1
|
Liang L, Hsin MK, Zhao Y, Wang A, Machuca T, Yeung J, Cypel M, Keshavjee S, Liu M. Metabolic changes during cold ischemic preservation and reperfusion in porcine lung transplants. Am J Transplant 2025:S1600-6135(25)00275-8. [PMID: 40389162 DOI: 10.1016/j.ajt.2025.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 04/08/2025] [Accepted: 05/12/2025] [Indexed: 05/21/2025]
Abstract
Lung transplantation is a cornerstone in treating patients with end-stage lung disease, yet ischemia-reperfusion injury (IRI) poses significant complications in post-transplant recovery. This study aimed to understand the effects of donor type, cold ischemic time (CIT) and the reperfusion on metabolic changes in lung grafts. Porcine donor lungs underwent different CIT on ice: minimal time (control), 6 hours (CIT-6H), and 30 hours (CIT-30H). Additionally, lungs from brain death (BD) animals underwent 24-hour CIT (BD-CIT-24H). Both CIT-30H and BD-CIT-24H lungs underwent ex vivo lung perfusion for 12 hours, followed by left lung transplantation and reperfusion for 2 hours. Lung tissue samples were subjected to metabolomic analysis. Cold preservation induced time-dependent changes of certain metabolites. In BD-CIT-24H group, while most trends in metabolite levels were similar to the CIT-30H group, certain metabolite levels were markedly different. In CIT-30H lungs, reperfusion induced significant changes in the carbohydrate and amino acid pathways, along with consumption of energy substrates and reduction in antioxidants. BD donor lungs exhibited significantly reduction in lysophospholipids after reperfusion. Understanding these metabolic changes in the lung grafts shed lights on the mechanism of IRI, offering valuable insights for future development of targeted strategies to improve donor lung preservation and clinical outcome.
Collapse
Affiliation(s)
- Lubiao Liang
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 3H2, Canada
| | - Michael K Hsin
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Yajin Zhao
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Aizhou Wang
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Tiago Machuca
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Jonathan Yeung
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 3H2, Canada; Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Marcelo Cypel
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 3H2, Canada; Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Shaf Keshavjee
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 3H2, Canada; Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 3H2, Canada; Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
2
|
Zhao Y, Liu M. How relevant is xenogeneic cross-circulation as a model to repair human donor organs? J Heart Lung Transplant 2025:S1053-2498(25)01852-2. [PMID: 40121000 DOI: 10.1016/j.healun.2025.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 03/25/2025] Open
Affiliation(s)
- Yajin Zhao
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Mingyao Liu
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Departments of Surgery and Physiology, Temerty Faculty of Medicine, Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
3
|
Olkowicz M, Yu F, Alvarez JS, Ribeiro RVP, Rosales R, Xin L, Yu M, Jaroch K, Adamson MB, Bissoondath V, Billia F, Badiwala MV, Pawliszyn J. Spatiotemporal metabolic mapping of ex-situ preserved hearts subjected to dialysis by integration of bio-SPME sampling with non-targeted metabolipidomic profiling. Anal Chim Acta 2025; 1340:343581. [PMID: 39863306 DOI: 10.1016/j.aca.2024.343581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 01/27/2025]
Abstract
BACKGROUND Normothermic ex situ heart perfusion (ESHP) has emerged as a valid modality for advanced cardiac allograft preservation and conditioning prior to transplantation though myocardial function declines gradually during ESHP thus limiting its potential for expanding the donor pool. Recently, the utilization of dialysis has been shown to preserve myocardial and coronary vasomotor function. Herein, we sought to determine the changes in myocardial metabolism that could support this improvement. RESULTS Male Yorkshire porcine hearts were subjected to ESHP for 8 h with or without dialysis. Alterations in metabolism were studied with an innovative in vivo solid-phase microextraction (SPME) technology coupled with global metabolite profiling at 15 min, 1.5, 4, and 8 h of perfusion. Bio-SPME sampling was performed by inserting SPME fibres coated with a PAN-based extraction phase containing mixed-mode (C8+benzenesulfonic acid) functionalities into the myocardium to a depth of their entire 8 mm coating or immersing them in the perfusate, followed by a 20-min extraction period for the analytes of interest. Dialyzed hearts demonstrated improved bioenergetics as evidenced by accelerated purine metabolism and less pronounced accumulation of intermediates of fatty acid β/ω-oxidation. Metabolic waste accumulation such as pro-inflammatory lipid mediators (e.g., leukotrienes) was mitigated thereby supporting the process of resolution of inflammation through excretion of specialized pro-resolving mediators (resolvins D1/D2, E2, protecin D1). SIGNIFICANCE Through implementing the unique analytical pipeline we demonstrated that the addition of dialysis may preserve cardiac metabolism allowing for prolonged ESHP. This strategy has the potential to facilitate high-risk donor organs' reconditioning prior to transplantation.
Collapse
Affiliation(s)
- Mariola Olkowicz
- Department of Chemistry, University of Waterloo, Waterloo, ON, Canada; Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Gdańsk, Poland
| | - Frank Yu
- Division of Cardiovascular Surgery, Peter Munk Cardiac Center, University Health Network, Toronto, ON, Canada; Division of Cardiac Surgery, Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Juglans Souto Alvarez
- Division of Cardiovascular Surgery, Peter Munk Cardiac Center, University Health Network, Toronto, ON, Canada
| | - Roberto Vanin Pinto Ribeiro
- Division of Cardiovascular Surgery, Peter Munk Cardiac Center, University Health Network, Toronto, ON, Canada; Division of Cardiac Surgery, Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Surgery, Dalhousie University, Halifax, NS, Canada
| | - Roizar Rosales
- Division of Cardiovascular Surgery, Peter Munk Cardiac Center, University Health Network, Toronto, ON, Canada
| | - Liming Xin
- Division of Cardiovascular Surgery, Peter Munk Cardiac Center, University Health Network, Toronto, ON, Canada
| | - Miao Yu
- The Jackson Laboratory, JAX Genomic Medicine, Farmington, CT, USA
| | - Karol Jaroch
- Department of Chemistry, University of Waterloo, Waterloo, ON, Canada
| | - Mitchell Brady Adamson
- Division of Cardiovascular Surgery, Peter Munk Cardiac Center, University Health Network, Toronto, ON, Canada
| | - Ved Bissoondath
- Division of Cardiovascular Surgery, Peter Munk Cardiac Center, University Health Network, Toronto, ON, Canada
| | - Filio Billia
- Toronto General Hospital Research Institute (TGHRI), University Health Network, ON, Canada; Ted Roger's Center for Heart Research, University Health Network, ON, Canada; Division of Cardiology, Peter Munk Cardiac Center, University Health Network, Toronto, ON, Canada
| | - Mitesh Vallabh Badiwala
- Division of Cardiovascular Surgery, Peter Munk Cardiac Center, University Health Network, Toronto, ON, Canada; Division of Cardiac Surgery, Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Ted Roger's Center for Heart Research, University Health Network, ON, Canada
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
4
|
Iskender I. Technical Advances Targeting Multiday Preservation of Isolated Ex Vivo Lung Perfusion. Transplantation 2024; 108:1319-1332. [PMID: 38499501 DOI: 10.1097/tp.0000000000004992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Indications for ex vivo lung perfusion (EVLP) have evolved from assessment of questionable donor lungs to treatment of some pathologies and the logistics. Yet up to 3 quarters of donor lungs remain discarded across the globe. Multiday preservation of discarded human lungs on EVLP platforms would improve donor lung utilization rates via application of sophisticated treatment modalities, which could eventually result in zero waitlist mortality. The purpose of this article is to summarize advances made on the technical aspects of the protocols in achieving a stable multiday preservation of isolated EVLP. Based on the evidence derived from large animal and/or human studies, the following advances have been considered important in achieving this goal: ability to reposition donor lungs during EVLP; perfusate adsorption/filtration modalities; perfusate enrichment with plasma and/or donor whole blood, nutrients, vitamins, and amino acids; low-flow, pulsatile, and subnormothermic perfusion; positive outflow pressure; injury specific personalized ventilation strategies; and negative pressure ventilation. Combination of some of these advances in an automatized EVLP device capable of managing perfusate biochemistry and ventilation would likely speed up the processes of achieving multiday preservation of isolated EVLP.
Collapse
Affiliation(s)
- Ilker Iskender
- Department of Cardiac Surgery, East Limburg Hospital, Genk, Belgium
| |
Collapse
|
5
|
Nykänen AI, Keshavjee S, Liu M. Creating superior lungs for transplantation with next-generation gene therapy during ex vivo lung perfusion. J Heart Lung Transplant 2024; 43:838-848. [PMID: 38310996 DOI: 10.1016/j.healun.2024.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/23/2023] [Accepted: 01/29/2024] [Indexed: 02/06/2024] Open
Abstract
Engineering donor organs to better tolerate the harmful non-immunological and immunological responses inherently related to solid organ transplantation would improve transplant outcomes. Our enhanced knowledge of ischemia-reperfusion injury, alloimmune responses and pathological fibroproliferation after organ transplantation, and the advanced toolkit available for gene therapies, have brought this goal closer to clinical reality. Ex vivo organ perfusion has evolved rapidly especially in the field of lung transplantation, where clinicians routinely use ex vivo lung perfusion (EVLP) to confirm the quality of marginal donor lungs before transplantation, enabling safe transplantation of organs originally considered unusable. EVLP would also be an attractive platform to deliver gene therapies, as treatments could be administered to an isolated organ before transplantation, thereby providing a window for sophisticated organ engineering while minimizing off-target effects to the recipient. Here, we review the status of lung transplant first-generation gene therapies that focus on inducing transgene expression in the target cells. We also highlight recent advances in next-generation gene therapies, that enable gene editing and epigenetic engineering, that could be used to permanently change the donor organ genome and to induce widespread transcriptional gene expression modulation in the donor lung. In a future vision, dedicated organ repair and engineering centers will use gene editing and epigenetic engineering, to not only increase the donor organ pool, but to create superior organs that will function better and longer in the recipient.
Collapse
Affiliation(s)
- Antti I Nykänen
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Cardiothoracic Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Shaf Keshavjee
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Division of Thoracic Surgery, Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mingyao Liu
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
6
|
De Wolf J, Gouin C, Jouneau L, Glorion M, Premachandra A, Pascale F, Huriet M, Estephan J, Leplat JJ, Egidy G, Richard C, Gelin V, Urien C, Roux A, Le Guen M, Schwartz-Cornil I, Sage E. Prolonged dialysis during ex vivo lung perfusion promotes inflammatory responses. Front Immunol 2024; 15:1365964. [PMID: 38585271 PMCID: PMC10995259 DOI: 10.3389/fimmu.2024.1365964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/04/2024] [Indexed: 04/09/2024] Open
Abstract
Ex-vivo lung perfusion (EVLP) has extended the number of transplantable lungs by reconditioning marginal organs. However, EVLP is performed at 37°C without homeostatic regulation leading to metabolic wastes' accumulation in the perfusate and, as a corrective measure, the costly perfusate is repeatedly replaced during the standard of care procedure. As an interesting alternative, a hemodialyzer could be placed on the EVLP circuit, which was previously shown to rebalance the perfusate composition and to maintain lung function and viability without appearing to impact the global gene expression in the lung. Here, we assessed the biological effects of a hemodialyzer during EVLP by performing biochemical and refined functional genomic analyses over a 12h procedure in a pig model. We found that dialysis stabilized electrolytic and metabolic parameters of the perfusate but enhanced the gene expression and protein accumulation of several inflammatory cytokines and promoted a genomic profile predicting higher endothelial activation already at 6h and higher immune cytokine signaling at 12h. Therefore, epuration of EVLP with a dialyzer, while correcting features of the perfusate composition and maintaining the respiratory function, promotes inflammatory responses in the tissue. This finding suggests that modifying the metabolite composition of the perfusate by dialysis during EVLP can have detrimental effects on the tissue response and that this strategy should not be transferred as such to the clinic.
Collapse
Affiliation(s)
- Julien De Wolf
- Department of Thoracic Surgery and Lung Transplantation, Foch Hospital, Suresnes, France
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Carla Gouin
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Luc Jouneau
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Matthieu Glorion
- Department of Thoracic Surgery and Lung Transplantation, Foch Hospital, Suresnes, France
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | | | - Florentina Pascale
- Department of Thoracic Surgery and Lung Transplantation, Foch Hospital, Suresnes, France
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Maxime Huriet
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Jérôme Estephan
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | | | - Giorgia Egidy
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Christophe Richard
- Université Paris-Saclay, UVSQ, INRAE, BREED, MIMA2, CIMA, Jouy-en-Josas, France
| | - Valérie Gelin
- Université Paris-Saclay, UVSQ, INRAE, BREED, MIMA2, CIMA, Jouy-en-Josas, France
| | - Céline Urien
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Antoine Roux
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
- Department of Pulmonology, Foch Hospital, Suresnes, France
| | - Morgan Le Guen
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
- Department of Anesthesiology, Foch Hospital, Suresnes, France
| | | | - Edouard Sage
- Department of Thoracic Surgery and Lung Transplantation, Foch Hospital, Suresnes, France
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| |
Collapse
|
7
|
Hoetzenecker K, Benazzo A, Schwarz S, Keshavjee S, Cypel M. The Advent of Semi-Elective Lung Transplantation-Prolonged Static Cold Storage at 10°C. Transpl Int 2024; 37:12310. [PMID: 38317690 PMCID: PMC10839059 DOI: 10.3389/ti.2024.12310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024]
Abstract
Since the early days of clinical lung transplantation the preservation of donor organs has become a fairly standardized procedure and most centers do follow similar processes. This includes the use of low-potassium high dextran flush solutions and static cold storage (SCS) in a cooler filled with ice. Depending on the length of SCS, organs usually arrive at the recipient hospital at a temperature of 0°C-4°C. The question of the optimal storage temperature for donor lung preservation has been revisited as data from large animal experiments demonstrated that organs stored at 10°C experience less mitochondrial damage. Thus, prolonged cold ischemic times can be better tolerated at 10°C-even in pre-damaged organs. The clinical applicability of these findings was demonstrated in an international multi-center observational study including three high-volume lung transplant centers. Total clinical preservation times of up to 24 hrs have been successfully achieved in organs stored at 10°C without hampering primary organ function and short-term outcomes. Currently, a randomized-controlled trial (RCT) is recruiting patients with the aim to compare standard SCS on ice with prolonged SCS protocol at 10°C. If, as anticipated, this RCT confirms data from previous studies, lung transplantation could indeed become a semi-elective procedure.
Collapse
Affiliation(s)
- K. Hoetzenecker
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - A. Benazzo
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - S. Schwarz
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - S. Keshavjee
- Toronto Lung Transplant Program, Division of Thoracic Surgery, University Health Network, University of Toronto, Toronto, ON, Canada
| | - M. Cypel
- Toronto Lung Transplant Program, Division of Thoracic Surgery, University Health Network, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
Jeon JE, Huang L, Zhu Z, Wong A, Keshavjee S, Liu M. Acellular ex vivo lung perfusate silences pro-inflammatory signaling in human lung endothelial and epithelial cells. J Transl Med 2023; 21:729. [PMID: 37845763 PMCID: PMC10580637 DOI: 10.1186/s12967-023-04601-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 10/06/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Ischemia-reperfusion injury is a key complication following lung transplantation. The clinical application of ex vivo lung perfusion (EVLP) to assess donor lung function has significantly increased the utilization of "marginal" donor lungs with good clinical outcomes. The potential of EVLP on improving organ quality and ameliorating ischemia-reperfusion injury has been suggested. METHODS To determine the effects of ischemia-reperfusion and EVLP on gene expression in human pulmonary microvascular endothelial cells and epithelial cells, cell culture models were used to simulate cold ischemia (4 °C for 18 h) followed by either warm reperfusion (DMEM + 10% FBS) or EVLP (acellular Steen solution) at 37 °C for 4 h. RNA samples were extracted for bulk RNA sequencing, and data were analyzed for significant differentially expressed genes and pathways. RESULTS Endothelial and epithelial cells showed significant changes in gene expressions after ischemia-reperfusion or EVLP. Ischemia-reperfusion models of both cell types showed upregulated pro-inflammatory and downregulated cell metabolism pathways. EVLP models, on the other hand, exhibited downregulation of cell metabolism, without any inflammatory signals. CONCLUSION The commonly used acellular EVLP perfusate, Steen solution, silenced the activation of pro-inflammatory signaling in both human lung endothelial and epithelial cells, potentially through the lack of serum components. This finding could establish the basic groundwork of studying the benefits of EVLP perfusate as seen from current clinical practice.
Collapse
Affiliation(s)
- Jamie E Jeon
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, 101 College Street, PMCRT2-814, Toronto, ON, M5G 1L7, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Lei Huang
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, 101 College Street, PMCRT2-814, Toronto, ON, M5G 1L7, Canada
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhiyuan Zhu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, 101 College Street, PMCRT2-814, Toronto, ON, M5G 1L7, Canada
- Department of Otolaryngology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210000, China
| | - Aaron Wong
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, 101 College Street, PMCRT2-814, Toronto, ON, M5G 1L7, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Shaf Keshavjee
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, 101 College Street, PMCRT2-814, Toronto, ON, M5G 1L7, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, 101 College Street, PMCRT2-814, Toronto, ON, M5G 1L7, Canada.
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
9
|
Huang L, Vellanki RN, Zhu Z, Wouters BG, Keshavjee S, Liu M. De Novo Design and Development of a Nutrient-Rich Perfusate for Ex Vivo Lung Perfusion with Cell Culture Models. Int J Mol Sci 2023; 24:13117. [PMID: 37685927 PMCID: PMC10487937 DOI: 10.3390/ijms241713117] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Ex vivo lung perfusion (EVLP) has increased donor lung utilization through assessment of "marginal" lungs prior to transplantation. To develop it as a donor lung reconditioning platform, prolonged EVLP is necessary, and new perfusates are required to provide sufficient nutritional support. Human pulmonary microvascular endothelial cells and epithelial cells were used to test different formulas for basic cellular function. A selected formula was further tested on an EVLP cell culture model, and cell confluence, apoptosis, and GSH and HSP70 levels were measured. When a cell culture medium (DMEM) was mixed with a current EVLP perfusate-Steen solution, DMEM enhanced cell confluence and migration and reduced apoptosis in a dose-dependent manner. A new EVLP perfusate was designed and tested based on DMEM. The final formula contains 5 g/L Dextran-40 and 7% albumin and is named as D05D7A solution. It inhibited cold static storage and warm reperfusion-induced cell apoptosis, improved cell confluence, and enhanced GSH and HSP70 levels in human lung cells compared to Steen solution. DMEM-based nutrient-rich EVLP perfusate could be a promising formula to prolong EVLP and support donor lung repair, reconditioning and further improve donor lung quality and quantity for transplantation with better clinical outcome.
Collapse
Affiliation(s)
- Lei Huang
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (L.H.); (Z.Z.); (S.K.)
| | - Ravi N. Vellanki
- Princess Margaret Cancer Centre, Campbell Family Institute for Cancer Research, University Health Network, Toronto, ON M5G 1L7, Canada; (R.N.V.); (B.G.W.)
| | - Zhiyuan Zhu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (L.H.); (Z.Z.); (S.K.)
| | - Bradly G. Wouters
- Princess Margaret Cancer Centre, Campbell Family Institute for Cancer Research, University Health Network, Toronto, ON M5G 1L7, Canada; (R.N.V.); (B.G.W.)
| | - Shaf Keshavjee
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (L.H.); (Z.Z.); (S.K.)
- Departments of Surgery, Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5G 1A8, Canada
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (L.H.); (Z.Z.); (S.K.)
- Departments of Surgery, Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5G 1A8, Canada
| |
Collapse
|
10
|
Hautbergue T, Laverdure F, Van SD, Vallee A, Sanchis-Borja M, Decante B, Gaillard M, Junot C, Fenaille F, Mercier O, Colsch B, Guihaire J. Metabolomic profiling of cardiac allografts after controlled circulatory death. J Heart Lung Transplant 2023; 42:870-879. [PMID: 36931989 DOI: 10.1016/j.healun.2023.02.1492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/17/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Assessment of myocardial viability during ex situ heart perfusion (ESHP) is based on the measurement of lactate concentrations. As this provides with limited information, we sought to investigate the metabolic signature associated with donation after circulatory death (DCD) and the impact of ESHP on the myocardial metabolome. METHODS Porcine hearts were retrieved either after warm ischemia (DCD group, N = 6); after brain-stem death (BSD group, N = 6); or without DCD nor BSD (Control group, N = 6). Hearts were perfused using normothermic oxygenated blood for 240 minutes. Plasma and myocardial samples were collected respectively every 30 and 60 minutes, and analyzed by an untargeted metabolomic approach using liquid chromatography coupled to high-resolution mass spectrometry. RESULTS Median duration of warm ischemia was 23 minutes [19-29] in DCD animals. Lactate level within myocardial biopsies was not significantly different between groups at T0 (p = 0.281), and remained stable over the 4-hour period of ESHP. More than 300 metabolites were detected in plasma and heart biopsy samples. Compared to BSD animals, metabolomics changes involving energy and nucleotide metabolisms were observed in plasma samples of DCD animals before initiation of ESHP, whereas 2 metabolites (inosine monophosphate and methylbutyrate) exhibited concentration changes in biopsy samples. Normalization of DCD metabolic profile was remarkable after 4 hours of ESHP. CONCLUSION A specific metabolic profile was observed in DCD hearts, mainly characterized by an increased nucleotide catabolism. DCD and BSD metabolomes proved normalized during ESHP. Complementary investigations are needed to correlate these findings to cardiac performances.
Collapse
Affiliation(s)
- Thaïs Hautbergue
- Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, Paris-Saclay University, CEA, INRAE, Gif-sur-Yvette, France
| | - Florent Laverdure
- Department of Anesthesiology and Intensive Care, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, Paris-Saclay University, Pulmonary Hypertension National Referral Center, Le Plessis Robinson, France; Preclinical Research Laboratory, Paris-Saclay University, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, Pulmonary Hypertension National Referral Center, Le Plessis Robinson, France
| | - Simon Dang Van
- Preclinical Research Laboratory, Paris-Saclay University, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, Pulmonary Hypertension National Referral Center, Le Plessis Robinson, France
| | - Aurelien Vallee
- Preclinical Research Laboratory, Paris-Saclay University, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, Pulmonary Hypertension National Referral Center, Le Plessis Robinson, France; Department of Cardiac Surgery, Paris-Saclay University, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, Pulmonary Hypertension National Referral Center, Le Plessis Robinson, France
| | - Mateo Sanchis-Borja
- Preclinical Research Laboratory, Paris-Saclay University, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, Pulmonary Hypertension National Referral Center, Le Plessis Robinson, France
| | - Benoît Decante
- Preclinical Research Laboratory, Paris-Saclay University, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, Pulmonary Hypertension National Referral Center, Le Plessis Robinson, France
| | - Maïra Gaillard
- Preclinical Research Laboratory, Paris-Saclay University, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, Pulmonary Hypertension National Referral Center, Le Plessis Robinson, France; Department of Cardiac Surgery, Paris-Saclay University, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, Pulmonary Hypertension National Referral Center, Le Plessis Robinson, France
| | - Christophe Junot
- Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, Paris-Saclay University, CEA, INRAE, Gif-sur-Yvette, France
| | - François Fenaille
- Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, Paris-Saclay University, CEA, INRAE, Gif-sur-Yvette, France
| | - Olaf Mercier
- Preclinical Research Laboratory, Paris-Saclay University, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, Pulmonary Hypertension National Referral Center, Le Plessis Robinson, France; Department of Thoracic and Vascular Surgery and Heart-Lung Transplantation, Paris-Saclay University, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, Pulmonary Hypertension National Referral Center, Le Plessis Robinson, France; INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Paris-Saclay University, Hôpital Marie Lannelongue, Le Plessis-Robinson, France; Paris-Saclay University School of Medicine, Le Kremlin-Bicêtre, France
| | - Benoit Colsch
- Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, Paris-Saclay University, CEA, INRAE, Gif-sur-Yvette, France
| | - Julien Guihaire
- Preclinical Research Laboratory, Paris-Saclay University, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, Pulmonary Hypertension National Referral Center, Le Plessis Robinson, France; Department of Cardiac Surgery, Paris-Saclay University, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, Pulmonary Hypertension National Referral Center, Le Plessis Robinson, France; Department of Thoracic and Vascular Surgery and Heart-Lung Transplantation, Paris-Saclay University, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, Pulmonary Hypertension National Referral Center, Le Plessis Robinson, France.
| |
Collapse
|
11
|
Baciu C, Shin J, Hsin M, Cypel M, Keshavjee S, Liu M. Altered purine metabolism at reperfusion affects clinical outcome in lung transplantation. Thorax 2023; 78:249-257. [PMID: 35450941 DOI: 10.1136/thoraxjnl-2021-217498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 03/22/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Lung transplantation is an established treatment for patients with end-stage lung disease. However, ischaemia reperfusion injury remains a barrier to achieving better survival outcomes. Here, we aim to investigate the metabolomic and transcriptomic profiles in human lungs before and after reperfusion, to identify mechanisms relevant to clinical outcome. METHODS We analysed 67 paired human lung tissue samples collected from 2008 to 2011, at the end of cold preservation and 2 hours after reperfusion. Gene expression analysis was performed with R. Pathway analysis was conducted with Ingenuity Pathway Analysis. MetaboAnalyst and OmicsNet were used for metabolomics analysis and omics data integration, respectively. Association of identified metabolites with transplant outcome was investigated with Kaplan-Meier estimate and Cox proportional hazard models. RESULTS Activation of energy metabolism and reduced antioxidative biochemicals were found by metabolomics. Upregulation of genes related to cytokines and inflammatory mediators, together with major signalling pathways were revealed by transcriptomics. Purine metabolism was identified as the most significantly enriched pathway at reperfusion, based on integrative analysis of the two omics data sets. Elevated expression of purine nucleoside phosphorylase (PNP) could be attributed to activation of multiple transcriptional pathways. PNP catabolised reactions were evidenced by changes in related metabolites, especially decreased levels of inosine and increased levels of uric acid. Multivariable analyses showed significant association of inosine and uric acid levels with intensive care unit length of stay and ventilation time. CONCLUSION Oxidative stress, especially through purine metabolism pathway, is a major metabolic event during reperfusion and may contribute to the ischaemia reperfusion injury of lung grafts.
Collapse
Affiliation(s)
- Cristina Baciu
- Latner Thoracic Surgical Laboratory, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Jason Shin
- Latner Thoracic Surgical Laboratory, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Michael Hsin
- Latner Thoracic Surgical Laboratory, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Marcelo Cypel
- Latner Thoracic Surgical Laboratory, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada.,Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Shaf Keshavjee
- Latner Thoracic Surgical Laboratory, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada.,Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mingyao Liu
- Latner Thoracic Surgical Laboratory, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada .,Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Huang L, Hough O, Vellanki RN, Takahashi M, Zhu Z, Xiang YY, Chen M, Gokhale H, Shan H, Soltanieh S, Jing L, Gao X, Wouters BG, Cypel M, Keshavjee S, Liu M. L-alanyl-L-glutamine modified perfusate improves human lung cell functions and extend porcine ex vivo lung perfusion. J Heart Lung Transplant 2023; 42:183-195. [PMID: 36411189 DOI: 10.1016/j.healun.2022.10.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND The clinical application of normothermic ex vivo lung perfusion (EVLP) has increased donor lung utilization for transplantation through functional assessment. To develop it as a platform for donor lung repair, reconditioning and regeneration, the perfusate should be modified to support the lung during extended EVLP. METHODS Human lung epithelial cells and pulmonary microvascular endothelial cells were cultured, and the effects of Steen solution (commonly used EVLP perfusate) on basic cellular function were tested. Steen solution was modified based on screening tests in cell culture, and further tested with an EVLP cell culture model, on apoptosis, GSH, HSP70, and IL-8 expression. Finally, a modified formula was tested on porcine EVLP. Physiological parameters of lung function, histology of lung tissue, and amino acid concentrations in EVLP perfusate were measured. RESULTS Steen solution reduced cell confluence, induced apoptosis, and inhibited cell migration, compared to regular cell culture media. Adding L-alanyl-L-glutamine to Steen solution improved cell migration and decreased apoptosis. It also reduced cold preservation and warm perfusion-induced apoptosis, enhanced GSH and HSP70 production, and inhibited IL-8 expression on an EVLP cell culture model. L-alanyl-L-glutamine modified Steen solution supported porcine lungs on EVLP with significantly improved lung function, well-preserved histological structure, and significantly higher levels of multiple amino acids in EVLP perfusate. CONCLUSIONS Adding L-alanyl-L-glutamine to perfusate may provide additional energy support, antioxidant, and cytoprotective effects to lung tissue. The pipeline developed herein, with cell culture, cell EVLP, and porcine EVLP models, can be used to further optimize perfusates to improve EVLP outcomes.
Collapse
Affiliation(s)
- Lei Huang
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Olivia Hough
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Ravi N Vellanki
- Princess Margaret Cancer Centre and Campbell Family Institute for Cancer Research, University Health Network, Toronto, Ontario, Canada
| | - Mamoru Takahashi
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Zhiyuan Zhu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Yun-Yan Xiang
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Manyin Chen
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Hemant Gokhale
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Hongchao Shan
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Sahar Soltanieh
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Lei Jing
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Xinliang Gao
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Bradly G Wouters
- Princess Margaret Cancer Centre and Campbell Family Institute for Cancer Research, University Health Network, Toronto, Ontario, Canada
| | - Marcelo Cypel
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Surgery and Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Shaf Keshavjee
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Surgery and Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Surgery and Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
13
|
Gao Z, Zhou W, Lv X, Wang X. Metabolomics as a Critical Tool for Studying Clinical Surgery. Crit Rev Anal Chem 2023; 54:2245-2258. [PMID: 36592066 DOI: 10.1080/10408347.2022.2162810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Metabolomics enables the analysis of metabolites within an organism, which offers the closest direct measurement of the physiological activity of the organism, and has advanced efforts to characterize metabolic states, identify biomarkers, and investigate metabolic pathways. A high degree of innovation in analytical techniques has promoted the application of metabolomics, especially in the study of clinical surgery. Metabolomics can be employed as a clinical testing method to maximize therapeutic outcomes, and has been applied in rapid diagnosis of diseases, timely postoperative monitoring, prognostic assessment, and personalized medicine. This review focuses on the use of mass spectrometry and nuclear magnetic resonance-based metabolomics in clinical surgery, including identifying metabolic changes before and after surgery, finding disease-associated biomarkers, and exploring the potential of personalized therapy. Challenges and opportunities of metabolomics in organ transplantation are also discussed, with a particular emphasis on metabolomics in donor organ evaluation and protection, prognostic outcome prediction, as well as postoperative adverse reaction monitoring. In the end, current limitations of metabolomics in clinical surgery and future research directions are presented.
Collapse
Affiliation(s)
- Zhenye Gao
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Wenxiu Zhou
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Xiaoyuan Lv
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Xin Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, P. R. China
| |
Collapse
|
14
|
Diagnostic and Therapeutic Implications of Ex Vivo Lung Perfusion in Lung Transplantation: Potential Benefits and Inherent Limitations. Transplantation 2023; 107:105-116. [PMID: 36508647 DOI: 10.1097/tp.0000000000004414] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ex vivo lung perfusion (EVLP), a technique in which isolated lungs are continually ventilated and perfused at normothermic temperature, is emerging as a promising platform to optimize donor lung quality and increase the lung graft pool. Over the past few decades, the EVLP technique has become recognized as a significant achievement and gained much attention in the field of lung transplantation. EVLP has been demonstrated to be an effective platform for various targeted therapies to optimize donor lung function before transplantation. Additionally, some physical parameters during EVLP and biological markers in the EVLP perfusate can be used to evaluate graft function before transplantation and predict posttransplant outcomes. However, despite its advantages, the clinical practice of EVLP continuously encounters multiple challenges associated with both intrinsic and extrinsic limitations. It is of utmost importance to address the advantages and disadvantages of EVLP for its broader clinical usage. Here, the pros and cons of EVLP are comprehensively discussed, with a focus on its benefits and potential approaches for overcoming the remaining limitations. Directions for future research to fully explore the clinical potential of EVLP in lung transplantation are also discussed.
Collapse
|
15
|
Zhang ZL, Moeslund N, Hu MA, Hoffmann R, Venema LH, Van De Wauwer C, Timens W, Okamoto T, Verschuuren EAM, Leuvenink HGD, Eiskjaer H, Erasmus ME. Establishing an economical and widely accessible donation after circulatory death animal abattoir model for lung research using ex vivo lung perfusion. Artif Organs 2022; 46:2179-2190. [PMID: 35730930 PMCID: PMC9796928 DOI: 10.1111/aor.14345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/21/2022] [Accepted: 06/06/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Ex vivo lung perfusion (EVLP), is a platform that allows simultaneous testing and treatment of the lungs. However, use of EVLP is costly and requires access to lab animals and accompanying facilities. To increase the use of EVLP for research, we developed a method to perform EVLP using abattoir procured lungs. Furthermore, we were also able to significantly decrease costs. METHODS Six pair of lungs were procured from abattoir sheep. The lungs were then flushed and stored in ice for 3 h. A low-flow (20% of cardiac output) approach, a tidal volume of 6 ml/kg bodyweight and total perfusion time of 3 h were chosen. Perfusion fluids and circuits were self-made. Lung biopsies, perfusate collection, respiratory values, circulatory pressures were recorded and hourly blood gas analyses were performed. RESULTS Mean pO2 remained stable from 60 min (49.3 ± 7.1 kPa) to 180 min (51.5 kPa ± 8.0), p = 0.66. Pulmonary artery pressure remained ≤15 mm Hg and the left atrial pressure remained between 3 and 5 mm Hg and peak respiratory pressures ≤20 cmH2 O. Lactate dehydrogenase increased from start (96.3 ± 56.4 U/L) to the end of perfusion (315.8 ± 85.0 U/L), p < 0.05. No difference was observed in ATP between procurement and post-EVLP, 129.7 ± 37.4 μmol/g protein to 132.0 ± 23.4 μmol/g, p = 0.92. CONCLUSIONS Sheep lungs, acquired from an abattoir, can be ex vivo perfused under similar conditions as lab animal lungs with similar results regarding e.g., oxygenation and ATP restoration. Furthermore, costs can be significantly reduced by making use of this abattoir model. By increasing accessibility and lowering costs for experiments using lung perfusion, more results may be achieved in the field of lung diseases.
Collapse
Affiliation(s)
- Zhang Long Zhang
- Department of Cardio‐Thoracic SurgeryUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - Niels Moeslund
- Department of CardiologyAarhus University HospitalAarhusDenmark
| | - Michiel Andy Hu
- Department of Cardio‐Thoracic SurgeryUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - Roland Hoffmann
- Department of Cardio‐Thoracic SurgeryUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - Leonie Harmina Venema
- Department of Surgical ResearchUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - Caroline Van De Wauwer
- Department of Cardio‐Thoracic SurgeryUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - Wim Timens
- Department of PathologyUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - Toshihiro Okamoto
- Department of Thoracic Surgery and Lung TransplantationCleveland ClinicClevelandOhioUSA
| | - Erik Alfons Maria Verschuuren
- Department of Cardio‐Thoracic SurgeryUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - Henri Gerrit Derk Leuvenink
- Department of Surgical ResearchUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - Hans Eiskjaer
- Department of CardiologyAarhus University HospitalAarhusDenmark
| | - Michiel Elardus Erasmus
- Department of Cardio‐Thoracic SurgeryUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| |
Collapse
|
16
|
Olkowicz M, Ribeiro RVP, Yu F, Alvarez JS, Xin L, Yu M, Rosales R, Adamson MB, Bissoondath V, Smolenski RT, Billia F, Badiwala MV, Pawliszyn J. Dynamic Metabolic Changes During Prolonged Ex Situ Heart Perfusion Are Associated With Myocardial Functional Decline. Front Immunol 2022; 13:859506. [PMID: 35812438 PMCID: PMC9267769 DOI: 10.3389/fimmu.2022.859506] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Ex situ heart perfusion (ESHP) was developed to preserve and evaluate donated hearts in a perfused beating state. However, myocardial function declines during ESHP, which limits the duration of perfusion and the potential to expand the donor pool. In this research, we combine a novel, minimally-invasive sampling approach with comparative global metabolite profiling to evaluate changes in the metabolomic patterns associated with declines in myocardial function during ESHP. Biocompatible solid-phase microextraction (SPME) microprobes serving as chemical biopsy were used to sample heart tissue and perfusate in a translational porcine ESHP model and a small cohort of clinical cases. In addition, six core-needle biopsies of the left ventricular wall were collected to compare the performance of our SPME sampling method against that of traditional tissue-collection. Our state-of-the-art metabolomics platform allowed us to identify a large number of significantly altered metabolites and lipid species that presented comparable profile of alterations to conventional biopsies. However, significant discrepancies in the pool of identified analytes using two sampling methods (SPME vs. biopsy) were also identified concerning mainly compounds susceptible to dynamic biotransformation and most likely being a result of low-invasive nature of SPME. Overall, our results revealed striking metabolic alterations during prolonged 8h-ESHP associated with uncontrolled inflammation not counterbalanced by resolution, endothelial injury, accelerated mitochondrial oxidative stress, the disruption of mitochondrial bioenergetics, and the accumulation of harmful lipid species. In conclusion, the combination of perfusion parameters and metabolomics can uncover various mechanisms of organ injury and recovery, which can help differentiate between donor hearts that are transplantable from those that should be discarded.
Collapse
Affiliation(s)
- Mariola Olkowicz
- Department of Chemistry, University of Waterloo, Waterloo, ON, Canada
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Roberto Vanin Pinto Ribeiro
- Division of Cardiovascular Surgery, Peter Munk Cardiac Center, Toronto General Hospital, University Health Network, Toronto, ON, Canada
- Division of Cardiac Surgery, Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Cardiac Surgery, Department of Surgery, Dalhousie University, Halifax, NS, Canada
| | - Frank Yu
- Division of Cardiovascular Surgery, Peter Munk Cardiac Center, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Juglans Souto Alvarez
- Division of Cardiovascular Surgery, Peter Munk Cardiac Center, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Liming Xin
- Division of Cardiovascular Surgery, Peter Munk Cardiac Center, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Miao Yu
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Roizar Rosales
- Division of Cardiovascular Surgery, Peter Munk Cardiac Center, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Mitchell Brady Adamson
- Division of Cardiovascular Surgery, Peter Munk Cardiac Center, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Ved Bissoondath
- Division of Cardiovascular Surgery, Peter Munk Cardiac Center, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | | | - Filio Billia
- Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, Canada
- Ted Roger’s Center for Heart Research, University Health Network, Toronto, ON, Canada
| | - Mitesh Vallabh Badiwala
- Division of Cardiovascular Surgery, Peter Munk Cardiac Center, Toronto General Hospital, University Health Network, Toronto, ON, Canada
- Division of Cardiac Surgery, Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Ted Roger’s Center for Heart Research, University Health Network, Toronto, ON, Canada
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, ON, Canada
- *Correspondence: Janusz Pawliszyn,
| |
Collapse
|
17
|
Truby LK, Casalinova S, Patel CB, Agarwal R, Holley CL, Mentz RJ, Milano C, Bryner B, Schroder JN, Devore AD. Donation After Circulatory Death in Heart Transplantation: History, Outcomes, Clinical Challenges, and Opportunities to Expand the Donor Pool. J Card Fail 2022; 28:1456-1463. [PMID: 35447338 DOI: 10.1016/j.cardfail.2022.03.353] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 11/15/2022]
Abstract
Heart transplantation remains the gold-standard therapy for end-stage heart failure; the expected median survival range is 12-13 years. More than 30,000 heart transplants have been performed globally in the past decade alone. With advances in medical and surgical therapies for heart failure, including durable left ventricular assist devices, an increasing number of patients are living with end-stage disease. Last year alone, more than 2500 patients were added to the heart-transplant waitlist in the United States. Despite recent efforts to expand the donor pool, including an increase in transplantation of hepatitis C-positive and extended-criteria donors, supply continues to fall short of demand. Donation after circulatory death (DCD), defined by irreversible cardiopulmonary arrest rather than donor brain death, is widely used in other solid-organ transplants, including kidney and liver, but has not been widely adopted in heart transplantation. However, resurging interest in DCD donation and the introduction of ex vivo perfusion technology has catalyzed recent clinical trials and the development of DCD heart-transplantation programs. Herein, we review the history of DCD heart transplantation, describe the currently used procurement protocols for it and examine clinical challenges and outcomes of such a procedure.
Collapse
Affiliation(s)
- Lauren K Truby
- From the Duke Molecular Physiology Institute, Duke University Medical Center, Durham, North Carolina; Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Sarah Casalinova
- Division of Cardiothoracic Surgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Chetan B Patel
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Richa Agarwal
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Christopher L Holley
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Robert J Mentz
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina; Duke Clinical Research Institute, Durham, North Carolina
| | - Carmelo Milano
- Division of Cardiothoracic Surgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Benjamin Bryner
- Division of Cardiothoracic Surgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Jacob N Schroder
- Division of Cardiothoracic Surgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Adam D Devore
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina; Duke Clinical Research Institute, Durham, North Carolina.
| |
Collapse
|
18
|
Miceli V, Bertani A. Mesenchymal Stromal/Stem Cells and Their Products as a Therapeutic Tool to Advance Lung Transplantation. Cells 2022; 11:826. [PMID: 35269448 PMCID: PMC8909054 DOI: 10.3390/cells11050826] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/18/2022] [Accepted: 02/25/2022] [Indexed: 02/07/2023] Open
Abstract
Lung transplantation (LTx) has become the gold standard treatment for end-stage respiratory failure. Recently, extended lung donor criteria have been applied to decrease the mortality rate of patients on the waiting list. Moreover, ex vivo lung perfusion (EVLP) has been used to improve the number/quality of previously unacceptable lungs. Despite the above-mentioned progress, the morbidity/mortality of LTx remains high compared to other solid organ transplants. Lungs are particularly susceptible to ischemia-reperfusion injury, which can lead to graft dysfunction. Therefore, the success of LTx is related to the quality/function of the graft, and EVLP represents an opportunity to protect/regenerate the lungs before transplantation. Increasing evidence supports the use of mesenchymal stromal/stem cells (MSCs) as a therapeutic strategy to improve EVLP. The therapeutic properties of MSC are partially mediated by secreted factors. Hence, the strategy of lung perfusion with MSCs and/or their products pave the way for a new innovative approach that further increases the potential for the use of EVLP. This article provides an overview of experimental, preclinical and clinical studies supporting the application of MSCs to improve EVLP, the ultimate goal being efficient organ reconditioning in order to expand the donor lung pool and to improve transplant outcomes.
Collapse
Affiliation(s)
- Vitale Miceli
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), 90127 Palermo, Italy
| | - Alessandro Bertani
- Thoracic Surgery and Lung Transplantation Unit, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| |
Collapse
|
19
|
Proteomics, brain death, and organ transplantation. J Heart Lung Transplant 2021; 41:325-326. [PMID: 35016814 DOI: 10.1016/j.healun.2021.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 11/23/2022] Open
|
20
|
Wang M, Xu J, Yang N, Zhang T, Zhu H, Wang J. Insight Into the Metabolomic Characteristics of Post-Transplant Diabetes Mellitus by the Integrated LC-MS and GC-MS Approach- Preliminary Study. Front Endocrinol (Lausanne) 2021; 12:807318. [PMID: 35116008 PMCID: PMC8805207 DOI: 10.3389/fendo.2021.807318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/29/2021] [Indexed: 11/16/2022] Open
Abstract
Post-transplantation diabetes mellitus (PTDM) is a common metabolic complication after solid organ transplantation, which not only results in elevated microvascular morbidity, but also seriously impacts graft function and recipient survival. However, its underlying mechanism is not yet fully understood. In this study, an integrated liquid chromatography- mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) based-metabolomics approach was adopted to dissect the metabolic fluctuations and deduce potential mechanism associated with PTDM. 68 adult liver transplant recipients were recruited and classified as 32 PTDM and 36 non-PTDM subjects. PTDM group and non-PTDM group were well matched in gender, age, BMI, family history of diabetes, alcohol drinking history, ICU length of stay and hepatitis B infection. Peripheral blood samples from these recipients were collected and prepared for instrument analysis. Data acquired from LC-MS and GC-MS demonstrated significant metabolome alterations between PTDM and non-PTDM subjects. A total of 30 differential metabolites (15 from LC-MS, 15 from GC-MS) were screened out. PTDM patients, compared with non-PTDM subjects, were characterized with increased levels of L-leucine, L-phenylalanine, LysoPE (16:0), LysoPE (18:0), LysoPC (18:0), taurocholic acid, glycocholic acid, taurochenodeoxycholic acid, tauroursodeoxycholic acid, glycochenodeoxycholic acid, glycoursodeoxycholic acid, etc, and with decreased levels of LysoPC (16:1), LysoPC (18:2), LysoPE (22:6), LysoPC (20:4), etc. Taken collectively, this study demonstrated altered metabolites in patients with PTDM, which would provide support for enhancing mechanism exploration, prediction and treatment of PTDM.
Collapse
Affiliation(s)
- Min Wang
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jie Xu
- Physical and Chemical Department, Nanjing Center for Disease Control and Prevention, Nanjing, China
| | - Na Yang
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Tianqi Zhang
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Huaijun Zhu
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- *Correspondence: Huaijun Zhu, ; Jing Wang,
| | - Jing Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
- *Correspondence: Huaijun Zhu, ; Jing Wang,
| |
Collapse
|