1
|
Wang S, Li C, Zhang J, Ma K, Zhang W, Gao Y, Li X, Zhang J, Guo L, Nie Y, Li Y, Sun R, Zhu N, He W, Zhao S, Guo K. Uniform and size-tunable dasatinib nanoemulsions synthesized by a high-throughput microreactor for enhanced temperature stability. Chem Commun (Camb) 2025; 61:3524-3527. [PMID: 39907060 DOI: 10.1039/d4cc05851h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
This study introduces a high-throughput microreactor for preparing dasatinib nanoemulsions with precise control over particle size and uniformity. Leveraging the microreactor's advantages in mass transfer and mixing, we established an empirical correlation to predict and adjust nanoemulsion properties. Optimized operational parameters enabled the synthesis of stable dasatinib nanoemulsions with narrow size distributions and mean diameters below 20 nm, maintaining their stability and transparency under various storage conditions.
Collapse
Affiliation(s)
- Su Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China.
- Tianhua Institute of Chemical Machinery & Automation Co., Ltd, Lanzhou 215128, China
| | - Chao Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Jiaxiang Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Kaixuan Ma
- Tianhua Institute of Chemical Machinery & Automation Co., Ltd, Lanzhou 215128, China
| | - Wanyao Zhang
- Tianhua Institute of Chemical Machinery & Automation Co., Ltd, Lanzhou 215128, China
| | - Yan Gao
- Tianhua Institute of Chemical Machinery & Automation Co., Ltd, Lanzhou 215128, China
| | - Xue Li
- Sinopec Beijing Research Institute of Chemical Industry, Beijing 100029, China
| | - Jingsheng Zhang
- Sinopec Beijing Research Institute of Chemical Industry, Beijing 100029, China
| | - Liang Guo
- Sinopec Beijing Research Institute of Chemical Industry, Beijing 100029, China
| | - Yingying Nie
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Yuguang Li
- Institute of Nanjing Advanced Biomaterials & Processing Equipment, Nanjing 211299, China
| | - Ruiyan Sun
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Ning Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China.
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Wei He
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Shuangfei Zhao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China.
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
2
|
Li J, Wang Y, Wang Y, Zhai L, Huang J, Song L, You H, Chen FE. Desymmetrization of Inert meso-Diethers through Copper-Catalyzed Asymmetric Allylic Alkylation with Grignard Reagents. Org Lett 2024; 26:5844-5849. [PMID: 38950387 DOI: 10.1021/acs.orglett.4c01972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
We have developed a highly regio-, diastereo-, and enantioselective Cu-catalyzed desymmetrization of inert meso-diethers using Grignard reagents. Moreover, previous inaccessible sterically hindered organometallic reagents are realized in the reaction with broad secondary alkyl Grignard reagents. Finally, detailed control experiments and density functional theory calculations revealed the desymmetrization of meso-diethers exploits a direct anti-SN2' pathway, in the absence of an in situ-generated allyl bromine intermediate. The following oxidative addition is the crucial rate-determining and enantioselectivity-determining step.
Collapse
Affiliation(s)
- Jun Li
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yu Wang
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yan Wang
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Lianjie Zhai
- National Key Lab of Science and Technology on Combustion and Explosion, Xi'an Modern Chemistry Research Institute, Xi'an 710065, China
| | - Junrong Huang
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- Green Pharmaceutical Engineering Research Center, Shenzhen 518055, China
| | - Lijuan Song
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Hengzhi You
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- Green Pharmaceutical Engineering Research Center, Shenzhen 518055, China
| | - Fen-Er Chen
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- Green Pharmaceutical Engineering Research Center, Shenzhen 518055, China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| |
Collapse
|
3
|
Li J, Huang J, Wang Y, Liu Y, Zhu Y, You H, Chen FE. Copper-catalyzed asymmetric allylic substitution of racemic/ meso substrates. Chem Sci 2024; 15:8280-8294. [PMID: 38846404 PMCID: PMC11151816 DOI: 10.1039/d4sc02135e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/06/2024] [Indexed: 06/09/2024] Open
Abstract
The synthesis of enantiomerically pure compounds is a pivotal subject in the field of chemistry, with enantioselective catalysis currently standing as the primary approach for delivering specific enantiomers. Among these strategies, Cu-catalyzed asymmetric allylic substitution (AAS) is significant and irreplaceable, especially when it comes to the use of non-stabilized nucleophiles (pK a > 25). Although Cu-catalyzed AAS of prochiral substrates has also been widely developed, methodologies involving racemic/meso substrates are highly desirable, as the substrates undergo dynamic processes to give single enantiomer products. Inspired by the pioneering work of the Alexakis, Feringa and Gennari groups, Cu-catalyzed AAS has been continuously employed in deracemization and desymmetrization processes for the synthesis of enantiomerically enriched products. In this review, we mainly focus on the developments of Cu-catalyzed AAS with racemic/meso substrates over the past two decades, providing an explicit outline of the ligands employed, the scope of nucleophiles, the underlying dynamic processes and their practical applications.
Collapse
Affiliation(s)
- Jun Li
- School of Science, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
| | - Junrong Huang
- School of Science, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
- Green Pharmaceutical Engineering Research Center, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
| | - Yan Wang
- School of Science, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
| | - Yuexin Liu
- School of Science, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
| | - Yuxiang Zhu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University Shenzhen 518107 China
| | - Hengzhi You
- School of Science, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
- Green Pharmaceutical Engineering Research Center, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
| | - Fen-Er Chen
- School of Science, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
- Green Pharmaceutical Engineering Research Center, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University Shanghai 200433 China
| |
Collapse
|
4
|
Huangfu X, Wang Z, Chen Y, Wei J, Liu W, Zhang WX. Recent progress on the functionalization of white phosphorus in China. Natl Sci Rev 2024; 11:nwae162. [PMID: 38855361 PMCID: PMC11162153 DOI: 10.1093/nsr/nwae162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/05/2024] [Accepted: 04/26/2024] [Indexed: 06/11/2024] Open
Abstract
Direct synthesis of organophosphorus compounds from white phosphorus represents a significant but challenging subject, especially in the context of ongoing efforts to comprehensively improve the phosphorus-derived chemical industry driven by sustainability and safety concerns. China is the world's largest producer of white phosphorus, creating a significant demand for the green transformation of this crucial feedstock. This review provides an overview of advancements in white phosphorus activation by Chinese research teams, focusing on the direct construction of P‒C/N/O/S/M bonds from white phosphorus. Additionally, we offer some insights into prospective directions for the activation and transformation of white phosphorus in the future. This review paper aims to attract more researchers to engage in this area, stimulating follow-up exploration and fostering enduring advances.
Collapse
Affiliation(s)
- Xinlei Huangfu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhongzhen Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yu Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Junnian Wei
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wei Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wen-Xiong Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
5
|
Ru T, Zhang Y, Wei Q, Zuo S, Jia Z, Chen FE. P(V)-Promoted Rh-Catalyzed Highly Regioselective Hydroformylation of Styrenes under Mild Conditions. Molecules 2024; 29:2039. [PMID: 38731530 PMCID: PMC11085418 DOI: 10.3390/molecules29092039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Hydroformylation of olefins is widely used in the chemical industry due to its versatility and the ability to produce valuable aldehydes with 100% atom economy. Herein, a hybrid phosphate promoter was found to efficiently promote rhodium-catalyzed hydroformylation of styrenes under remarkably mild conditions with high regioselectivities. Preliminary mechanistic studies revealed that the weak coordination between the Rhodium and the P=O double bond of this pentavalent phosphate likely induced exceptional reactivity and high ratios of branched aldehydes to linear products.
Collapse
Affiliation(s)
- Tong Ru
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China;
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China; (Y.Z.); (Q.W.)
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Yajiao Zhang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China; (Y.Z.); (Q.W.)
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
- College of Chemical Engineering, Fuzhou University, Fuzhou 350102, China
| | - Qiuxiang Wei
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China; (Y.Z.); (Q.W.)
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
- College of Chemical Engineering, Fuzhou University, Fuzhou 350102, China
| | - Sheng Zuo
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China; (Y.Z.); (Q.W.)
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Zhenhua Jia
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China; (Y.Z.); (Q.W.)
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Fen-Er Chen
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China;
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China; (Y.Z.); (Q.W.)
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
- College of Chemical Engineering, Fuzhou University, Fuzhou 350102, China
| |
Collapse
|
6
|
Nagy S, Richter D, Dargó G, Orbán B, Gémes G, Höltzl T, Garádi Z, Fehér Z, Kupai J. Cinchona-Based Hydrogen-Bond Donor Organocatalyst Metal Complexes: Asymmetric Catalysis and Structure Determination. ChemistryOpen 2024; 13:e202300180. [PMID: 38189585 PMCID: PMC11004460 DOI: 10.1002/open.202300180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/12/2023] [Indexed: 01/09/2024] Open
Abstract
In this study, we describe the synthesis of cinchona (thio)squaramide and a novel cinchona thiourea organocatalyst. These catalysts were employed in pharmaceutically relevant catalytic asymmetric reactions, such as Michael, Friedel-Crafts, and A3 coupling reactions, in combination with Ag(I), Cu(II), and Ni(II) salts. We identified several organocatalyst-metal salt combinations that led to a significant increase in both yield and enantioselectivity. To gain insight into the active catalyst species, we prepared organocatalyst-metal complexes and characterized them using HRMS, NMR spectroscopy, and quantum chemical calculations (B3LYP-D4/def2-TZVP), which allowed us to establish a structure-activity relationship.
Collapse
Affiliation(s)
- Sándor Nagy
- Department of Organic Chemistry and TechnologyBudapest University of Technology and EconomicsMűegyetem rkp. 31111BudapestHungary
- Euroapi Hungary Kft.Tó utca 1–51045BudapestHungary
| | - Dóra Richter
- Department of Organic Chemistry and TechnologyBudapest University of Technology and EconomicsMűegyetem rkp. 31111BudapestHungary
| | - Gyula Dargó
- Department of Organic Chemistry and TechnologyBudapest University of Technology and EconomicsMűegyetem rkp. 31111BudapestHungary
| | - Balázs Orbán
- ELKH-BME Computation Driven Chemistry Research GroupDepartment of Inorganic and Analytical ChemistryBudapest University of Technology and EconomicsMűegyetem rkp. 31111BudapestHungary
- Furukawa Electric Institute of TechnologyKésmárk utca 28/A1157BudapestHungary
| | - Gergő Gémes
- Department of Organic Chemistry and TechnologyBudapest University of Technology and EconomicsMűegyetem rkp. 31111BudapestHungary
| | - Tibor Höltzl
- ELKH-BME Computation Driven Chemistry Research GroupDepartment of Inorganic and Analytical ChemistryBudapest University of Technology and EconomicsMűegyetem rkp. 31111BudapestHungary
- Furukawa Electric Institute of TechnologyKésmárk utca 28/A1157BudapestHungary
| | - Zsófia Garádi
- Department of PharmacognosySemmelweis UniversityÜllői út. 261085BudapesHungary
| | - Zsuzsanna Fehér
- Department of Organic Chemistry and TechnologyBudapest University of Technology and EconomicsMűegyetem rkp. 31111BudapestHungary
| | - József Kupai
- Department of Organic Chemistry and TechnologyBudapest University of Technology and EconomicsMűegyetem rkp. 31111BudapestHungary
| |
Collapse
|
7
|
Chen Y, Liu W, Huangfu X, Wei J, Yu J, Zhang WX. Direct Synthesis of Phosphoryltriacetates from White Phosphorus via Visible Light Catalysis. Chemistry 2024; 30:e202302289. [PMID: 37927193 DOI: 10.1002/chem.202302289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/01/2023] [Accepted: 11/03/2023] [Indexed: 11/07/2023]
Abstract
Organophosphorus compounds (OPCs) are widely used in many fields. However, traditional synthetic routes in the industry usually involve multistep and hazardous procedures. Therefore, it's of great significance to construct such compounds in an environmentally-friendly and facile way. Herein, a photoredox catalytic method has been developed to construct novel phosphoryltriacetates. Using fac-Ir(ppy)3 (ppy=2-phenylpyridine) as the photocatalyst and blue LEDs (456 nm) as the light source, white phosphorus can react with α-bromo esters smoothly to generate phosphoryltriacetates in moderate to good yields. This one-step approach features mild reaction conditions and simple operational process without chlorination.
Collapse
Affiliation(s)
- Yu Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-earth Materials Chemistry and Applications &, Key Laboratory of Bioorganic Chemistry and, Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Wei Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-earth Materials Chemistry and Applications &, Key Laboratory of Bioorganic Chemistry and, Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xinlei Huangfu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-earth Materials Chemistry and Applications &, Key Laboratory of Bioorganic Chemistry and, Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Junnian Wei
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-earth Materials Chemistry and Applications &, Key Laboratory of Bioorganic Chemistry and, Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jiangxi Yu
- Hunan Provincial Key Laboratory of Functional Metal-Organic Compounds, Key Laboratory of Organometallic New Materials (Hengyang Normal University), College of Hunan Province, Hengyang Normal University, Hengyang, 421008, China
| | - Wen-Xiong Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-earth Materials Chemistry and Applications &, Key Laboratory of Bioorganic Chemistry and, Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
8
|
Maikhuri VK, Mathur D, Chaudhary A, Kumar R, Parmar VS, Singh BK. Transition-Metal Catalyzed Synthesis of Pyrimidines: Recent Advances, Mechanism, Scope and Future Perspectives. Top Curr Chem (Cham) 2024; 382:4. [PMID: 38296918 DOI: 10.1007/s41061-024-00451-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/07/2024] [Indexed: 02/02/2024]
Abstract
Pyrimidine is a pharmacologically important moiety that exhibits diverse biological activities. This review reflects the growing significance of transition metal-catalyzed reactions for the synthesis of pyrimidines (with no discussion being made on the transition metal-catalyzed functionalization of pyrimidines). The effect of different catalysts on the selectivity/yields of pyrimidines and catalyst recyclability (wherever applicable) are described, together with attempts to illustrate the role of the catalyst through mechanisms. Although several methods have been researched for synthesizing this privileged scaffold, there has been a considerable push to expand transition metal-catalyzed, sustainable, efficient and selective synthetic strategies leading to pyrimidines. The aim of the authors with this update (2017-2023) is to drive the designing of new transition metal-mediated protocols for pyrimidine synthesis.
Collapse
Affiliation(s)
- Vipin K Maikhuri
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Divya Mathur
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India.
- Department of Chemistry, Daulat Ram College, University of Delhi, Delhi, 110007, India.
| | - Ankita Chaudhary
- Department of Chemistry, Maitreyi College, University of Delhi, Delhi, 110021, India
| | - Rajesh Kumar
- Department of Chemistry, R.D.S College, B.R.A. Bihar University, Muzaffarpur, India
| | - Virinder S Parmar
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India
- Nanoscience Program, CUNY Graduate Center and Department of Chemistry, City College & Medgar Evers College, The City University of New York, 160 Convent Avenue, New York, NY, 10031, USA
- Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh, 201303, India
| | - Brajendra K Singh
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India
| |
Collapse
|
9
|
Xu A, Li C, Huang J, Pang H, Zhao C, Song L, You H, Zhang X, Chen FE. Highly enantioselective synthesis of both tetrahydroquinoxalines and dihydroquinoxalinones via Rh-thiourea catalyzed asymmetric hydrogenation. Chem Sci 2023; 14:9024-9032. [PMID: 37655018 PMCID: PMC10466277 DOI: 10.1039/d3sc00803g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/03/2023] [Indexed: 09/02/2023] Open
Abstract
Chiral tetrahydroquinoxalines and dihydroquinoxalinones represent the core structure of many bioactive molecules. Herein, a simple and efficient Rh-thiourea-catalyzed asymmetric hydrogenation for enantiopure tetrahydroquinoxalines and dihydroquinoxalinones was developed under 1 MPa H2 pressure at room temperature. The reaction was magnified to the gram scale furnishing the desired products with undamaged yield and enantioselectivity. Application of this methodology was also conducted successfully under continuous flow conditions. In addition, 1H NMR experiments revealed that the introduction of a strong Brønsted acid, HCl, not only activated the substrate but also established anion binding between the substrate and the ligand. More importantly, the chloride ion facilitated heterolytic cleavage of dihydrogen to regenerate the active dihydride species and HCl, which was computed to be the rate-determining step. Further deuterium labeling experiments and density functional theory (DFT) calculations demonstrated that this reaction underwent a plausible outer-sphere mechanism in this new catalytic transformation.
Collapse
Affiliation(s)
- Ana Xu
- School of Science, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
| | - Chaoyi Li
- School of Science, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
| | - Junrong Huang
- School of Science, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
| | - Heng Pang
- School of Science, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
| | - Chengyao Zhao
- School of Science, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
| | - Lijuan Song
- School of Science, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
| | - Hengzhi You
- School of Science, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
- Green Pharmaceutical Engineering Research Center, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
| | - Xumu Zhang
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology Shenzhen 518055 China
| | - Fen-Er Chen
- School of Science, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
- Green Pharmaceutical Engineering Research Center, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University Shanghai 200433 China
| |
Collapse
|
10
|
Long H, Xu H, Shaoyu J, Jiang T, Zhuang W, Li M, Jin J, Ji L, Ying H, Zhu C. High-Strength Bio-Degradable Polymer Foams with Stable High Volume-Expansion Ratio Using Chain Extension and Green Supercritical Mixed-Gas Foaming. Polymers (Basel) 2023; 15:polym15040895. [PMID: 36850179 PMCID: PMC9963428 DOI: 10.3390/polym15040895] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 02/15/2023] Open
Abstract
The preparation of biodegradable polymer foams with a stable high volume-expansion ratio (VER) is challenging. For example, poly (butylene adipate-co-terephthalate) (PBAT) foams have a low melt strength and high shrinkage. In this study, polylactic acid (PLA), which has a high VER and crystallinity, was added to PBAT to reduce shrinkage during the supercritical molded-bead foaming process. The epoxy chain extender ADR4368 was used both as a chain extender and a compatibilizer to mitigate the linear chain structure and incompatibility and improve the foamability of PBAT. The branched-chain structure increased the energy-storage modulus (G') and complex viscosity (η*), which are the key factors for the growth of cells, by 1-2 orders of magnitude. Subsequently, we innovatively used the CO2 and N2 composite gas method. The foam-shrinkage performance was further inhibited; the final foam had a VER of 23.39 and a stable cell was obtained. Finally, after steam forming, the results showed that the mechanical strength of the PBAT/PLA blended composite foam was considerably improved by the addition of PLA. The compressive strength (50%), bending strength, and fracture load by bending reached 270.23 kPa, 0.36 MPa, and 23.32 N, respectively. This study provides a potential strategy for the development of PBAT-based foam packaging materials with stable cell structure, high VER, and excellent mechanical strength.
Collapse
Affiliation(s)
- Haoyu Long
- College of Biotechnique and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Hongsen Xu
- College of Biotechnique and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Jingwen Shaoyu
- College of Biotechnique and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Tianchen Jiang
- College of Biotechnique and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Wei Zhuang
- College of Biotechnique and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
- National Engineering Technique Research Center for Biotechnique, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 5, Xinmofan Road, Nanjing 210009, China
- Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
- Correspondence: (W.Z.); (C.Z.)
| | - Ming Li
- College of Biotechnique and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
- National Engineering Technique Research Center for Biotechnique, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 5, Xinmofan Road, Nanjing 210009, China
| | - Junyang Jin
- College of Biotechnique and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Lei Ji
- College of Biotechnique and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
- National Engineering Technique Research Center for Biotechnique, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 5, Xinmofan Road, Nanjing 210009, China
- Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Hanjie Ying
- College of Biotechnique and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
- National Engineering Technique Research Center for Biotechnique, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 5, Xinmofan Road, Nanjing 210009, China
- Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Chenjie Zhu
- College of Biotechnique and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
- National Engineering Technique Research Center for Biotechnique, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 5, Xinmofan Road, Nanjing 210009, China
- Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
- Correspondence: (W.Z.); (C.Z.)
| |
Collapse
|
11
|
Wu Q, Li L, Xu B, Sun J, Ji D, Li Y, Shen L, Fang Z, Duan J, Chen B, Guo K. Iron-catalyzed [4 + 2] annulation of amidines with α,β-unsaturated ketoxime acetates toward 2,4,6-trisubstituted pyrimidines. GREEN SYNTHESIS AND CATALYSIS 2023. [DOI: 10.1016/j.gresc.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
12
|
Brufani G, Valentini F, Rossini G, Rosignoli L, Gu Y, Liu P, Vaccaro L. Waste-minimized continuous flow copper-catalyzed azide-alkyne cycloaddition with low metal contamination. GREEN SYNTHESIS AND CATALYSIS 2023. [DOI: 10.1016/j.gresc.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
13
|
Li J, Song X, Wang Y, Huang J, You H, Chen FE. Copper-catalyzed asymmetric allylic alkylation of racemic inert cyclic allylic ethers under batch and flow conditions. Chem Sci 2023; 14:4351-4356. [PMID: 37123175 PMCID: PMC10132103 DOI: 10.1039/d3sc00127j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
The Cu-catalyzed AAA reactions employing challenging racemic inert cyclic allylic ethers with sterically hindered Grignard reagents have been disclosed under batch and flow conditions.
Collapse
Affiliation(s)
- Jun Li
- School of Science, Harbin Institute of Technology (Shenzhen), Taoyuan Street, Nanshan District, Shenzhen, 518055, China
| | - Xiao Song
- School of Science, Harbin Institute of Technology (Shenzhen), Taoyuan Street, Nanshan District, Shenzhen, 518055, China
| | - Yan Wang
- School of Science, Harbin Institute of Technology (Shenzhen), Taoyuan Street, Nanshan District, Shenzhen, 518055, China
| | - Junrong Huang
- School of Science, Harbin Institute of Technology (Shenzhen), Taoyuan Street, Nanshan District, Shenzhen, 518055, China
- Green Pharmaceutical Engineering Research Center, Harbin Institute of Technology (Shenzhen), Taoyuan Street, Nanshan District, Shenzhen, 518055, China
| | - Hengzhi You
- School of Science, Harbin Institute of Technology (Shenzhen), Taoyuan Street, Nanshan District, Shenzhen, 518055, China
- Green Pharmaceutical Engineering Research Center, Harbin Institute of Technology (Shenzhen), Taoyuan Street, Nanshan District, Shenzhen, 518055, China
| | - Fen-Er Chen
- School of Science, Harbin Institute of Technology (Shenzhen), Taoyuan Street, Nanshan District, Shenzhen, 518055, China
- Green Pharmaceutical Engineering Research Center, Harbin Institute of Technology (Shenzhen), Taoyuan Street, Nanshan District, Shenzhen, 518055, China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, China
| |
Collapse
|
14
|
Zhao S, Nie Y, Wei Y, Yu P, He W, Zhu N, Li Y, Ji D, Guo K. Design and parametric optimization of a fan-notched baffle structure mixer for enhancement of liquid-liquid two-phase chemical process. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2022. [DOI: 10.1515/ijcre-2022-0140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The mixing uniformity plays a crucial role in a liquid-liquid two-phase chemical process. To quantify the uniformity of the liquid–liquid process, the specific surface area ratio is proposed and studied through computational fluid dynamics simulation. There is a scale effect in the liquid–liquid two phase chemical processing that the specific surface area ratio decreases to 7.01% when the diameter of the Y-like mixer increases from 1 mm to 10 mm. A millimeter-scale mixer with a fan-notched baffle structure was designed, and the baffle unit length, baffle tilt angle, baffle notch size and baffle thickness of the mixer were optimized. Compared with the 1 mm Y-like mixer, the specific surface area ratio of the 10 mm mixer with notched baffle structures increases to 2.5 times and the treatment capacity increases to 100 times. Additionally, experiment and simulation results prove that FNBS is considered to be a suitable structure for enhancing liquid-liquid two-phase. This study will provide a useful reference for the design of large-scale mixers applicable to liquid-liquid heterogeneous chemical processes.
Collapse
Affiliation(s)
- Shuangfei Zhao
- College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing 211816 , China
| | - Yingying Nie
- College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing 211816 , China
| | - Yimin Wei
- College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing 211816 , China
| | - Pengjie Yu
- College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing 211816 , China
| | - Wei He
- College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing 211816 , China
| | - Ning Zhu
- College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing 211816 , China
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing Tech University , Nanjing 211816 , China
| | - Yuguang Li
- Institute of Nanjing Advanced Biomaterials & Processing Equipment , Nanjing 211299 , China
| | - Dong Ji
- Institute of Nanjing Advanced Biomaterials & Processing Equipment , Nanjing 211299 , China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing 211816 , China
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing Tech University , Nanjing 211816 , China
| |
Collapse
|
15
|
Zhang D, Wu F, Wan Z, Wang Y, He X, Guo B, You H, Chen FE. A palladium polyaniline complex: a simple and efficient catalyst for batch and flow Suzuki-Miyaura cross-couplings. Chem Commun (Camb) 2022; 58:10845-10848. [PMID: 36073300 DOI: 10.1039/d2cc04051d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A novel palladium polyaniline complex (Pd@PANI) was synthesized via a one-pot method using a low concentration of hydrogen peroxide (3 wt%) as a mild oxidant. Pd@PANI was employed to catalyze Suzuki-Miyaura cross-couplings with 0.11 ppm levels of palladium and high turnover numbers (up to 6.1 × 104). Various aromatic halides and aromatic boric acids were used as reaction partners to prepare the biaryl compounds in high yields. Application of the method in the synthesis of D-fructose derivatives was also performed. Furthermore, the catalyst was evaluated under a flow process to provide the corresponding products in good yields with shorter residence times and lower temperatures in more convenient operations compared with the batch conditions.
Collapse
Affiliation(s)
- Dongliang Zhang
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China. .,Green Pharmaceutical Engineering Research Center, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Fusong Wu
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China. .,Green Pharmaceutical Engineering Research Center, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Zhijian Wan
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Yichun Wang
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Xuan He
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Bing Guo
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Hengzhi You
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China. .,Green Pharmaceutical Engineering Research Center, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Fen-Er Chen
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China. .,Green Pharmaceutical Engineering Research Center, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.,Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, China
| |
Collapse
|
16
|
Xia Y, Ye B, Liu M, Jiang M, Chen F. Continuous-Flow Synthesis of syn-2-Amino-1,3-diol via Catalytic Hydrogenation: A Vital Intermediate of (+)-Thiamphenicol and (+)-Florfenicol. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yingqi Xia
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Baijun Ye
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Minjie Liu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Meifen Jiang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Fener Chen
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| |
Collapse
|
17
|
Wang L, Liu M, Jiang M, Wan L, Li W, Cheng D, Chen F. Six‐Step Continuous Flow Synthesis of Diclofenac Sodium via Cascade Etherification/Smiles Rearrangement Strategy: Tackling the Issues of Batch Processing. Chemistry 2022; 28:e202201420. [DOI: 10.1002/chem.202201420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Indexed: 12/23/2022]
Affiliation(s)
- Lulu Wang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules Department of Chemistry Fudan University Shanghai 200433 P. R. China
- Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs Shanghai 200433 P. R. China
| | - Minjie Liu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules Department of Chemistry Fudan University Shanghai 200433 P. R. China
- Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs Shanghai 200433 P. R. China
| | - Meifen Jiang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules Department of Chemistry Fudan University Shanghai 200433 P. R. China
- Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs Shanghai 200433 P. R. China
| | - Li Wan
- Engineering Center of Catalysis and Synthesis for Chiral Molecules Department of Chemistry Fudan University Shanghai 200433 P. R. China
- Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs Shanghai 200433 P. R. China
| | - Weijian Li
- Engineering Center of Catalysis and Synthesis for Chiral Molecules Department of Chemistry Fudan University Shanghai 200433 P. R. China
- Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs Shanghai 200433 P. R. China
| | - Dang Cheng
- Engineering Center of Catalysis and Synthesis for Chiral Molecules Department of Chemistry Fudan University Shanghai 200433 P. R. China
- Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs Shanghai 200433 P. R. China
| | - Fener Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules Department of Chemistry Fudan University Shanghai 200433 P. R. China
- Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs Shanghai 200433 P. R. China
| |
Collapse
|
18
|
Kochetkov KA, Bystrova NA, Pavlov PA, Oshchepkov MS, Oshchepkov AS. Microfluidic Asymmetrical Synthesis and Chiral Analysis. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Wan L, Kong G, Liu M, Jiang M, Cheng D, Chen F. Flow chemistry in the multi-step synthesis of natural products. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
|
20
|
Ralbovsky NM, Smith JP. Process analytical technology and its recent applications for asymmetric synthesis. Talanta 2022; 252:123787. [DOI: 10.1016/j.talanta.2022.123787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/25/2022] [Indexed: 11/27/2022]
|
21
|
Li J, Song X, Wu F, You H, Chen FE. Cu‐Catalyzed Asymmetric Allylic Alkylation of Racemic Cyclic Allyl Bromides with Organolithium Compounds. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jun Li
- Harbin Institute of Technology Shenzhen School of science CHINA
| | - Xiao Song
- Harbin Institute of Technology Shenzhen School of science CHINA
| | - Fusong Wu
- Harbin Institute of Technology Shenzhen School of science CHINA
| | - Hengzhi You
- Harbin Institute of Technology Shenzhen School of science Xili University Town, Building G, Room 608 518055 Shenzhen CHINA
| | - Fen-Er Chen
- Harbin Institute of Technology Shenzhen School of science CHINA
| |
Collapse
|
22
|
Wang J, Li J, Wang Y, He S, You H, Chen FE. Polymer-Supported Chiral Heterogeneous Copper Catalyst for Asymmetric Conjugate Addition of Ketones and Imines under Batch and Flow. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Junwen Wang
- School of science, Harbin Institute of Technology (Shenzhen), Taoyuan Street, Nanshan District, Shenzhen 518055, China
| | - Jun Li
- School of science, Harbin Institute of Technology (Shenzhen), Taoyuan Street, Nanshan District, Shenzhen 518055, China
| | - Yan Wang
- School of science, Harbin Institute of Technology (Shenzhen), Taoyuan Street, Nanshan District, Shenzhen 518055, China
| | - Sisi He
- School of science, Harbin Institute of Technology (Shenzhen), Taoyuan Street, Nanshan District, Shenzhen 518055, China
| | - Hengzhi You
- School of science, Harbin Institute of Technology (Shenzhen), Taoyuan Street, Nanshan District, Shenzhen 518055, China
- Green Pharmaceutical Engineering Research Center, Harbin Institute of Technology (Shenzhen), Taoyuan Street, Nanshan District, Shenzhen 518055, China
| | - Fen-Er Chen
- School of science, Harbin Institute of Technology (Shenzhen), Taoyuan Street, Nanshan District, Shenzhen 518055, China
- Green Pharmaceutical Engineering Research Center, Harbin Institute of Technology (Shenzhen), Taoyuan Street, Nanshan District, Shenzhen 518055, China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| |
Collapse
|
23
|
Zhao S, Nie Y, Zhang W, Hu R, Sheng L, He W, Zhu N, Li Y, Ji D, Guo K. Microfluidic field strategy for enhancement and scale up of liquid–liquid homogeneous chemical processes by optimization of 3D spiral baffle structure. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.07.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
Chen Y, Yi X, Cheng Y, Huang A, Yang Z, Zhao X, Ling F, Zhong W. Rh-Catalyzed Highly Enantioselective Hydrogenation of Functionalized Olefins with Chiral Ferrocenylphosphine-Spiro Phosphonamidite Ligands. J Org Chem 2022; 87:7864-7874. [PMID: 35676758 DOI: 10.1021/acs.joc.2c00532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A highly efficient Rh-catalyzed hydrogenation of functionalized olefins has been realized by a new family of highly rigid chiral ferrocenylphosphine-spiro phosphonamidite ligands. Excellent enantiocontrol (>99% ee in most cases) was achieved with a wide range of α-dehydroamino acid esters and α-enamides. This practicable catalytic system was further applied in the scalable synthesis of highly optically pure key intermediates of cinacalcet and d-phenylalanine.
Collapse
Affiliation(s)
- Yirui Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Xiao Yi
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Yuqi Cheng
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - An Huang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Zehui Yang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Xianghua Zhao
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Fei Ling
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Weihui Zhong
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| |
Collapse
|
25
|
Gao L, Lai L, Ye B, Liu M, Cheng D, Jiang M, Chen F. Continuous-flow synthesis of N,N′-bis(2,2,6,6-tetramethyl-4-piperidinyl)-1,6-hexanediamine (DTMPA) in a Micro fixed-bed reactor. J Flow Chem 2022. [DOI: 10.1007/s41981-022-00230-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Li W, Jiang M, Liu M, Ling X, Xia Y, Wan L, Chen F. Development of a Fully Continuous-Flow Approach Towards Asymmetric Total Synthesis of Tetrahydroprotoberberine Natural Alkaloids. Chemistry 2022; 28:e202200700. [PMID: 35357730 DOI: 10.1002/chem.202200700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Indexed: 11/06/2022]
Abstract
Continuous flow synthetic technologies had been widely applied in the total synthesis in the past few decades. Fully continuous flow synthesis is still extremely focused on multi-step synthesis of complex natural pharmaceutical molecules. Thus, the development of fully continuous flow total synthesis of natural products is in demand but challenging. Herein, we demonstrated the first fully continuous flow approach towards asymmetric total synthesis of natural tetrahydroprotoberberine alkaloids, (-)-isocanadine, (-)-tetrahydropseudocoptisine, (-)-stylopine and (-)-nandinine. This method features a concise linear sequence involving four chemical transformations and three on-line work-up processing in an integrated flow platform, without any intermediate purification. The overall yield and enantioselectivity of this four-step continuous flow chemistry were up to 50 % and 92 %ee, respectively, in a total residence time of 32.5 min, corresponding to a throughput of 145 mg/h.
Collapse
Affiliation(s)
- Weijian Li
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Meifen Jiang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, 200433, China
| | - Minjie Liu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, 200433, China
| | - Xu Ling
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yingqi Xia
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Li Wan
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, 200433, China
| | - Fener Chen
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.,Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, 200433, China
| |
Collapse
|
27
|
Hu J, Liu W, Zhang WX. Direct functionalization of white phosphorus by organolithium reagents to organophosphorus compounds. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2021.2008933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Jingyuan Hu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Wei Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Wen-Xiong Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| |
Collapse
|
28
|
Sun Q, Zhang X, Duan X, Qin L, Yuan X, Wu M, Liu J, Zhu S, Qiu J, Guo K. Photoinduced Merging with Copper‐ or
Nickel‐Catalyzed
1,
4‐Cyanoalkylarylation
of 1,
3‐Enynes
to Access Multiple Functionalizatized Allenes in Batch and Continuous Flow. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Qi Sun
- Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211816 P. R. China
| | - Xin‐Peng Zhang
- Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211816 P. R. China
| | - Xiu Duan
- Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211816 P. R. China
| | - Long‐Zhou Qin
- Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211816 P. R. China
| | - Xin Yuan
- Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211816 P. R. China
| | - Meng‐Yu Wu
- Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211816 P. R. China
| | - Jie Liu
- Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211816 P. R. China
| | - Shan‐Shan Zhu
- Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211816 P. R. China
| | - Jiang‐Kai Qiu
- Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211816 P. R. China
- State Key Laboratory of Materials‐Oriented Chemical Engineering Nanjing Tech University Nanjing 211800 P. R. China
| | - Kai Guo
- Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211816 P. R. China
- State Key Laboratory of Materials‐Oriented Chemical Engineering Nanjing Tech University Nanjing 211800 P. R. China
| |
Collapse
|
29
|
Paddlewheel dirhodium(II) complexes with N-heterocyclic carbene or phosphine ligand: New reactivity and selectivity. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
30
|
Liu C, Xia Y, Tao Z, Ni XL. Host-guest interaction tailored cucurbit[6]uril-based supramolecular organic frameworks (SOFs) for drug delivery. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
31
|
Wang PZ, Xiao WJ, Chen JR. Recent advances in radical-mediated transformations of 1,3-dienes. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63919-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
32
|
Gao P, Ke M, Ru T, Liang G, Chen FE. Synthesis of rac- α-aryl propionaldehydes via branched-selective hydroformylation of terminal arylalkenes using water-soluble Rh-PNP catalyst. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.07.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
33
|
An Y, Wu M, Li W, Li Y, Wang Z, Xue Y, Tang P, Chen F. The total synthesis of (-)-strempeliopine via palladium-catalyzed decarboxylative asymmetric allylic alkylation. Chem Commun (Camb) 2022; 58:1402-1405. [PMID: 34994369 DOI: 10.1039/d1cc06278f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In the work reported herein, the concise and enantioselective total synthesis of the Schizozygine alkaloid (-)-strempeliopine was developed. This synthetic strategy featured the palladium-catalyzed decarboxylative asymmetric allylic alkylation of N-benzoyl lactam to set up the absolute configuration at the C20 position, a highly diastereoselective one-pot Bischler-Napieralski/lactamization and iminium reduction sequence for the construction of the pentacyclic core structure, and the late-stage dearomative addition of indole, leading to the otherwise difficult-to-achieve hexacyclic indoline framework with complete control of four neighbouring stereocenters.
Collapse
Affiliation(s)
- Yi An
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Mengjuan Wu
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Weijian Li
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Yaling Li
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Zhenzhen Wang
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Yansong Xue
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Pei Tang
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Fener Chen
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China. .,Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| |
Collapse
|
34
|
Wan L, Jiang M, Cheng D, Liu M, Chen F. Continuous flow technology-a tool for safer oxidation chemistry. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00520k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advantages and benefits of continuous flow technology for oxidation chemistry have been illustrated in tube reactors, micro-channel reactors, tube-in-tube reactors and micro-packed bed reactors in the presence of various oxidants.
Collapse
Affiliation(s)
- Li Wan
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Meifen Jiang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Dang Cheng
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Minjie Liu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Fener Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| |
Collapse
|
35
|
Liao J, Jia X, Wu F, Huang J, Shen G, You H, Chen FE. Rapid mild macrocyclization of depsipeptides under continuous flow: total syntheses of five cyclodepsipeptides. Org Chem Front 2022. [DOI: 10.1039/d2qo01577c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A systematic investigation of the flow macrocyclization approaches for five destruxin analogues natural products at three different cyclization point has been reported.
Collapse
Affiliation(s)
- Jingyuan Liao
- School of science, Harbin Institute of Technology (Shenzhen), Guangdong, China
| | - Xuelei Jia
- School of science, Harbin Institute of Technology (Shenzhen), Guangdong, China
- Shenzhen Zhonghe Headway Bio-Sci & Tech Co., Ltd, Guangdong, China
| | - Fusong Wu
- School of science, Harbin Institute of Technology (Shenzhen), Guangdong, China
| | - Junrong Huang
- School of science, Harbin Institute of Technology (Shenzhen), Guangdong, China
| | - Guifu Shen
- Shenzhen Zhonghe Headway Bio-Sci & Tech Co., Ltd, Guangdong, China
| | - Hengzhi You
- School of science, Harbin Institute of Technology (Shenzhen), Guangdong, China
- Green Pharmaceutical Engineering Research Center, Harbin Institute of Technology (Shenzhen), Guangdong, China
| | - Fen-Er Chen
- School of science, Harbin Institute of Technology (Shenzhen), Guangdong, China
- Green Pharmaceutical Engineering Research Center, Harbin Institute of Technology (Shenzhen), Guangdong, China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, China
| |
Collapse
|
36
|
Jin Z, Wang H, Hu X, Liu Y, Hu Y, Zhao S, Zhu N, Fang Z, Guo K. Anionic polymerizations in a microreactor. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00360g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Anionic polymerizations in a microreactor enable fast mixing, high-level control, and scale-up synthesis of polymers.
Collapse
Affiliation(s)
- Zhao Jin
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Huiyue Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Xin Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Yihuan Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Yujing Hu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Shuangfei Zhao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Ning Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| |
Collapse
|
37
|
Wang Z, Zhao X, Wang S, Huang A, Wang Y, He J, Ling F, Zhong W. Iridium/ f-diaphos catalyzed asymmetric hydrogenation of 2-imidazolyl aryl/alkyl ketones. Org Biomol Chem 2021; 19:9746-9751. [PMID: 34730165 DOI: 10.1039/d1ob01860d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The iridium/f-diaphos L1, L5 or L12 catalyzed asymmetric hydrogenation of 2-imidazolyl aryl/alkyl ketones to afford two enantiomers of the desired chiral alcohols with high conversions (up to 99% yield) and moderate to excellent enantioselectivities (61% - >99% ee) was realized for the first time. This protocol could be easily conducted on a gram-scale with a TON of 9700.
Collapse
Affiliation(s)
- Ze Wang
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Xianghua Zhao
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Shiliang Wang
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - An Huang
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Yifan Wang
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Jiaying He
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Fei Ling
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Weihui Zhong
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| |
Collapse
|
38
|
Phosphafluorenyl lithiums: direct synthesis from white phosphorus, structure and diversified synthons. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1139-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
39
|
Ru T, Liang G, Zhang L, Ning Y, Chen F. Linear Selective Hydroformylation of 2‐Arylpropenes Using Water‐Soluble Rh‐PNP Complex: Straightforward Access to 3‐Aryl‐Butyraldehydes. ChemCatChem 2021. [DOI: 10.1002/cctc.202101352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Tong Ru
- Engineering Center of Catalysis and Synthesis for Chiral Molecules Fudan University 200433 Shanghai P. R. China
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs 200433 Shanghai P. R. China
| | - Guanfeng Liang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules Fudan University 200433 Shanghai P. R. China
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs 200433 Shanghai P. R. China
| | - Luyun Zhang
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs 200433 Shanghai P. R. China
| | - Yingtang Ning
- Engineering Center of Catalysis and Synthesis for Chiral Molecules Fudan University 200433 Shanghai P. R. China
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs 200433 Shanghai P. R. China
| | - Fen‐Er Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules Fudan University 200433 Shanghai P. R. China
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs 200433 Shanghai P. R. China
| |
Collapse
|
40
|
Jiang M, Liu M, Huang H, Chen F. Fully Continuous Flow Synthesis of 5-(Aminomethyl)-2-methylpyrimidin-4-amine: A Key Intermediate of Vitamin B 1. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Meifen Jiang
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Engineering center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Minjie Liu
- Department of Petroleum and Chemical Engineering, Fuzhou University, Fuzhou, Fujian Province 350108, China
| | - Huashan Huang
- Department of Petroleum and Chemical Engineering, Fuzhou University, Fuzhou, Fujian Province 350108, China
| | - Fener Chen
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Engineering center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Department of Petroleum and Chemical Engineering, Fuzhou University, Fuzhou, Fujian Province 350108, China
| |
Collapse
|
41
|
Jiang M, Liu M, Yu C, Cheng D, Chen F. Fully Continuous Flow Synthesis of 3-Chloro-4-oxopentyl Acetate: An Important Intermediate for Vitamin B1. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Meifen Jiang
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Minjie Liu
- Department of Petroleum and Chemical Engineering, Fuzhou University, Fuzhou, Fujian Province 350108, China
| | - Chao Yu
- Department of Petroleum and Chemical Engineering, Fuzhou University, Fuzhou, Fujian Province 350108, China
| | - Dang Cheng
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Fener Chen
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| |
Collapse
|
42
|
Ötvös SB, Kappe CO. Continuous flow asymmetric synthesis of chiral active pharmaceutical ingredients and their advanced intermediates. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2021; 23:6117-6138. [PMID: 34671222 PMCID: PMC8447942 DOI: 10.1039/d1gc01615f] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Catalytic enantioselective transformations provide well-established and direct access to stereogenic synthons that are broadly distributed among active pharmaceutical ingredients (APIs). These reactions have been demonstrated to benefit considerably from the merits of continuous processing and microreactor technology. Over the past few years, continuous flow enantioselective catalysis has grown into a mature field and has found diverse applications in asymmetric synthesis of pharmaceutically active substances. The present review therefore surveys flow chemistry-based approaches for the synthesis of chiral APIs and their advanced stereogenic intermediates, covering the utilization of biocatalysis, organometallic catalysis and metal-free organocatalysis to introduce asymmetry in continuously operated systems. Single-step processes, interrupted multistep flow syntheses, combined batch/flow processes and uninterrupted one-flow syntheses are discussed herein.
Collapse
Affiliation(s)
- Sándor B Ötvös
- Institute of Chemistry, University of Graz, NAWI Graz Heinrichstrasse 28 A-8010 Graz Austria
- Center for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE) Inffeldgasse 13 A-8010 Graz Austria
| | - C Oliver Kappe
- Institute of Chemistry, University of Graz, NAWI Graz Heinrichstrasse 28 A-8010 Graz Austria
- Center for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE) Inffeldgasse 13 A-8010 Graz Austria
| |
Collapse
|
43
|
Xia Y, Jiang M, Liu M, Zhang Y, Qu H, Xiong T, Huang H, Cheng D, Chen F. Catalytic Syn-Selective Nitroaldol Approach to Amphenicol Antibiotics: Evolution of a Unified Asymmetric Synthesis of (-)-Chloramphenicol, (-)-Azidamphenicol, (+)-Thiamphenicol, and (+)-Florfenicol. J Org Chem 2021; 86:11557-11570. [PMID: 34387504 DOI: 10.1021/acs.joc.1c01124] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A unified strategy for an efficient and high diastereo- and enantioselective synthesis of (-)-chloramphenicol, (-)-azidamphenicol, (+)-thiamphenicol, and (+)-florfenicol based on a key catalytic syn-selective Henry reaction is reported. The stereochemistry of the ligand-enabled copper(II)-catalyzed aryl aldehyde Henry reaction of nitroethanol was first explored to forge a challenging syn-2-amino-1,3-diol structure unit with vicinal stereocenters with excellent stereocontrol. Multistep continuous flow manipulations were carried out to achieve the efficient asymmetric synthesis of this family of amphenicol antibiotics.
Collapse
Affiliation(s)
- Yingqi Xia
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Meifen Jiang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Minjie Liu
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Yan Zhang
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Hongmin Qu
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Tong Xiong
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Huashan Huang
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Dang Cheng
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Fener Chen
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.,Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| |
Collapse
|
44
|
Phosphorus coordinated Rh single-atom sites on nanodiamond as highly regioselective catalyst for hydroformylation of olefins. Nat Commun 2021; 12:4698. [PMID: 34349125 PMCID: PMC8339002 DOI: 10.1038/s41467-021-25061-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 07/12/2021] [Indexed: 12/03/2022] Open
Abstract
Single-atom Rh catalysts present superior activity relative to homogeneous catalyst in olefins hydroformylation, yet with limited success in regioselectivity control. In the present work, we develop a phosphorus coordinated Rh1 single-atom catalyst with nanodiamond as support. Benefiting from this unique structure, the catalyst exhibits excellent activity and regioselectivity in hydroformylation of arylethylenes with wide substrate generality, i.e., with high conversion (>99%) and high regioselectivity (>90%), which is comparable with the homogeneous counterparts. The coordination interaction between Rh1 and surface phosphorus species is clarified by 31P solid-state NMR and X-ray absorption spectroscopy (XAS). Rh single atoms are firmly anchored over nanodiamond through Rh-P bonds, guaranteeing good stability in the hydroformation of styrene even after six runs. Finally, by using this catalyst, two kinds of pharmaceutical molecules, Ibuprofen and Fendiline, are synthesized efficiently with high yields, demonstrating a new prospect of single-atom catalyst in pharmaceutical synthesis. Single-atom Rh catalysts present superior activity in olefins hydroformylation, yet with limited success in regioselectivity control. Here the authors develop a Rh1 single-atom catalyst with nanodiamond as support, with which good to excellent regioselectivities to branched aldehydes in hydroformylation of terminal olefins are achieved.
Collapse
|
45
|
Transition metal-catalyzed branch-selective hydroformylation of olefins in organic synthesis. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.04.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
46
|
Li W, Jiang M, Chen W, Chen Y, Yang Z, Tang P, Chen F. Total Synthesis of (-)-Canadine, (-)-Rotundine, (-)-Sinactine, and (-)-Xylopinine Using a Last-Step Enantioselective Ir-Catalyzed Hydrogenation. J Org Chem 2021; 86:8143-8153. [PMID: 34076443 DOI: 10.1021/acs.joc.1c00602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A concise asymmetric total synthesis of a group of tetrahydroprotoberberine alkaloids, (-)-canadine, (-)-rotundine, (-)-sinactine, and (-)-xylopinine, has been accomplished in three steps from the commercially available corresponding disubstituted phenylethylamine and disubstituted benzaldehyde. Our synthesis toward these four alkaloids took advantage of the following strategy: in the first step, we achieved an efficient and sustainable synthesis of secondary amine hydrochlorides via a fully continuous flow; in the second step, we developed a Pictet-Spengler reaction/Friedel-Crafts hydroxyalkylation/dehydration cascade for the construction of the dihydroprotoberberine core structure (ABCD-ring); and in the last step, Ir-catalyzed enantioselective hydrogenation was employed for the introduction of the desired stereochemistry at the C-14 position in the tetrahydroprotoberberine alkaloids. This work significantly expedites the asymmetric synthesis of the entire tetrahydroprotoberberine alkaloid family as well as a more diverse set of structurally related non-natural analogues.
Collapse
Affiliation(s)
- Weijian Li
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Meifen Jiang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Wenchang Chen
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yu Chen
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhi Yang
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Pei Tang
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Fener Chen
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.,Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| |
Collapse
|
47
|
Liu J, Li Y, Ke M, Liu M, Zhan P, Xiao YC, Chen F. Unified Strategy to Amphenicol Antibiotics: Asymmetric Synthesis of (−)-Chloramphenicol, (−)-Azidamphenicol, and (+)-Thiamphenicol and Its (+)-3-Floride. J Org Chem 2020; 85:15360-15367. [PMID: 33169603 DOI: 10.1021/acs.joc.0c02181] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jinxin Liu
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yaling Li
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Miaolin Ke
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Minjie Liu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Pingping Zhan
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - You-Cai Xiao
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Fener Chen
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| |
Collapse
|