlie non-syndromic HL. The large number of candidate genes for HL and variants therein stress the importance of inclusion of family members for variant prioritization.
Collapse
Affiliation(s)
- Hedwig M Velde
- Department of Otorhinolaryngology, Radboudumc, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
| | - Maryam Vaseghi-Shanjani
- Department of Pediatrics, The University of British Columbia and BC Children's Hospital, Vancouver, BC, Canada
| | - Jeroen J Smits
- Department of Otorhinolaryngology, Radboudumc, Nijmegen, The Netherlands
- Department of Clinical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Jaap Oostrik
- Department of Otorhinolaryngology, Radboudumc, Nijmegen, The Netherlands
| | - Mieke Wesdorp
- Department of Otorhinolaryngology, Radboudumc, Nijmegen, The Netherlands
| | - Galuh Astuti
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands
| | - Helger G Yntema
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands
| | - Lies Hoefsloot
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Cris P Lanting
- Department of Otorhinolaryngology, Radboudumc, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
| | - Martijn A Huynen
- Center for Molecular and Biomolecular Informatics, Radboudumc, Nijmegen, The Netherlands
| | - Anna Lehman
- Department of Pediatrics, The University of British Columbia and BC Children's Hospital, Vancouver, BC, Canada
| | - Stuart E Turvey
- Department of Pediatrics, The University of British Columbia and BC Children's Hospital, Vancouver, BC, Canada
| | - Ronald J E Pennings
- Department of Otorhinolaryngology, Radboudumc, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
| | - Hannie Kremer
- Department of Otorhinolaryngology, Radboudumc, Nijmegen, The Netherlands.
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands.
| |
Collapse
|
2
|
Almalki F. Review and research gap identification in genetics causes of syndromic and nonsyndromic hearing loss in Saudi Arabia. Ann Hum Genet 2024; 88:364-381. [PMID: 38517009 DOI: 10.1111/ahg.12559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/13/2024] [Accepted: 03/04/2024] [Indexed: 03/23/2024]
Abstract
Congenital hearing loss is one of the most common sensory disabilities worldwide. The genetic causes of hearing loss account for 50% of hearing loss. Genetic causes of hearing loss can be classified as nonsyndromic hearing loss (NSHL) or syndromic hearing loss (SHL). NSHL is defined as a partial or complete hearing loss without additional phenotypes; however, SHL, known as hearing loss, is associated with other phenotypes. Both types follow a simple Mendelian inheritance fashion. Several studies have been conducted to uncover the genetic factors contributing to NSHL and SHL in Saudi patients. However, these studies have encountered certain limitations. This review assesses and discusses the genetic factors underpinning NSHL and SHL globally, with a specific emphasis on the Saudi Arabian context. It also explores the prevalence of the most observed genetic causes of NSHL and SHL in Saudi Arabia. It also sheds light on areas where further research is needed to fully understand the genetic foundations of hearing loss in the Saudi population. This review identifies several gaps in research in NSHL and SHL and provides insights into potential research to be conducted.
Collapse
Affiliation(s)
- Faisal Almalki
- Medical Laboratories Technology Department, College of Applied Medical Sciences, Taibah University, Al Madinah Al Munwarah, Saudi Arabia
| |
Collapse
|
3
|
Guan J, Wu X, Zhang J, Li J, Wang H, Wang Q. Global research landscape on the contribution of de novo mutations to human genetic diseases over the past 20 years: bibliometric analysis. J Neurogenet 2024; 38:9-18. [PMID: 38647210 DOI: 10.1080/01677063.2024.2335171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/21/2024] [Indexed: 04/25/2024]
Abstract
As the contribution of de novo mutations (DNMs) to human genetic diseases has been gradually uncovered, analyzing the global research landscape over the past 20 years is essential. Because of the large and rapidly increasing number of publications in this field, understanding the current landscape of the contribution of DNMs in the human genome to genetic diseases remains a challenge. Bibliometric analysis provides an approach for visualizing these studies using information in published records in a specific field. This study aimed to illustrate the current global research status and explore trends in the field of DNMs underlying genetic diseases. Bibliometric analyses were performed using the Bibliometrix Package based on the R language version 4.1.3 and CiteSpace version 6.1.R2 software for publications from 2000 to 2021 indexed under the Web of Science Core Collection (WoSCC) about DNMs underlying genetic diseases on 17 September 2022. We identified 3435 records, which were published in 731 journals by 26,538 authors from 6052 institutes in 66 countries. There was an upward trend in the number of publications since 2013. The USA, China, and Germany contributed the majority of the records included. The University of Washington, Columbia University, and Baylor College of Medicine were the top-producing institutions. Evan E Eichler of the University of Washington, Stephan J Sanders of the Yale University School of Medicine, and Ingrid E Scheffer of the University of Melbourne were the most high-ranked authors. Keyword co-occurrence analysis suggested that DNMs in neurodevelopmental disorders and intellectual disabilities were research hotspots and trends. In conclusion, our data show that DNMs have a significant effect on human genetic diseases, with a noticeable increase in annual publications over the last 5 years. Furthermore, potential hotspots are shifting toward understanding the causative role and clinical interpretation of newly identified or low-frequency DNMs observed in patients.
Collapse
Affiliation(s)
- Jing Guan
- Senior Department of Otolaryngology-Head & Neck Surgery, the Sixth Medical Center of PLA General Hospital, Beijing, PR China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, PR China
- State Key Laboratory of Hearing and Balance Science, Beijing, PR China
| | - Xiaonan Wu
- Senior Department of Otolaryngology-Head & Neck Surgery, the Sixth Medical Center of PLA General Hospital, Beijing, PR China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, PR China
- State Key Laboratory of Hearing and Balance Science, Beijing, PR China
| | - Jiao Zhang
- Senior Department of Otolaryngology-Head & Neck Surgery, the Sixth Medical Center of PLA General Hospital, Beijing, PR China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, PR China
- State Key Laboratory of Hearing and Balance Science, Beijing, PR China
| | - Jin Li
- Senior Department of Otolaryngology-Head & Neck Surgery, the Sixth Medical Center of PLA General Hospital, Beijing, PR China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, PR China
- State Key Laboratory of Hearing and Balance Science, Beijing, PR China
| | - Hongyang Wang
- Senior Department of Otolaryngology-Head & Neck Surgery, the Sixth Medical Center of PLA General Hospital, Beijing, PR China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, PR China
- State Key Laboratory of Hearing and Balance Science, Beijing, PR China
| | - Qiuju Wang
- Senior Department of Otolaryngology-Head & Neck Surgery, the Sixth Medical Center of PLA General Hospital, Beijing, PR China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, PR China
- State Key Laboratory of Hearing and Balance Science, Beijing, PR China
| |
Collapse
|
4
|
李 丹, 王 洪, 王 秋. [Splicing mutations of GSDME cause late-onset non-syndromic hearing loss]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY, HEAD, AND NECK SURGERY 2024; 38:30-37. [PMID: 38297846 PMCID: PMC11116152 DOI: 10.13201/j.issn.2096-7993.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Indexed: 02/02/2024]
Abstract
Objective:To dentify the genetic and audiological characteristics of families affected by late-onset hearing loss due to GSDMEgene mutations, aiming to explore clinical characteristics and pathogenic mechanisms for providing genetic counseling and intervention guidance. Methods:Six families with late-onset hearing loss from the Chinese Deafness Genome Project were included. Audiological tests, including pure-tone audiometry, acoustic immittance, speech recognition scores, auditory brainstem response, and distortion product otoacoustic emission, were applied to evaluate the hearing levels of patients. Combining with medical history and physical examination to analyze the phenotypic differences between the probands and their family members. Next-generation sequencing was used to identify pathogenic genes in probands, and validations were performed on their relatives by Sanger sequencing. Pathogenicity analysis was performed according to the American College of Medical Genetics and Genomics Guidelines. Meanwhile, the pathogenic mechanisms of GSDME-related hearing loss were explored combining with domestic and international research progress. Results:Among the six families with late-onset hearing loss, a total of 30 individuals performed hearing loss. The onset of hearing loss in these families ranged from 10 to 50 years(mean age: 27.88±9.74 years). In the study, four splicing mutations of the GSDME were identified, including two novel variants: c. 991-7C>G and c. 1183+1G>T. Significantly, the c. 991-7C>G was a de novo variant. The others were previously reported variants: c. 991-1G>C and c. 991-15_991-13del, the latter was identified in three families. Genotype-phenotype correlation analysis revealed that probands with the c. 991-7C>G and c. 1183+1G>T performed a predominantly high-frequency hearing loss. The three families carrying the same mutation exhibited varying degrees of hearing loss, with an annual rate of hearing deterioration exceeding 0.94 dB HL/year. Furthermore, follow-up of interventions showed that four of six probands received intervention(66.67%), but the results of intervention varied. Conclusion:The study analyzed six families with late-onset non-syndromic hearing loss linked to GSDME mutations, identifying four splicing variants. Notably, c. 991-7C>G is the first reported de novo variant of GSDME globally. Audiological analysis revealed that the age of onset generally exceeded 10 years,with variable effectiveness of interventions.
Collapse
Affiliation(s)
- 丹阳 李
- 中国人民解放军总医院第六医学中心耳鼻咽喉头颈外科医学部耳鼻咽喉内科解放军医学院(北京,100853)Department of Audiology and Vestibular Medicine, College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, 100853, China
- 南开大学医学院Nankai University School of Medicine
- 国家耳鼻咽喉疾病临床医学研究中心National Clinical Research Center for Otolaryngologic Diseases
| | - 洪阳 王
- 中国人民解放军总医院第六医学中心耳鼻咽喉头颈外科医学部耳鼻咽喉内科解放军医学院(北京,100853)Department of Audiology and Vestibular Medicine, College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, 100853, China
- 国家耳鼻咽喉疾病临床医学研究中心National Clinical Research Center for Otolaryngologic Diseases
| | - 秋菊 王
- 中国人民解放军总医院第六医学中心耳鼻咽喉头颈外科医学部耳鼻咽喉内科解放军医学院(北京,100853)Department of Audiology and Vestibular Medicine, College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, 100853, China
- 南开大学医学院Nankai University School of Medicine
- 国家耳鼻咽喉疾病临床医学研究中心National Clinical Research Center for Otolaryngologic Diseases
| |
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW Hearing loss is the most common sensory deficit and in young children sensorineural hearing loss is most frequently genetic in etiology. Hearing aids and cochlear implant do not restore normal hearing. There is significant research and commercial interest in directly addressing the root cause of hearing loss through gene therapies. This article provides an overview of major barriers to cochlear gene therapy and recent advances in preclinical development of precision treatments of genetic deafness. RECENT FINDINGS Several investigators have recently described successful gene therapies in many common forms of genetic hearing loss in animal models. Elegant strategies that do not target a specific pathogenic variant, such as mini gene replacement and mutation-agnostic RNA interference (RNAi) with engineered replacement, facilitate translation of these findings to development of human therapeutics. Clinical trials for human gene therapies are in active recruitment. SUMMARY Gene therapies for hearing loss are expected to enter clinical trials in the immediate future. To provide referral for appropriate trials and counseling regarding benefits of genetic hearing loss evaluation, specialists serving children with hearing loss such as pediatricians, geneticists, genetic counselors, and otolaryngologists should be acquainted with ongoing developments in precision therapies.
Collapse
Affiliation(s)
- Miles J. Klimara
- Molecular Otolaryngology & Renal Research Laboratories, Department of Otolaryngology – Head and Neck Surgery, University of Iowa, Iowa City, IA 52242, USA
| | - Richard J.H. Smith
- Molecular Otolaryngology & Renal Research Laboratories, Department of Otolaryngology – Head and Neck Surgery, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
6
|
Petit C, Bonnet C, Safieddine S. Deafness: from genetic architecture to gene therapy. Nat Rev Genet 2023; 24:665-686. [PMID: 37173518 DOI: 10.1038/s41576-023-00597-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2023] [Indexed: 05/15/2023]
Abstract
Progress in deciphering the genetic architecture of human sensorineural hearing impairment (SNHI) or loss, and multidisciplinary studies of mouse models, have led to the elucidation of the molecular mechanisms underlying auditory system function, primarily in the cochlea, the mammalian hearing organ. These studies have provided unparalleled insights into the pathophysiological processes involved in SNHI, paving the way for the development of inner-ear gene therapy based on gene replacement, gene augmentation or gene editing. The application of these approaches in preclinical studies over the past decade has highlighted key translational opportunities and challenges for achieving effective, safe and sustained inner-ear gene therapy to prevent or cure monogenic forms of SNHI and associated balance disorders.
Collapse
Affiliation(s)
- Christine Petit
- Institut Pasteur, Université Paris Cité, Inserm, Institut de l'Audition, F-75012, Paris, France.
- Collège de France, F-75005, Paris, France.
| | - Crystel Bonnet
- Institut Pasteur, Université Paris Cité, Inserm, Institut de l'Audition, F-75012, Paris, France
| | - Saaïd Safieddine
- Institut Pasteur, Université Paris Cité, Inserm, Institut de l'Audition, F-75012, Paris, France
- Centre National de la Recherche Scientifique, F-75016, Paris, France
| |
Collapse
|
7
|
Aldè M, Cantarella G, Zanetti D, Pignataro L, La Mantia I, Maiolino L, Ferlito S, Di Mauro P, Cocuzza S, Lechien JR, Iannella G, Simon F, Maniaci A. Autosomal Dominant Non-Syndromic Hearing Loss (DFNA): A Comprehensive Narrative Review. Biomedicines 2023; 11:1616. [PMID: 37371710 DOI: 10.3390/biomedicines11061616] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Autosomal dominant non-syndromic hearing loss (HL) typically occurs when only one dominant allele within the disease gene is sufficient to express the phenotype. Therefore, most patients diagnosed with autosomal dominant non-syndromic HL have a hearing-impaired parent, although de novo mutations should be considered in all cases of negative family history. To date, more than 50 genes and 80 loci have been identified for autosomal dominant non-syndromic HL. DFNA22 (MYO6 gene), DFNA8/12 (TECTA gene), DFNA20/26 (ACTG1 gene), DFNA6/14/38 (WFS1 gene), DFNA15 (POU4F3 gene), DFNA2A (KCNQ4 gene), and DFNA10 (EYA4 gene) are some of the most common forms of autosomal dominant non-syndromic HL. The characteristics of autosomal dominant non-syndromic HL are heterogenous. However, in most cases, HL tends to be bilateral, post-lingual in onset (childhood to early adulthood), high-frequency (sloping audiometric configuration), progressive, and variable in severity (mild to profound degree). DFNA1 (DIAPH1 gene) and DFNA6/14/38 (WFS1 gene) are the most common forms of autosomal dominant non-syndromic HL affecting low frequencies, while DFNA16 (unknown gene) is characterized by fluctuating HL. A long audiological follow-up is of paramount importance to identify hearing threshold deteriorations early and ensure prompt treatment with hearing aids or cochlear implants.
Collapse
Affiliation(s)
- Mirko Aldè
- Department of Clinical Sciences and Community Health, University of Milan, 20090 Milan, Italy
- Department of Specialist Surgical Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20090 Milan, Italy
- Otology Study Group of the Young-Otolaryngologists of the International Federations of Oto-Rhino-Laryngological Societies (YO-IFOS), 75000 Paris, France
| | - Giovanna Cantarella
- Department of Clinical Sciences and Community Health, University of Milan, 20090 Milan, Italy
- Department of Specialist Surgical Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20090 Milan, Italy
| | - Diego Zanetti
- Department of Clinical Sciences and Community Health, University of Milan, 20090 Milan, Italy
- Department of Specialist Surgical Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20090 Milan, Italy
| | - Lorenzo Pignataro
- Department of Clinical Sciences and Community Health, University of Milan, 20090 Milan, Italy
- Department of Specialist Surgical Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20090 Milan, Italy
| | - Ignazio La Mantia
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| | - Luigi Maiolino
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| | - Salvatore Ferlito
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| | - Paola Di Mauro
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| | - Salvatore Cocuzza
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| | - Jérôme René Lechien
- Otology Study Group of the Young-Otolaryngologists of the International Federations of Oto-Rhino-Laryngological Societies (YO-IFOS), 75000 Paris, France
| | - Giannicola Iannella
- Otology Study Group of the Young-Otolaryngologists of the International Federations of Oto-Rhino-Laryngological Societies (YO-IFOS), 75000 Paris, France
| | - Francois Simon
- Otology Study Group of the Young-Otolaryngologists of the International Federations of Oto-Rhino-Laryngological Societies (YO-IFOS), 75000 Paris, France
| | - Antonino Maniaci
- Otology Study Group of the Young-Otolaryngologists of the International Federations of Oto-Rhino-Laryngological Societies (YO-IFOS), 75000 Paris, France
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| |
Collapse
|