1
|
Greenfield DI, Coyne KJ. Comparison of Two Molecular Methods, Quantitative Polymerase Chain Reaction and Sandwich Hybridization Assay, for Monitoring the Harmful Algal Bloom Species, Heterosigma akashiwo. ENVIRONMENTAL MANAGEMENT 2025:10.1007/s00267-025-02156-8. [PMID: 40195146 DOI: 10.1007/s00267-025-02156-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/24/2025] [Indexed: 04/09/2025]
Abstract
Monitoring for harmful algal blooms (HABs) in aquatic environments is commonly aided by light microscopy, though molecular-based approaches can expedite species detection, cell quantification, and therefore early warnings for management responses. Two methods, quantitative polymerase chain reaction (qPCR) and sandwich hybridization assay (SHA), are increasingly used for HAB monitoring, but they differ in terms of protocols, genetic targets, equipment/supplies, and other considerations. This presents a challenge to end-users when selecting tool(s) to integrate within HAB surveillance programs. In response, we conducted a multi-year, side-by-side comparison study between qPCR and SHA relative to microscopy for monitoring the raphidophyte Heterosigma akashiwo, a species responsible for fish kills and impaired water quality worldwide. This paper summarizes key findings from a broad suite of side-by-side, laboratory and field tests of H. akashiwo cell quantification by qPCR and SHA. Assay ranges, detection limits, applicability to preserved samples, and physiological conditions (time of day, growth phase, nutrient levels) of cultured H. akashiwo revealed generally strong qPCR-SHA agreement, though qPCR had a wider dynamic range (without homogenate dilution) while SHA displayed a lower detection limit. Both assays yielded excellent agreement with microscopy during cell growth in the laboratory as well as during bloom development in the field. However, qPCR and SHA cell abundance data were less than microscopy during stationary-decline growth and under low nitrate, indicating reduced cellular nucleic acid during senescence and nutrient stress. Pragmatically, both qPCR and SHA are affordable, but qPCR solutions are typically more available commercially than SHA. Study results will be valuable to managers considering methodological options that suit their HAB monitoring needs.
Collapse
Affiliation(s)
- Dianne I Greenfield
- Advanced Science Research Center at the Graduate Center, City University of New York, New York, NY, USA.
- School of Earth and Environmental Sciences, Queens College, City University of New York, New York, NY, USA.
- Earth and Environmental Sciences, Graduate Center, City University of New York, New York, NY, USA.
| | - Kathryn J Coyne
- University of Delaware, College of Earth, Ocean and Environment, Lewes, DE, USA
| |
Collapse
|
2
|
Ji N, Wang J, Huang W, Huang J, Cai Y, Sun S, Shen X, Liang Y. Transcriptome analysis of the harmful alga Heterosigma akashiwo under a 24-hour light-dark cycle. HARMFUL ALGAE 2024; 133:102601. [PMID: 38485440 DOI: 10.1016/j.hal.2024.102601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 03/19/2024]
Abstract
The photoperiod, which is defined as the period of time within a 24-hour time frame that light is available, is an important environmental regulator of several physiological processes in phytoplankton, including harmful bloom-forming phytoplankton. The ichthyotoxic raphidophyte Heterosigma akashiwo is a globally distributed bloom-forming phytoplankton. Despite extensive studies on the ecological impact of H. akashiwo, the influence of the photoperiod on crucial biological processes of this species remains unclear. In this study, gene expression in H. akashiwo was analyzed over a 24-hour light-dark (14:10) treatment period. Approximately 36 % of unigenes in H. akashiwo were differentially expressed during this 24-hour treatment period, which is indicative of their involvement in the response to light-dark variation. Notably, the number of differentially expressed genes exhibited an initial increase followed by a subsequent decrease as the sampling time progressed (T0 vs. other time points). Unigenes associated with photosynthesis and photoprotection reached their peak expression levels after 2-4 h of illumination (T12-T14). In contrast, the expression of unigenes associated with DNA replication peaked at the starting point of the dark period (T0). Furthermore, although several unigenes annotated to photoreceptors displayed potential diel periodicity, genes from various photoreceptor families (such as phytochrome and cryptochrome) showed unique expression patterns. Collectively, our findings offer novel perspectives on the response of H. akashiwo to the light-dark cycle, serving as a valuable resource for investigating the physiology and ecology of this species.
Collapse
Affiliation(s)
- Nanjing Ji
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China; Jiangsu Marine Resources Development Research Institute, Lianyungang 222005, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Junyue Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Wencong Huang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jinwang Huang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yuefeng Cai
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Song Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xin Shen
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yue Liang
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
3
|
Hehenberger E, Guo J, Wilken S, Hoadley K, Sudek L, Poirier C, Dannebaum R, Susko E, Worden AZ. Phosphate Limitation Responses in Marine Green Algae Are Linked to Reprogramming of the tRNA Epitranscriptome and Codon Usage Bias. Mol Biol Evol 2023; 40:msad251. [PMID: 37987557 PMCID: PMC10735309 DOI: 10.1093/molbev/msad251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023] Open
Abstract
Marine algae are central to global carbon fixation, and their productivity is dictated largely by resource availability. Reduced nutrient availability is predicted for vast oceanic regions as an outcome of climate change; however, there is much to learn regarding response mechanisms of the tiny picoplankton that thrive in these environments, especially eukaryotic phytoplankton. Here, we investigate responses of the picoeukaryote Micromonas commoda, a green alga found throughout subtropical and tropical oceans. Under shifting phosphate availability scenarios, transcriptomic analyses revealed altered expression of transfer RNA modification enzymes and biased codon usage of transcripts more abundant during phosphate-limiting versus phosphate-replete conditions, consistent with the role of transfer RNA modifications in regulating codon recognition. To associate the observed shift in the expression of the transfer RNA modification enzyme complement with the transfer RNAs encoded by M. commoda, we also determined the transfer RNA repertoire of this alga revealing potential targets of the modification enzymes. Codon usage bias was particularly pronounced in transcripts encoding proteins with direct roles in managing phosphate limitation and photosystem-associated proteins that have ill-characterized putative functions in "light stress." The observed codon usage bias corresponds to a proposed stress response mechanism in which the interplay between stress-induced changes in transfer RNA modifications and skewed codon usage in certain essential response genes drives preferential translation of the encoded proteins. Collectively, we expose a potential underlying mechanism for achieving growth under enhanced nutrient limitation that extends beyond the catalog of up- or downregulated protein-encoding genes to the cell biological controls that underpin acclimation to changing environmental conditions.
Collapse
Affiliation(s)
- Elisabeth Hehenberger
- Ocean EcoSystems Biology Unit, RD3, GEOMAR Helmholtz Centre for Ocean Research, 24148 Kiel, DE
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, CZ
| | - Jian Guo
- Ocean Sciences Department, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Susanne Wilken
- Ocean Sciences Department, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Kenneth Hoadley
- Ocean EcoSystems Biology Unit, RD3, GEOMAR Helmholtz Centre for Ocean Research, 24148 Kiel, DE
| | - Lisa Sudek
- Ocean Sciences Department, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Camille Poirier
- Ocean EcoSystems Biology Unit, RD3, GEOMAR Helmholtz Centre for Ocean Research, 24148 Kiel, DE
| | - Richard Dannebaum
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Edward Susko
- Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, CA
| | - Alexandra Z Worden
- Ocean EcoSystems Biology Unit, RD3, GEOMAR Helmholtz Centre for Ocean Research, 24148 Kiel, DE
- Ocean Sciences Department, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, USA
- Max Planck Institute for Evolutionary Biology, 24306 Plön, DE
| |
Collapse
|
4
|
Jin WY, Chen XW, Tan JZ, Lin X, Ou LJ. Variation in intracellular polyphosphate and associated gene expression in response to different phosphorus conditions in the dinoflagellate Karenia mikimotoi. HARMFUL ALGAE 2023; 129:102532. [PMID: 37951614 DOI: 10.1016/j.hal.2023.102532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 10/20/2023] [Accepted: 10/20/2023] [Indexed: 11/14/2023]
Abstract
Polyphosphate (polyP) has long been recognized as a crucial intracellular reservoir for phosphorus in microorganisms. However, the dynamics of polyP and its regulatory mechanism in eukaryotic phytoplankton in response to variations in external phosphorus conditions remain poorly understood. A comprehensive investigation was conducted to examine the intracellular polyP-associated metabolic response of the dinoflagellate Karenia mikimotoi, a harmful algal bloom species, through integrated physiological, biochemical, and transcriptional analyses under varying external phosphorus conditions. Comparable growth curves and Fv/Fm between phosphorus-replete conditions and phosphorus-depleted conditions suggested that K. mikimotoi has a strong capability to mobilize the intracellular phosphorus pool for growth under phosphorus deficiency. Intracellular phosphate (IPi) and polyP contributed approximately 6-23 % and 1-3 %, respectively, to the overall particulate phosphorus (PP) content under different phosphorus conditions. The significant decrease in PP and increase in polyP:PP suggested that cellular phosphorus components other than polyP are preferred for utilization under phosphorus deficiency. Genes involved in polyP synthesis and hydrolysis were upregulated to maintain phosphorus homeostasis in K. mikimotoi. These findings provide novel insights into the specific cellular strategies for phosphorus storage and the transcriptional response in intracellular polyP metabolism in K. mikimotoi. Additionally, these results also indicate that polyP may not play a crucial role in cellular phosphorus storage in phytoplankton, at least in dinoflagellates.
Collapse
Affiliation(s)
- Wen-Yu Jin
- Research Center of Harmful Algae and Marine Biology, Jinan University, Guangzhou, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China; Wenzhou Marine Center, Ministry of Natural Resources, Wenzhou, China
| | - Xiang-Wu Chen
- Research Center of Harmful Algae and Marine Biology, Jinan University, Guangzhou, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Jin-Zhou Tan
- Research Center of Harmful Algae and Marine Biology, Jinan University, Guangzhou, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Xin Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, China.
| | - Lin-Jian Ou
- Research Center of Harmful Algae and Marine Biology, Jinan University, Guangzhou, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| |
Collapse
|
5
|
Chen X, Huang K, Gan P, Luo L, Yu K, Zhang Y, Pang Y, Xue P. Inactivation of Heterosigma akashiwo under UV/peroxydisulfate advanced disinfection system in marine waters. CHEMOSPHERE 2023; 341:140055. [PMID: 37704084 DOI: 10.1016/j.chemosphere.2023.140055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/09/2023] [Accepted: 09/02/2023] [Indexed: 09/15/2023]
Abstract
Heterosigma akashiwo (H. akashiwo) is recognized as a harmful algal bloom (HABs) species with a global distribution, capable of posing significant threats to marine ecosystems, particularly when spread through ship ballast water. This investigation focused on elucidating the inactivation kinetics and underlying mechanism of H. akashiwo through a combined ultraviolet irradiation and peroxydisulfate (UV/PDS) process. The results demonstrated a strong synergistic effect within the UV/PDS system, resulting in an inactivation of 0.78-ln and 2.67-ln within 40 min of UV and UV/PDS processes. The principal agents accountable for inactivation were identified as sulfate radicals (•SO4-) and hydroxyl radical (•OH), which exhibited a synergistic effect in the UV/PDS process. Furthermore, the study observed a negatively impact of seawater pH and salinity on the efficiency of inactivation. UV/PDS caused oxidative stress on algal cells, initially involving the participation of antioxidant enzymes in counteracting cellular damage, but this protective mechanism diminished as the reaction duration extended. The UV/PDS treatment not only inflicted damage upon H. akashiwo's photosynthetic system but also caused the extracellular release of DNA and algal organic matter (AOM) due to damaged cell membranes. Transcriptome analysis provided a molecular biology perspective on the cellular inactivation process. Upregulation of genes linked to photosynthesis and oxidative phosphorylation suggested a potential elevation in energy metabolism. In contrast, genes associated with cellular and metabolic processes, including glycolysis and the tricarboxylic acid cycle (TCA cycle), exhibited downregulation. Moreover, this treatment exerted an inhibitory influence on RNA polymerase and protein synthesis, resulting in the reduced expression of genetic information.
Collapse
Affiliation(s)
- Xuan Chen
- School of Marine Sciences, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| | - Kunling Huang
- School of Marine Sciences, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| | - Pin Gan
- School of Marine Sciences, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| | - Lan Luo
- School of Marine Sciences, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| | - Kefu Yu
- School of Marine Sciences, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China Globally Distributed
| | - Yuanyuan Zhang
- School of Marine Sciences, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China Globally Distributed.
| | - Yunfeng Pang
- School of Marine Sciences, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| | - Pengfei Xue
- School of Marine Sciences, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| |
Collapse
|
6
|
Ajani PA, Savela H, Kahlke T, Harrison D, Jeffries T, Kohli GS, Verma A, Laczka O, Doblin MA, Seymour JR, Larsson ME, Potts J, Scanes P, Gribben PE, Harrison L, Murray SA. Response of planktonic microbial assemblages to disturbance in an urban sub-tropical estuary. WATER RESEARCH 2023; 243:120371. [PMID: 37506634 DOI: 10.1016/j.watres.2023.120371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/26/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023]
Abstract
Microbes are sensitive indicators of estuarine processes because they respond rapidly to dynamic disturbance events. As most of the world's population lives in urban areas and climate change-related disturbance events are becoming more frequent, estuaries bounded by cities are experiencing increasing stressors, at the same time that their ecosystem services are required more than ever. Here, using a multidisciplinary approach, we determined the response of planktonic microbial assemblages in response to seasonality and a rainfall disturbance in an urban estuary bounded by Australia's largest city, Sydney. We used molecular barcoding (16S, 18S V4 rRNA) and microscopy-based identification to compare microbial assemblages at locations with differing characteristics and urbanisation histories. Across 142 samples, we identified 8,496 unique free-living bacterial zOTUs, 8,175 unique particle associated bacterial zOTUs, and 1,920 unique microbial eukaryotic zOTUs. Using microscopy, we identified only the top <10% abundant, larger eukaryotic taxa (>10 µm), however quantification was possible. The site with the greater history of anthropogenic impact showed a more even community of associated bacteria and eukaryotes, and a significant increase in dissolved inorganic nitrogen following rainfall, when compared to the more buffered site. This coincided with a reduced proportional abundance of Actinomarina and Synechococcus spp., a change in SAR 11 clades, and an increase in the eukaryotic microbial groups Dinophyceae, Mediophyceae and Bathyoccocaceae, including a temporary dominance of the harmful algal bloom dinoflagellate Prorocentrum cordatum (syn. P. minimum). Finally, a validated hydrodynamic model of the estuary supported these results, showing that the more highly urbanised and upstream location consistently experienced a higher magnitude of salinity reduction in response to rainfall events during the study period. The best abiotic variables to explain community dissimilarities between locations were TDP, PN, modelled temperature and salinity (r = 0.73) for the free living bacteria, TP for the associated bacteria (r = 0.43), and modelled temperature (r = 0.28) for the microbial eukaryotic communities. Overall, these results show that a minor disturbance such as a brief rainfall event can significantly shift the microbial assemblage of an anthropogenically impacted area within an urban estuary to a greater degree than a seasonal change, but may result in a lesser response to the same disturbance at a buffered, more oceanic influenced location. Fine scale research into the factors driving the response of microbial communities in urban estuaries to climate related disturbances will be necessary to understand and implement changes to maintain future estuarine ecosystem services.
Collapse
Affiliation(s)
- Penelope A Ajani
- University of Technology Sydney, School of Life Sciences, 15 Broadway, Ultimo NSW 2007, Australia; Sydney Institute of Marine Sciences, Mosman, New South Wales 2088, Australia.
| | - Henna Savela
- University of Technology Sydney, School of Life Sciences, 15 Broadway, Ultimo NSW 2007, Australia
| | - Tim Kahlke
- University of Technology Sydney, School of Life Sciences, 15 Broadway, Ultimo NSW 2007, Australia; University of Technology Sydney, Climate Change Cluster, 15 Broadway, Ultimo NSW 2007, Australia
| | - Daniel Harrison
- National Marine Science Centre, Southern Cross University, 2 Bay Drive, Coffs Harbour NSW 2450, Australia
| | - Thomas Jeffries
- Western Sydney University, School of Science, Locked Bag 1797, Penrith NSW 2751, Australia
| | - Gurjeet S Kohli
- University of Technology Sydney, Climate Change Cluster, 15 Broadway, Ultimo NSW 2007, Australia
| | - Arjun Verma
- University of Technology Sydney, School of Life Sciences, 15 Broadway, Ultimo NSW 2007, Australia; University of Technology Sydney, Climate Change Cluster, 15 Broadway, Ultimo NSW 2007, Australia
| | - Olivier Laczka
- University of Technology Sydney, Climate Change Cluster, 15 Broadway, Ultimo NSW 2007, Australia
| | - Martina A Doblin
- Sydney Institute of Marine Sciences, Mosman, New South Wales 2088, Australia; University of Technology Sydney, Climate Change Cluster, 15 Broadway, Ultimo NSW 2007, Australia
| | - Justin R Seymour
- University of Technology Sydney, Climate Change Cluster, 15 Broadway, Ultimo NSW 2007, Australia
| | - Michaela E Larsson
- University of Technology Sydney, Climate Change Cluster, 15 Broadway, Ultimo NSW 2007, Australia
| | - Jaimie Potts
- Science, Economics and Insights Division, NSW Department of Planning and Environment
| | - Peter Scanes
- Science, Economics and Insights Division, NSW Department of Planning and Environment
| | - Paul E Gribben
- Sydney Institute of Marine Sciences, Mosman, New South Wales 2088, Australia; University of NSW, Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, New South Wales 2052, Australia
| | - Luke Harrison
- Marine Studies Institute, School of Geosciences, University of Sydney, Australia
| | - Shauna A Murray
- University of Technology Sydney, School of Life Sciences, 15 Broadway, Ultimo NSW 2007, Australia; Sydney Institute of Marine Sciences, Mosman, New South Wales 2088, Australia
| |
Collapse
|
7
|
ROS-dependent cell death of Heterosigma akashiwo induced by algicidal bacterium Hahella sp. KA22. Mar Genomics 2023; 69:101027. [PMID: 36921441 DOI: 10.1016/j.margen.2023.101027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023]
Abstract
Marine algicidal bacteria and their metabolites are considered to be one of the most effective strategies to mitigate the harmful algal blooms (HABs). The bacterium Hahella sp. KA22 has previously been confirmed to have strong algicidal activity against the HABs causing microalgae, Heterosigma akashiwo. In this study, the molecular mechanism of microalgae cell death was detected. The results showed that the cell growth rate and photosynthetic efficiency were inhibited with addition of algicidal strain KA22, while the accumulation of reactive oxygen species (ROS) and oxidative damage in H. akashiwo cells increased. A total of 2056 unigenes were recognized to be differentially expressed in transcriptome sequences. In particular, the transcriptional levels of light-harvesting pigments and structural proteins in the oxygen-evolving-complex were continuously down-regulated, corresponding to the significant reduction of photosynthetic efficiency and the accumulation of ROS. Furthermore, glutamate dehydrogenase was significantly up-regulated in abundance. Meanwhile, calcium-dependent protein kinases were also detected with significant changes. Collectively, algicidal stress caused the suppressed electron transfer in chloroplast and impaired detoxification of intracellular oxidants by glutathione, which may subsequently result in multiple cell regulation and metabolic responses and ultimately lead to the ROS-dependent cell death of H. akashiwo.
Collapse
|
8
|
Thangaraj S, Sun J. Ocean warming and acidification affect the transitional C:N:P ratio and macromolecular accumulation in the harmful raphidophyte Heterosigma akashiwo. Commun Biol 2023; 6:151. [PMID: 36747020 PMCID: PMC9902392 DOI: 10.1038/s42003-023-04524-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/24/2023] [Indexed: 02/08/2023] Open
Abstract
Despite an increase in ocean warming and acidification that is expected to increase the number of harmful algal species worldwide, the population of the raphidophyte Heterosigma akashiwo has been reported to be reduced. However, how this species physically and metabolically modifies transitional C:N:P ratio and macromolecule accumulation is unknown. Considering 1st, 10th, and 20th culture generations under present (low-temperature; low-carbon-dioxide [LTLC] 21 °C; pCO2 400 ppm) and future (high-temperature; high-carbon-dioxide [HTHC] 25 °C; pCO2 1000 ppm) ocean conditions, we examined transitional C:N:P ratio and macromolecule level changes and performed transcriptome sequencing. The results showed that compared to 1st generation cells, 20th generation cells under HTHC conditions showed a large decrease in carbon quota (QC: 34%), nitrogen quota (QN: 36%), and phosphorus quota (QP: 32%), which were reflected in an overall reduction in DNA and RNA quantity. Decreased activation of photosynthetic, carbon fixation and lipid metabolic pathways coincided with changes in photosynthetic efficiency, carbon concentration, and lipid accumulation after long-term (20th generation) exposure to HTHC conditions. We observed that these variations in internal metabolic pathways were caused by external changes in temperature, which activated the (Ca+) signaling pathway, and external changes in pCO2, which altered proton exchange pathways. Our results suggest that H. akashiwo in a temperate environment will undergo profound changes in C:N:P ratio and macromolecular properties, leading to programmed cell death, in the future.
Collapse
Affiliation(s)
- Satheeswaran Thangaraj
- Institute for Advanced Marine Research, China University of Geosciences, Guangzhou, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
- Department of Marine Science, Incheon National University, Incheon, South Korea
- Department of Physiology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Jun Sun
- Institute for Advanced Marine Research, China University of Geosciences, Guangzhou, China.
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China.
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China.
| |
Collapse
|
9
|
Full-Length Transcriptome Analysis of the Ichthyotoxic Harmful Alga Heterosigma akashiwo (Raphidophyceae) Using Single-Molecule Real-Time Sequencing. Microorganisms 2023; 11:microorganisms11020389. [PMID: 36838354 PMCID: PMC9959365 DOI: 10.3390/microorganisms11020389] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/25/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
The raphidophyte Heterosigma akashiwo is a harmful algal species. The bloom of this organism has been associated with the massive mortality of fish in many coastal waters. To investigate the molecular mechanism of H. akashiwo blooms, having a reliable reference transcriptome of this species is essential. Therefore, in this study, a full-length transcriptome of H. akashiwo was obtained by single-molecule real-time sequencing. In total, 45.44 Gb subread bases were generated, and 16,668 unigenes were obtained after the sequencing data processing. A total of 8666 (52.00%) unigenes were successfully annotated using seven public databases. Among them, mostly phosphorus and nitrogen metabolism genes were detected. Moreover, there were 300 putative transcription factors, 4392 putative long non-coding RNAs, and 7851 simple sequence repeats predicted. This study provides a valuable reference transcriptome for understanding how H. akashiwo blooms at a molecular level.
Collapse
|
10
|
Sengupta A, Dhar J, Danza F, Ghoshal A, Müller S, Kakavand N. Active reconfiguration of cytoplasmic lipid droplets governs migration of nutrient-limited phytoplankton. SCIENCE ADVANCES 2022; 8:eabn6005. [PMID: 36332020 PMCID: PMC11633079 DOI: 10.1126/sciadv.abn6005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Nutrient availability, along with light and temperature, drives marine primary production. The ability to migrate vertically, a critical trait of motile phytoplankton, allows species to optimize nutrient uptake, storage, and growth. However, this traditional view discounts the possibility that migration in nutrient-limited waters may be actively modulated by the emergence of energy-storing organelles. Here, we report that bloom-forming raphidophytes harness energy-storing cytoplasmic lipid droplets (LDs) to biomechanically regulate vertical migration in nutrient-limited settings. LDs grow and translocate directionally within the cytoplasm, steering strain-specific shifts in the speed, trajectory, and stability of swimming cells. Nutrient reincorporation restores their swimming traits, mediated by an active reconfiguration of LD size and coordinates. A mathematical model of cell mechanics establishes the mechanistic coupling between intracellular changes and emergent migratory behavior. Amenable to the associated photophysiology, LD-governed behavioral shift highlights an exquisite microbial strategy toward niche expansion and resource optimization in nutrient-limited oceans.
Collapse
Affiliation(s)
- Anupam Sengupta
- Physics of Living Matter, Department of Physics and Materials Science, University of Luxembourg, 162A, Avenue de la Faïencerie, 1511 Luxembourg City, Luxembourg
| | - Jayabrata Dhar
- Physics of Living Matter, Department of Physics and Materials Science, University of Luxembourg, 162A, Avenue de la Faïencerie, 1511 Luxembourg City, Luxembourg
| | - Francesco Danza
- Physics of Living Matter, Department of Physics and Materials Science, University of Luxembourg, 162A, Avenue de la Faïencerie, 1511 Luxembourg City, Luxembourg
| | - Arkajyoti Ghoshal
- Physics of Living Matter, Department of Physics and Materials Science, University of Luxembourg, 162A, Avenue de la Faïencerie, 1511 Luxembourg City, Luxembourg
| | - Sarah Müller
- Physics of Living Matter, Department of Physics and Materials Science, University of Luxembourg, 162A, Avenue de la Faïencerie, 1511 Luxembourg City, Luxembourg
- Swiss Nanoscience lnstitute, University of Basel, 82, Klingelbergslrasse, 4056 Basel, Switzerland
| | - Narges Kakavand
- Physics of Living Matter, Department of Physics and Materials Science, University of Luxembourg, 162A, Avenue de la Faïencerie, 1511 Luxembourg City, Luxembourg
| |
Collapse
|
11
|
Ji N, Wang J, Zhang Z, Chen L, Xu M, Yin X, Shen X. Transcriptomic response of the harmful algae Heterosigma akashiwo to polyphosphate utilization and phosphate stress. HARMFUL ALGAE 2022; 117:102267. [PMID: 35944950 DOI: 10.1016/j.hal.2022.102267] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/24/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Phosphorus (P) is one of the major macronutrients necessary for phytoplankton growth. In some parts of the ocean, however, P is frequently scarce, hence, there is limited phytoplankton growth. To cope with P deficiency, phytoplankton evolved a variety of strategies, including, utilization of different P sources. Polyphosphate (polyP) is ubiquitously present and serves an essential function in aquatic environments, but it is unclear if and how this polymer is utilized by phytoplankton. Here, we examined the physiological and molecular responses of the widely present harmful algal bloom (HAB) species, Heterosigma akashiwo in polyP utilization, and in coping with P-deficiency. Our results revealed that two forms of inorganic polyP, namely, sodium tripolyphosphate and sodium hexametaphosphate, support H. akashiwo growth as efficiently as orthophosphate. However, few genes involved in polyP utilization have been identified. Under P-deficient conditions, genes associated with P transport, dissolved organic P utilization, sulfolipid synthesis, and energy production, were markedly elevated. In summary, our results indicate that polyP is bioavailable to H. akashiwo, and this HAB species have evolved a comprehensive strategy to cope with P deficiency.
Collapse
Affiliation(s)
- Nanjing Ji
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China; Jiangsu Marine Resources Development Research Institute, Lianyungang 222005, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Junyue Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zhenzhen Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Lei Chen
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Mingyang Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xueyao Yin
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xin Shen
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
12
|
Kang Y, Kang CK. Reduced forms of nitrogen control the spatial distribution of phytoplankton communities: The functional winner, dinoflagellates in an anthropogenically polluted estuary. MARINE POLLUTION BULLETIN 2022; 177:113528. [PMID: 35305373 DOI: 10.1016/j.marpolbul.2022.113528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
The effects of reduced forms of nitrogen (NH4+ and dissolved organic nitrogen (DON)) on the spatial distribution of diatoms and dinoflagellates in an estuarine-coastal water continuum were investigated from 2015 to 2019. The proportion of non-DIN in total nitrogen was utilized as an indicator of DON along with direct measurements of DON. While NO3- originated from Seomjin River, the abundant NH4+ and DON occurred from Gwangyang Bay through Namhae. Diatoms were mostly confined to the upper estuarine system and dinoflagellates dominated in the regions with high levels of NH4+ and DON. Generalized additive models also presented the different responses of diatoms and dinoflagellates to increases in NH4+ and DON. Thus, our results highlight that diatoms dominate in NO3--replete water with full access to the source and dinoflagellates take over the ecologically open niche in an anthropogenically polluted estuary with full access to reduced forms of nitrogen.
Collapse
Affiliation(s)
- Yoonja Kang
- Department of Ocean Integrated Science, Chonnam National University, Yeosu, Republic of Korea.
| | - Chang-Keun Kang
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| |
Collapse
|
13
|
Insights into Alexandrium minutum Nutrient Acquisition, Metabolism and Saxitoxin Biosynthesis through Comprehensive Transcriptome Survey. BIOLOGY 2021; 10:biology10090826. [PMID: 34571703 PMCID: PMC8465370 DOI: 10.3390/biology10090826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary Alexandrium minutum is one of the causing organisms for the occurrence of harmful algae bloom (HABs) in marine ecosystems. This species produces saxitoxin, one of the deadliest neurotoxins which can cause human mortality. However, molecular information such as genes and proteins catalog on this species is still lacking. Therefore, this study has successfully characterized several new molecular mechanisms regarding A. minutum environmental adaptation and saxitoxin biosynthesis. Ultimately, this study provides a valuable resource for facilitating future dinoflagellates’ molecular response to environmental changes. Abstract The toxin-producing dinoflagellate Alexandrium minutum is responsible for the outbreaks of harmful algae bloom (HABs). It is a widely distributed species and is responsible for producing paralytic shellfish poisoning toxins. However, the information associated with the environmental adaptation pathway and toxin biosynthesis in this species is still lacking. Therefore, this study focuses on the functional characterization of A. minutum unigenes obtained from transcriptome sequencing using the Illumina Hiseq 4000 sequencing platform. A total of 58,802 (47.05%) unigenes were successfully annotated using public databases such as NCBI-Nr, UniprotKB, EggNOG, KEGG, InterPRO and Gene Ontology (GO). This study has successfully identified key features that enable A. minutum to adapt to the marine environment, including several carbon metabolic pathways, assimilation of various sources of nitrogen and phosphorus. A. minutum was found to encode homologues for several proteins involved in saxitoxin biosynthesis, including the first three proteins in the pathway of saxitoxin biosynthesis, namely sxtA, sxtG and sxtB. The comprehensive transcriptome analysis presented in this study represents a valuable resource for understanding the dinoflagellates molecular metabolic model regarding nutrient acquisition and biosynthesis of saxitoxin.
Collapse
|
14
|
Münzner K, Gollnisch R, Rengefors K, Koreiviene J, Lindström ES. High Iron Requirements for Growth in the Nuisance Alga Gonyostomum semen (Raphidophyceae). JOURNAL OF PHYCOLOGY 2021; 57:1309-1322. [PMID: 33749827 DOI: 10.1111/jpy.13170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
The bloom-forming freshwater alga Gonyostomum semen is associated with acidic, mesotrophic brown water lakes in boreal regions. However, researchers have been unable to conclusively link G. semen abundance and bloom formation to typical brown water lake traits, that is, high water color and DOC (dissolved organic carbon) concentrations. Iron is a main driver of water color in boreal lakes, and a recent study of lake monitoring data indicated a connection between lakes with high G. semen abundance and iron concentrations >200 µg · L-1 . Thus, iron may be the missing link in explaining G. semen abundance and growth dynamics. We experimentally assessed the effects of different iron concentrations above or below 200 µg · L-1 on the growth of G. semen batch monocultures. Iron concentrations <200 µg · L-1 limited G. semen growth, while iron concentrations >200 µg · L-1 did not. Moreover, the iron concentration of the medium required for growth was higher than for other common phytoplankton (Microcystis botrys and Chlamydomonas sp.) included in the experiment. These results indicate that G. semen requires high levels of iron in the lake environment. Consequently, this and previous findings using lake monitoring data support the hypothesis that high concentrations of iron favor the formation of high-density G. semen blooms in boreal brown water lakes. As lakes get browner in a changing climate, monitoring iron levels could be a potential tool to identify lakes at risk for G. semen blooms, especially among lakes that provide ecosystem services to society.
Collapse
Affiliation(s)
- Karla Münzner
- Department of Ecology and Genetics/Limnology, Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
| | - Raphael Gollnisch
- Aquatic Ecology, Department of Biology, Lund University, Sölvegatan 37, 22362, Lund, Sweden
| | - Karin Rengefors
- Aquatic Ecology, Department of Biology, Lund University, Sölvegatan 37, 22362, Lund, Sweden
| | - Judita Koreiviene
- Nature Research Centre, Akademijos Str. 2, Vilnius, LT-08412, Lithuania
| | - Eva S Lindström
- Department of Ecology and Genetics/Limnology, Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
| |
Collapse
|
15
|
Almanassra IW, Kochkodan V, Mckay G, Atieh MA, Al-Ansari T. Review of phosphate removal from water by carbonaceous sorbents. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 287:112245. [PMID: 33735679 DOI: 10.1016/j.jenvman.2021.112245] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/05/2021] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
In the last decades, phosphate is considered the main cause of eutrophication and has received substantial attention from the scientific community. Phosphate is a major pollutant that deteriorates water quality, which has been increasing in water resources, primarily due to the increasing global population and corresponding activities. Adsorption technology is amongst the different technologies used to decrease the phosphate levels in water, and has been found to be highly effective even at low phosphate concentrations. Carbonaceous materials and their composites have been widely used for phosphate removal due to their exceptional surface properties and high phosphate sorption capacity. Considering the importance of the topic, this study reviews the reported literature in the field of adsorptive removal of phosphate over various carbon-based adsorbents such as activated carbon, charcoal, graphene, graphene oxide, graphite and carbon nanotubes. Moreover, insights into the adsorption behaviour, experimental parameters, mechanisms, thermodynamics, effect of coexisting ions and the possible desorption processes of phosphate onto modified and unmodified carbonaceous adsorbents are also considered. Finally, research challenges and gaps have been highlighted.
Collapse
Affiliation(s)
- Ismail W Almanassra
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Viktor Kochkodan
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, PO Box 5825, Doha, Qatar.
| | - Gordon Mckay
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Muataz Ali Atieh
- College of Engineering, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates; Desalination Research Group, Research Institute of Sciences and Engineering, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates
| | - Tareq Al-Ansari
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar; Division of Engineering Management and Decision Sciences, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar.
| |
Collapse
|
16
|
Shi X, Xiao Y, Liu L, Xie Y, Ma R, Chen J. Transcriptome responses of the dinoflagellate Karenia mikimotoi driven by nitrogen deficiency. HARMFUL ALGAE 2021; 103:101977. [PMID: 33980427 DOI: 10.1016/j.hal.2021.101977] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
The availability of ambient N nutrient is often correlated with the occurrences of harmful algal bloom formed by certain dinoflagellates, making it important to understand how these species might be responding to such conditions. Here, transcriptome sequencing of Karenia mikimotoi was conducted to understand the underlying molecular mechanisms by which this dinoflagellate copes with nitrogen (N) deficiency. Transcriptomic analysis revealed 8802 unigenes (3.56%) that were differentially expressed with ≥ 2-fold change. Under N-depleted conditions, genes involved in glycolysis, fatty acid metabolism, and the tricarboxylic acid (TCA) cycle as well as lipid accumulation were significantly upregulated. The elevated expression of enzymes used in protein degradation and turnover suggests possible metabolic reconfiguration towards accelerated N recycling. Moreover, a significant increase in urea transporter was observed, indicating increased assimilation of organic nitrogen resources as an alternative in N-depleted cultures of K. mikimotoi. The down-regulated glutamate synthase genes were also identified under N deficiency, suggesting suppression of primary amino acid synthesis to save N resource. Taken together, results of this study show enhanced multiple N resource acquisition and reuse of multiple N resources constitute a comprehensive strategy to cope with N deficiency in a dinoflagellate.
Collapse
Affiliation(s)
- Xinguo Shi
- Fujian Engineering Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fujian 350116, China; Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fujian 350116, China.
| | - Yuchun Xiao
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fujian 350116, China
| | - Lemian Liu
- Fujian Engineering Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fujian 350116, China; Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fujian 350116, China
| | - Youping Xie
- Fujian Engineering Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fujian 350116, China; Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fujian 350116, China
| | - Ruijuan Ma
- Fujian Engineering Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fujian 350116, China; Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fujian 350116, China
| | - Jianfeng Chen
- Fujian Engineering Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fujian 350116, China; Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fujian 350116, China.
| |
Collapse
|
17
|
Ji N, Zhang Z, Huang J, Zhou L, Deng S, Shen X, Lin S. Utilization of various forms of nitrogen and expression regulation of transporters in the harmful alga Heterosigma akashiwo (Raphidophyceae). HARMFUL ALGAE 2020; 92:101770. [PMID: 32113589 DOI: 10.1016/j.hal.2020.101770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/01/2020] [Accepted: 01/31/2020] [Indexed: 06/10/2023]
Abstract
Nitrogen (N) is an essential nutrient for phytoplankton growth. There is ample evidence that N enrichment promotes harmful algae blooms (HABs) but molecular mechanisms regulating N-nutrient uptake and metabolism are not so clear, especially for the raphidophyte Heterosigma akashiwo, which forms ichthyotoxic HABs in many coastal waters. In this study, the utilization of three different chemical forms of N (nitrate, ammonium, and urea) by H. akashiwo CCMA 369 was investigated in batch culture conditions. Results showed that H. akashiwo grew well on all three N compounds, and the highest cell yield occurred in the NH4+ culture group. Reverse transcription quantitative PCR analysis revealed that the expression of high-affinity NO3- transporter (NIT), NH4+ transporter (AMT) and high-affinity urea active transporter (DUR3), were significantly up-regulated under N-limitation compared to the N-replete control. The mRNA levels of AMT and DUR3 also displayed a clear diel rhythm, with high levels at midnight. In addition, NH4+ addition (5 μM) did not depress the transcript abundance of any of the three N transporters. Compared with the co-occurring immobile diatom Skeletonema costatum, the high expression of AMT in dark period in H. akashiwo is consistent with its diel vertical migration behavior, which may promote N-nutrient acquisition from deeper layers and give advantages for H. akashiwo to form blooms.
Collapse
Affiliation(s)
- Nanjing Ji
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, 361005, China; Department of Marine Sciences, University of Connecticut, Groton, CT, 06340, USA
| | - Zhenzhen Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Jinwang Huang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Lingjie Zhou
- Department of Marine Sciences, University of Connecticut, Groton, CT, 06340, USA
| | - Shengxian Deng
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xin Shen
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, 361005, China; Department of Marine Sciences, University of Connecticut, Groton, CT, 06340, USA.
| |
Collapse
|
18
|
Hennon GMM, Dyhrman ST. Progress and promise of omics for predicting the impacts of climate change on harmful algal blooms. HARMFUL ALGAE 2020; 91:101587. [PMID: 32057337 DOI: 10.1016/j.hal.2019.03.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 03/10/2019] [Indexed: 06/10/2023]
Abstract
Climate change is predicted to increase the severity and prevalence of harmful algal blooms (HABs). In the past twenty years, omics techniques such as genomics, transcriptomics, proteomics and metabolomics have transformed that data landscape of many fields including the study of HABs. Advances in technology have facilitated the creation of many publicly available omics datasets that are complementary and shed new light on the mechanisms of HAB formation and toxin production. Genomics have been used to reveal differences in toxicity and nutritional requirements, while transcriptomics and proteomics have been used to explore HAB species responses to environmental stressors, and metabolomics can reveal mechanisms of allelopathy and toxicity. In this review, we explore how omics data may be leveraged to improve predictions of how climate change will impact HAB dynamics. We also highlight important gaps in our knowledge of HAB prediction, which include swimming behaviors, microbial interactions and evolution that can be addressed by future studies with omics tools. Lastly, we discuss approaches to incorporate current omics datasets into predictive numerical models that may enhance HAB prediction in a changing world. With the ever-increasing omics databases, leveraging these data for understanding climate-driven HAB dynamics will be increasingly powerful.
Collapse
Affiliation(s)
- Gwenn M M Hennon
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, United States; College of Fisheries and Ocean Sciences University of Alaska Fairbanks Fairbanks, AK, United States
| | - Sonya T Dyhrman
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, United States; Department of Earth and Environmental Sciences, Columbia University, New York, NY, United States.
| |
Collapse
|
19
|
Shikata T, Takahashi F, Nishide H, Shigenobu S, Kamei Y, Sakamoto S, Yuasa K, Nishiyama Y, Yamasaki Y, Uchiyama I. RNA-Seq Analysis Reveals Genes Related to Photoreception, Nutrient Uptake, and Toxicity in a Noxious Red-Tide Raphidophyte Chattonella antiqua. Front Microbiol 2019; 10:1764. [PMID: 31417538 PMCID: PMC6685483 DOI: 10.3389/fmicb.2019.01764] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/16/2019] [Indexed: 11/13/2022] Open
Abstract
Aquaculture industries are under threat from noxious red tides, but harm can be mitigated by precautions such as early harvesting and restricting fish feeding to just before the outbreak of a red tide. Therefore, accurate techniques for forecasting red-tide outbreaks are strongly needed. Omics analyses have the potential to expand our understanding of the eco-physiology of these organisms at the molecular level, and to facilitate identification of molecular markers for forecasting their population dynamics and occurrence of damages to fisheries. Red tides of marine raphidophytes, especially Chattonella species, often extensively harm aquaculture industries in regions with a temperate climate around the world. A red tide of Chattonella tends to develop just after an input of nutrients along the coast. Chattonella displays diurnal vertical migration regulated by a weak blue light, so it photosynthesizes in the surface layer during the daytime and takes up nutrients in the bottom layer during the nighttime. Superoxide produced by Chattonella cells is a strong candidate for the cause of its toxicity to bacteria and fishes. Here we conducted mRNA-seq of Chattonella antiqua to identify genes with functions closely related to the dynamics of the noxious red tide, such as photosynthesis, photoreception, nutrient uptake, and superoxide production. The genes related to photosynthetic pigment biosynthesis and nutrient uptake had high similarity with those of model organisms of plants and algae and other red-tide microalgae. We identified orthologous genes of photoreceptors such as aureochrome (newly five genes), the cryptochrome/photolyase (CRY/PHR) family (6-4PHR, plant CRY or cyclobutane pyrimidine dimer [CPD] Class III, CPD Class II, and CRY-DASH), and phytochrome (four genes), which regulate various physiological processes such as flagellar motion and cell cycle in model organisms. Six orthologous genes of NADPH oxidase, which produces superoxide on the cell membrane, were found and divided into two types: one with 5-6 transmembrane domains and another with 11 transmembrane domains. The present study should open the way for analyzing the eco-physiological features of marine raphidophytes at the molecular level.
Collapse
Affiliation(s)
- Tomoyuki Shikata
- National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Research and Education Agency, Hatsukaiti, Japan
| | - Fumio Takahashi
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Japan
- Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Kawaguchi, Japan
| | - Hiroyo Nishide
- Laboratory of Genome Informatics, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan
| | - Shuji Shigenobu
- Core Research Facilities, National Institute for Basic Biology, Okazaki, Japan
| | - Yasuhiro Kamei
- Core Research Facilities, National Institute for Basic Biology, Okazaki, Japan
| | - Setsuko Sakamoto
- National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Research and Education Agency, Hatsukaiti, Japan
| | - Kouki Yuasa
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Sakura-ku, Japan
| | - Yoshitaka Nishiyama
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Sakura-ku, Japan
| | - Yasuhiro Yamasaki
- Laboratory of Environmental Biology, Department of Applied Aquabiology, National Fisheries University, Fisheries Research and Education Agency, Yamaguchi, Japan
| | - Ikuo Uchiyama
- Laboratory of Genome Informatics, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan
| |
Collapse
|
20
|
Wurch LL, Alexander H, Frischkorn KR, Haley ST, Gobler CJ, Dyhrman ST. Transcriptional Shifts Highlight the Role of Nutrients in Harmful Brown Tide Dynamics. Front Microbiol 2019; 10:136. [PMID: 30809203 PMCID: PMC6379262 DOI: 10.3389/fmicb.2019.00136] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/21/2019] [Indexed: 11/13/2022] Open
Abstract
Harmful algal blooms (HABs) threaten ecosystems and human health worldwide. Controlling nitrogen inputs to coastal waters is a common HAB management strategy, as nutrient concentrations often suggest coastal blooms are nitrogen-limited. However, defining best nutrient management practices is a long-standing challenge: in part, because of difficulties in directly tracking the nutritional physiology of harmful species in mixed communities. Using metatranscriptome sequencing and incubation experiments, we addressed this challenge by assaying the in situ physiological ecology of the ecosystem destructive alga, Aureococcus anophagefferens. Here we show that gene markers of phosphorus deficiency were expressed in situ, and modulated by the enrichment of phosphorus, which was consistent with the observed growth rate responses. These data demonstrate the importance of phosphorus in controlling brown-tide dynamics, suggesting that phosphorus, in addition to nitrogen, should be evaluated in the management and mitigation of these blooms. Given that nutrient concentrations alone were suggestive of a nitrogen-limited ecosystem, this study underscores the value of directly assaying harmful algae in situ for the development of management strategies.
Collapse
Affiliation(s)
- Louie L Wurch
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | - Harriet Alexander
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Kyle R Frischkorn
- Department of Earth and Environmental Sciences, Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, United States
| | - Sheean T Haley
- Department of Earth and Environmental Sciences, Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, United States
| | - Christopher J Gobler
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, United States
| | - Sonya T Dyhrman
- Department of Earth and Environmental Sciences, Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, United States
| |
Collapse
|
21
|
Non-linear Physiology and Gene Expression Responses of Harmful Alga Heterosigma akashiwo to Rising CO2. Protist 2019; 170:38-51. [DOI: 10.1016/j.protis.2018.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/02/2018] [Accepted: 10/15/2018] [Indexed: 11/22/2022]
|
22
|
Ji N, Lin L, Li L, Yu L, Zhang Y, Luo H, Li M, Shi X, Wang DZ, Lin S. Metatranscriptome analysis reveals environmental and diel regulation of a Heterosigma akashiwo
(raphidophyceae) bloom. Environ Microbiol 2018; 20:1078-1094. [DOI: 10.1111/1462-2920.14045] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 01/09/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Nanjing Ji
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences; Xiamen University; Xiamen Fujian 361102 China
- Department of Marine Sciences; University of Connecticut; Groton CT 06340 USA
| | - Lingxiao Lin
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences; Xiamen University; Xiamen Fujian 361102 China
| | - Ling Li
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences; Xiamen University; Xiamen Fujian 361102 China
| | - Liying Yu
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences; Xiamen University; Xiamen Fujian 361102 China
| | - Yaqun Zhang
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences; Xiamen University; Xiamen Fujian 361102 China
| | - Hao Luo
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences; Xiamen University; Xiamen Fujian 361102 China
| | - Meizhen Li
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences; Xiamen University; Xiamen Fujian 361102 China
| | - Xinguo Shi
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences; Xiamen University; Xiamen Fujian 361102 China
| | - Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences; Xiamen University; Xiamen Fujian 361102 China
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences; Xiamen University; Xiamen Fujian 361102 China
- Department of Marine Sciences; University of Connecticut; Groton CT 06340 USA
| |
Collapse
|
23
|
Harke MJ, Juhl AR, Haley ST, Alexander H, Dyhrman ST. Conserved Transcriptional Responses to Nutrient Stress in Bloom-Forming Algae. Front Microbiol 2017; 8:1279. [PMID: 28769884 PMCID: PMC5513979 DOI: 10.3389/fmicb.2017.01279] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/26/2017] [Indexed: 11/13/2022] Open
Abstract
The concentration and composition of bioavailable nitrogen (N) and phosphorus (P) in the upper ocean shape eukaryotic phytoplankton communities and influence their physiological responses. Phytoplankton are known to exhibit similar physiological responses to limiting N and P conditions such as decreased growth rates, chlorosis, and increased assimilation of N and P. Are these responses similar at the molecular level across multiple species? To interrogate this question, five species from biogeochemically important, bloom-forming taxa (Bacillariophyta, Dinophyta, and Haptophyta) were grown under similar low N, low P, and replete nutrient conditions to identify transcriptional patterns and associated changes in biochemical pools related to N and P stress. Metabolic profiles, revealed through the transcriptomes of these taxa, clustered together based on species rather than nutrient stressor, suggesting that the global metabolic response to nutrient stresses was largely, but not exclusively, species-specific. Nutrient stress led to few transcriptional changes in the two dinoflagellates, consistent with other research. An orthologous group analysis examined functionally conserved (i.e., similarly changed) responses to nutrient stress and therefore focused on the diatom and haptophytes. Most conserved ortholog changes were specific to a single nutrient treatment, but a small number of orthologs were similarly changed under both N and P stress in 2 or more species. Many of these orthologs were related to photosynthesis and may represent generalized stress responses. A greater number of orthologs were conserved across more than one species under low P compared to low N. Screening the conserved orthologs for functions related to N and P metabolism revealed increased relative abundance of orthologs for nitrate, nitrite, ammonium, and amino acid transporters under N stress, and increased relative abundance of orthologs related to acquisition of inorganic and organic P substrates under P stress. Although the global transcriptional responses were dominated by species-specific changes, the analysis of conserved responses revealed functional similarities in resource acquisition pathways among different phytoplankton taxa. This overlap in nutrient stress responses observed among species may be useful for tracking the physiological ecology of phytoplankton field populations.
Collapse
Affiliation(s)
- Matthew J Harke
- Lamont-Doherty Earth Observatory, Columbia UniversityPalisades, NY, United States
| | - Andrew R Juhl
- Lamont-Doherty Earth Observatory, Columbia UniversityPalisades, NY, United States.,Department of Earth and Environmental Sciences, Columbia UniversityPalisades, NY, United States
| | - Sheean T Haley
- Lamont-Doherty Earth Observatory, Columbia UniversityPalisades, NY, United States
| | - Harriet Alexander
- Department of Population Health and Reproduction, University of California, DavisDavis, CA, United States
| | - Sonya T Dyhrman
- Lamont-Doherty Earth Observatory, Columbia UniversityPalisades, NY, United States.,Department of Earth and Environmental Sciences, Columbia UniversityPalisades, NY, United States
| |
Collapse
|