1
|
James CJ, Laborde ML, Algans C, Tartayre M, Marx M. Channel crosstalk detected using ECAP measurements is associated with poorer speech perception in cochlear implant users. Hear Res 2025; 458:109206. [PMID: 39933408 DOI: 10.1016/j.heares.2025.109206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/16/2025] [Accepted: 02/01/2025] [Indexed: 02/13/2025]
Abstract
The number and independence of channels in cochlear implants (CI) has long been considered to influence speech recognition, particularly in competing background noise. Measures of channel independence have been obtained via psychophysical and objective means, relying on interactions between probe and masker signals delivered on different channels. In the current study, electrically evoked compound action potentials (ECAP) obtained from 32 Nucleus CI recipients tested at one basal and one apical position were performed using a standard spread-of-excitation procedure. An alternative analysis method, comparing masked responses only, revealed distant maskers as effective or more effective than same-electrode maskers in 13/32 cases. This appears to indicate substantial crosstalk between channels, covering up to nine intracochlear electrodes in one subject. Subjects with atypical responses and no other limiting factors had significantly poorer sentence recognition in noise compared with those with no detected peripheral or cognitive limiting factors. We propose that channel crosstalk detected via ECAPs may be a biomarker for poor or patchy neural survival that leads to poorer speech perception in CI recipients.
Collapse
Affiliation(s)
| | | | - Carole Algans
- Service Oto Rhino Laryngologie Hôpital Riquet, Toulouse, France
| | | | - Mathieu Marx
- Service Oto Rhino Laryngologie Hôpital Riquet, Toulouse, France
| |
Collapse
|
2
|
Berg K, Goldsworthy R, Noble J, Dawant B, Gifford R. The relationship between channel interaction, electrode placement, and speech perception in adult cochlear implant users. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 156:4289-4302. [PMID: 39740049 DOI: 10.1121/10.0034603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 11/18/2024] [Indexed: 01/02/2025]
Abstract
This study (1) characterized the effects of channel interaction using spectral blurring, (2) evaluated an image-guided electrode selection (IGES) method aiming to reduce channel interaction, and (3) investigated the impact of electrode placement factors on the change in performance by condition. Twelve adult MED-EL (Innsbruck, Austria) cochlear implant recipients participated. Performance was compared across six conditions: baseline (no blurring), all blurred, apical blurred, middle blurred, basal blurred, and IGES. Electrode placement information was calculated from post-insertion computerized tomography (CT) imaging. Each condition tested measures of speech recognition and subjective ratings. Results showed poorer performance when spectral blurring was applied to all channels compared to baseline, suggesting an increase in channel interaction was achieved. Vowel recognition was more sensitive to apical and middle blurring while consonant recognition was more sensitive to basal blurring, indicating that phoneme identification may be useful for assessing channel interaction clinically. IGES did not significantly improve group performance, and electrode placement factors did not impact results. However, participants who were more affected by spectral blurring tended to benefit more from IGES. These findings indicate that spectral blurring can help identify areas most affected by channel interaction to help optimize electrode selection.
Collapse
Affiliation(s)
- Katelyn Berg
- Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Ray Goldsworthy
- University of Southern California, Los Angeles, California 90033, USA
| | - Jack Noble
- Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Benoit Dawant
- Vanderbilt University, Nashville, Tennessee 37232, USA
| | - René Gifford
- Vanderbilt University, Nashville, Tennessee 37232, USA
| |
Collapse
|
3
|
Sharma V, Das K N, Jangra A, Tiwari S, Khera P, Soni K, Dixit SG, Nayyar AK, Goyal A. Dependability of Electrode to Modiolus Distance in Patients Specific Electrode Selection: A Cadaveric Model Study. Laryngoscope 2024; 134:4736-4744. [PMID: 38860484 DOI: 10.1002/lary.31565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/29/2024] [Accepted: 05/28/2024] [Indexed: 06/12/2024]
Abstract
OBJECTIVE This study aims to discern the disparities in the electrode-to-modiolus distance (EMD) between cochleostomy and round window approaches when performed sequentially in the same temporal bone. Additionally, the study seeks to identify the cochlear metrics that contribute to these differences. METHODOLOGY A cross-sectional study was conducted, involving the sequential insertion of a 12-electrode array through both round window and cochleostomy approaches in cadaveric temporal bones. Postimplantation high-resolution CT scans were employed to calculate various parameters. RESULTS A total of 12 temporal bones were included in the imaging analysis, revealing a mean cochlear duct length of 32.892 mm. The EMD demonstrated a gradual increase from electrode 1 (C1) in the apex (1.9 ± 0.07 mm; n = 24) to electrode 12 (C12) in the basal turn (4.6 ± 0.24 mm; n = 12; p < 0.01). Significantly higher EMD values were observed in the cochleostomy group. Correlation analysis indicated a strong positive correlation between EMD and cochlear perimeter (CP) (rs = 0.64; n = 12; p = 0.03) and a strong negative correlation with the depth of insertion (DOI) in both the middle and basal turns (rs = - 0.78; n = 20; p < 0.01). Additionally, EMD showed a strong negative correlation with the DOI-CP ratio (rs = -0.81; n = 12; p < 0.01). CONCLUSION The cochleostomy group exhibited a significantly higher EMD compared with the round window group. The strong negative correlation between EMD and DOI-CP ratio suggests that in larger cochleae with shallower insertions, EMD is greater than in smaller cochleae with deeper insertions. LEVEL OF EVIDENCE NA Laryngoscope, 134:4736-4744, 2024.
Collapse
Affiliation(s)
- Vidhu Sharma
- Department of Otorhinolaryngology, All India Institute of Medical Sciences, Jodhpur, India
| | - Nidhin Das K
- Department of Otorhinolaryngology, All India Institute of Medical Sciences, Jodhpur, India
| | - Anupriya Jangra
- Department of Otorhinolaryngology, All India Institute of Medical Sciences, Jodhpur, India
| | - Sarbesh Tiwari
- Department of Diagnostic and Interventional, Radiology, All India Institute of Medical Sciences, Jodhpur, India
| | - Pushpinder Khera
- Department of Diagnostic and Interventional, Radiology, All India Institute of Medical Sciences, Jodhpur, India
| | - Kapil Soni
- Department of Otorhinolaryngology, All India Institute of Medical Sciences, Jodhpur, India
| | - Shilpi G Dixit
- Department of Anatomy, All India Institute of Medical Sciences, Jodhpur, India
| | - Ashish K Nayyar
- Department of Anatomy, All India Institute of Medical Sciences, Jodhpur, India
| | - Amit Goyal
- Department of Otorhinolaryngology, All India Institute of Medical Sciences, Jodhpur, India
| |
Collapse
|
4
|
Sinha R, Azadpour M. Employing deep learning model to evaluate speech information in acoustic simulations of Cochlear implants. Sci Rep 2024; 14:24056. [PMID: 39402071 PMCID: PMC11479273 DOI: 10.1038/s41598-024-73173-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/16/2024] [Indexed: 10/17/2024] Open
Abstract
Acoustic vocoders play a key role in simulating the speech information available to cochlear implant (CI) users. Traditionally, the intelligibility of vocoder CI simulations is assessed through speech recognition experiments with normally-hearing subjects, a process that can be time-consuming, costly, and subject to individual variability. As an alternative approach, we utilized an advanced deep learning speech recognition model to investigate the intelligibility of CI simulations. We evaluated model's performance on vocoder-processed words and sentences with varying vocoder parameters. The number of vocoder bands, frequency range, and envelope dynamic range were adjusted to simulate sound processing settings in CI devices. Additionally, we manipulated the low-cutoff frequency and intensity quantization of vocoder envelopes to simulate psychophysical temporal and intensity resolutions in CI patients. The results were evaluated within the context of the audio analysis performed in the model. Interestingly, the deep learning model, despite not being originally designed to mimic human speech processing, exhibited a human-like response to alterations in vocoder parameters, resembling existing human subject results. This approach offers significant time and cost savings compared to testing human subjects, and eliminates learning and fatigue effects during testing. Our findings demonstrate the potential of speech recognition models in facilitating auditory research.
Collapse
Affiliation(s)
- Rahul Sinha
- Department of Otolaryngology, New York University Grossman School of Medicine, 550 First Avenue, New York, NY, 10016, USA
| | - Mahan Azadpour
- Department of Otolaryngology, New York University Grossman School of Medicine, 550 First Avenue, New York, NY, 10016, USA.
| |
Collapse
|
5
|
Callejón-Leblic MA, Lazo-Maestre M, Fratter A, Ropero-Romero F, Sánchez-Gómez S, Reina-Tosina J. A full-head model to investigate intra and extracochlear electric fields in cochlear implant stimulation. Phys Med Biol 2024; 69:155010. [PMID: 38925131 DOI: 10.1088/1361-6560/ad5c38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
Objective.Despite the widespread use and technical improvement of cochlear implant (CI) devices over past decades, further research into the bioelectric bases of CI stimulation is still needed. Various stimulation modes implemented by different CI manufacturers coexist, but their true clinical benefit remains unclear, probably due to the high inter-subject variability reported, which makes the prediction of CI outcomes and the optimal fitting of stimulation parameters challenging. A highly detailed full-head model that includes a cochlea and an electrode array is developed in this study to emulate intracochlear voltages and extracochlear current pathways through the head in CI stimulation.Approach.Simulations based on the finite element method were conducted under monopolar, bipolar, tripolar (TP), and partial TP modes, as well as for apical, medial, and basal electrodes. Variables simulated included: intracochlear voltages, electric field (EF) decay, electric potentials at the scalp and extracochlear currents through the head. To better understand CI side effects such as facial nerve stimulation, caused by spurious current leakage out from the cochlea, special emphasis is given to the analysis of the EF over the facial nerve.Main results.The model reasonably predicts EF magnitudes and trends previously reported in CI users. New relevant extracochlear current pathways through the head and brain tissues have been identified. Simulated results also show differences in the magnitude and distribution of the EF through different segments of the facial nerve upon different stimulation modes and electrodes, dependent on nerve and bone tissue conductivities.Significance.Full-head models prove useful tools to model intra and extracochlear EFs in CI stimulation. Our findings could prove useful in the design of future experimental studies to contrast FNS mechanisms upon stimulation of different electrodes and CI modes. The full-head model developed is freely available for the CI community for further research and use.
Collapse
Affiliation(s)
- M A Callejón-Leblic
- Otorhinolaryngology Department, Virgen Macarena University Hospital, Seville 41009, Spain
- Oticon Medical, 28108 Madrid, Spain
- Dept. Signal Theory and Communications, Biomedical Engineering Group, University of Seville, Seville 41092, Spain
| | - M Lazo-Maestre
- Otorhinolaryngology Department, Virgen Macarena University Hospital, Seville 41009, Spain
| | - A Fratter
- Oticon Medical, 06220 Vallauris, France
| | - F Ropero-Romero
- Otorhinolaryngology Department, Virgen Macarena University Hospital, Seville 41009, Spain
| | - S Sánchez-Gómez
- Otorhinolaryngology Department, Virgen Macarena University Hospital, Seville 41009, Spain
| | - J Reina-Tosina
- Dept. Signal Theory and Communications, Biomedical Engineering Group, University of Seville, Seville 41092, Spain
| |
Collapse
|
6
|
Cychosz M, Winn MB, Goupell MJ. How to vocode: Using channel vocoders for cochlear-implant research. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 155:2407-2437. [PMID: 38568143 PMCID: PMC10994674 DOI: 10.1121/10.0025274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/14/2024] [Accepted: 02/23/2024] [Indexed: 04/05/2024]
Abstract
The channel vocoder has become a useful tool to understand the impact of specific forms of auditory degradation-particularly the spectral and temporal degradation that reflect cochlear-implant processing. Vocoders have many parameters that allow researchers to answer questions about cochlear-implant processing in ways that overcome some logistical complications of controlling for factors in individual cochlear implant users. However, there is such a large variety in the implementation of vocoders that the term "vocoder" is not specific enough to describe the signal processing used in these experiments. Misunderstanding vocoder parameters can result in experimental confounds or unexpected stimulus distortions. This paper highlights the signal processing parameters that should be specified when describing vocoder construction. The paper also provides guidance on how to determine vocoder parameters within perception experiments, given the experimenter's goals and research questions, to avoid common signal processing mistakes. Throughout, we will assume that experimenters are interested in vocoders with the specific goal of better understanding cochlear implants.
Collapse
Affiliation(s)
- Margaret Cychosz
- Department of Linguistics, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Matthew B Winn
- Department of Speech-Language-Hearing Sciences, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Matthew J Goupell
- Department of Hearing and Speech Sciences, University of Maryland, College Park, College Park, Maryland 20742, USA
| |
Collapse
|
7
|
YUKSEL M, KAYA SN. Speech Perception as a Function of the Number of Channels and Channel Interaction in Cochlear Implant Simulation. Medeni Med J 2023; 38:276-283. [PMID: 38148725 PMCID: PMC10759942 DOI: 10.4274/mmj.galenos.2023.73454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/12/2023] [Indexed: 12/28/2023] Open
Abstract
Objective Speech perception relies on precise spectral and temporal cues. However, cochlear implant (CI) processing is confined to a limited frequency range, affecting the information transmitted to the auditory system. This study analyzes the influence of channel interaction and the number of channels on word recognition scores (WRS) within the CI simulation framework. Methods Two distinct experiments were conducted. The first experiment (n=29, average age =23 years, 14 females) evaluated the number of channels using eight, twelve, sixteen, and 22 channel vocoded and nonvocoded word lists for WRS assessment. The second experiment (n=29, average age =25 years, 16 females) explored channel interaction across low, middle, and high-interaction conditions. Results In the first experiment, participants scored 57.93%, 80.97%, 83.59%, 91.03%, and 95.45% under 8, 12, 16, and 22-channel vocoder and non-vocoder conditions, respectively. The number of vocoder channels significantly affected WRS, with significant differences observed in all conditions except between the 12-channel and 16-channels (p<0.01). In the second experiment, the participants scored 2.2%, 20.6%, and 50.6% under high, mid, and low interaction conditions, respectively. Statistically significant differences were observed across all channel interaction conditions (p<0.01). Conclusions While the number of channels had a notable impact on WRS, it is essential to note that certain conditions (12 vs. 16) did not yield statistically significant differences. The observed differences in WRS were eclipsed by the pronounced effects of channel interaction. Notably, all conditions in the channel interaction experiment exhibited statistically significant differences. These findings underscore the paramount importance of prioritizing channel interaction in signal processing and CI fitting.
Collapse
Affiliation(s)
- Mustafa YUKSEL
- Ankara Medipol University Faculty of Health Sciences, Department of Audiology, Ankara, Turkey
| | - Sultan Nur KAYA
- Ankara Medipol University Faculty of Health Sciences, Department of Audiology, Ankara, Turkey
| |
Collapse
|
8
|
Merrill K, Muller L, Beim JA, Hehrmann P, Swan D, Alfsmann D, Spahr T, Litvak L, Oxenham AJ, Tward AD. CompHEAR: A Customizable and Scalable Web-Enabled Auditory Performance Evaluation Platform for Cochlear Implant Sound Processing Research. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.22.573126. [PMID: 38187767 PMCID: PMC10769353 DOI: 10.1101/2023.12.22.573126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Objective Cochlear implants (CIs) are auditory prostheses for individuals with severe to profound hearing loss, offering substantial but incomplete restoration of hearing function by stimulating the auditory nerve using electrodes. However, progress in CI performance and innovation has been constrained by the inability to rapidly test multiple sound processing strategies. Current research interfaces provided by major CI manufacturers have limitations in supporting a wide range of auditory experiments due to portability, programming difficulties, and the lack of direct comparison between sound processing algorithms. To address these limitations, we present the CompHEAR research platform, designed specifically for the Cochlear Implant Hackathon, enabling researchers to conduct diverse auditory experiments on a large scale. Study Design Quasi-experimental. Setting Virtual. Methods CompHEAR is an open-source, user-friendly platform which offers flexibility and ease of customization, allowing researchers to set up a broad set of auditory experiments. CompHEAR employs a vocoder to simulate novel sound coding strategies for CIs. It facilitates even distribution of listening tasks among participants and delivers real-time metrics for evaluation. The software architecture underlies the platform's flexibility in experimental design and its wide range of applications in sound processing research. Results Performance testing of the CompHEAR platform ensured that it could support at least 10,000 concurrent users. The CompHEAR platform was successfully implemented during the COVID-19 pandemic and enabled global collaboration for the CI Hackathon (www.cihackathon.com). Conclusion The CompHEAR platform is a useful research tool that permits comparing diverse signal processing strategies across a variety of auditory tasks with crowdsourced judging. Its versatility, scalability, and ease of use can enable further research with the goal of promoting advancements in cochlear implant performance and improved patient outcomes.
Collapse
Affiliation(s)
- Kris Merrill
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco
| | - Leah Muller
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco
| | - Jordan A Beim
- Department of Psychology, University of Minnesota, Minneapolis, MN
| | | | | | | | | | | | - Andrew J Oxenham
- Department of Psychology, University of Minnesota, Minneapolis, MN
| | - Aaron D Tward
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco
| |
Collapse
|
9
|
Choi I, Gander PE, Berger JI, Woo J, Choy MH, Hong J, Colby S, McMurray B, Griffiths TD. Spectral Grouping of Electrically Encoded Sound Predicts Speech-in-Noise Performance in Cochlear Implantees. J Assoc Res Otolaryngol 2023; 24:607-617. [PMID: 38062284 PMCID: PMC10752853 DOI: 10.1007/s10162-023-00918-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 11/14/2023] [Indexed: 12/29/2023] Open
Abstract
OBJECTIVES Cochlear implant (CI) users exhibit large variability in understanding speech in noise. Past work in CI users found that spectral and temporal resolution correlates with speech-in-noise ability, but a large portion of variance remains unexplained. Recent work on normal-hearing listeners showed that the ability to group temporally and spectrally coherent tones in a complex auditory scene predicts speech-in-noise ability independently of the audiogram, highlighting a central mechanism for auditory scene analysis that contributes to speech-in-noise. The current study examined whether the auditory grouping ability also contributes to speech-in-noise understanding in CI users. DESIGN Forty-seven post-lingually deafened CI users were tested with psychophysical measures of spectral and temporal resolution, a stochastic figure-ground task that depends on the detection of a figure by grouping multiple fixed frequency elements against a random background, and a sentence-in-noise measure. Multiple linear regression was used to predict sentence-in-noise performance from the other tasks. RESULTS No co-linearity was found between any predictor variables. All three predictors (spectral and temporal resolution plus the figure-ground task) exhibited significant contribution in the multiple linear regression model, indicating that the auditory grouping ability in a complex auditory scene explains a further proportion of variance in CI users' speech-in-noise performance that was not explained by spectral and temporal resolution. CONCLUSION Measures of cross-frequency grouping reflect an auditory cognitive mechanism that determines speech-in-noise understanding independently of cochlear function. Such measures are easily implemented clinically as predictors of CI success and suggest potential strategies for rehabilitation based on training with non-speech stimuli.
Collapse
Affiliation(s)
- Inyong Choi
- Department of Communication Sciences and Disorders, University of Iowa, 250 Hawkins Dr., Iowa City, IA, 52242, USA.
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA.
| | - Phillip E Gander
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
- Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
| | - Joel I Berger
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
| | - Jihwan Woo
- Department of Biomedical Engineering, University of Ulsan, Ulsan, Republic of Korea
| | - Matthew H Choy
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Jean Hong
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
| | - Sarah Colby
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, 52242, USA
| | - Bob McMurray
- Department of Communication Sciences and Disorders, University of Iowa, 250 Hawkins Dr., Iowa City, IA, 52242, USA
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, 52242, USA
| | - Timothy D Griffiths
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
10
|
Cychosz M, Xu K, Fu QJ. Effects of spectral smearing on speech understanding and masking release in simulated bilateral cochlear implants. PLoS One 2023; 18:e0287728. [PMID: 37917727 PMCID: PMC10621938 DOI: 10.1371/journal.pone.0287728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/11/2023] [Indexed: 11/04/2023] Open
Abstract
Differences in spectro-temporal degradation may explain some variability in cochlear implant users' speech outcomes. The present study employs vocoder simulations on listeners with typical hearing to evaluate how differences in degree of channel interaction across ears affects spatial speech recognition. Speech recognition thresholds and spatial release from masking were measured in 16 normal-hearing subjects listening to simulated bilateral cochlear implants. 16-channel sine-vocoded speech simulated limited, broad, or mixed channel interaction, in dichotic and diotic target-masker conditions, across ears. Thresholds were highest with broad channel interaction in both ears but improved when interaction decreased in one ear and again in both ears. Masking release was apparent across conditions. Results from this simulation study on listeners with typical hearing show that channel interaction may impact speech recognition more than masking release, and may have implications for the effects of channel interaction on cochlear implant users' speech recognition outcomes.
Collapse
Affiliation(s)
- Margaret Cychosz
- Department of Linguistics, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Kevin Xu
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Qian-Jie Fu
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States of America
| |
Collapse
|
11
|
Patro C, Bennaim A, Shephard E. Effects of spectral degradation on gated word recognition. JASA EXPRESS LETTERS 2023; 3:084401. [PMID: 37561082 DOI: 10.1121/10.0020646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023]
Abstract
Although much is known about how normal-hearing listeners process spoken words under ideal listening conditions, little is known about how a degraded signal, such as speech transmitted via cochlear implants, affects the word recognition process. In this study, gated word recognition performance was measured with the goal of describing the time course of word identification by using a noise-band vocoder simulation. The results of this study demonstrate that spectral degradations can impact the temporal aspects of speech processing. These results also provide insights into the potential advantages of enhancing spectral resolution in the processing of spoken words.
Collapse
Affiliation(s)
- Chhayakanta Patro
- Department of Speech-Language Pathology & Audiology, Towson University, Towson, Maryland 21252, , ,
| | - Ariana Bennaim
- Department of Speech-Language Pathology & Audiology, Towson University, Towson, Maryland 21252, , ,
| | - Ellen Shephard
- Department of Speech-Language Pathology & Audiology, Towson University, Towson, Maryland 21252, , ,
| |
Collapse
|
12
|
Sinha R, Azadpour M. Employing Deep Learning Model to Evaluate Speech Information in Acoustic Simulations of Auditory Implants. RESEARCH SQUARE 2023:rs.3.rs-3085032. [PMID: 37461629 PMCID: PMC10350124 DOI: 10.21203/rs.3.rs-3085032/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Acoustic simulations have played a prominent role in the development of speech processing and sound coding strategies for auditory neural implant devices. Traditionally evaluated using human subjects, acoustic simulations have been used to model the impact of implant signal processing as well as individual anatomy/physiology on speech perception. However, human subject testing is time-consuming, costly, and subject to individual variability. In this study, we propose a novel approach to perform simulations of auditory implants. Rather than using actual human participants, we utilized an advanced deep-learning speech recognition model to simulate the effects of some important signal processing as well as psychophysical/physiological factors on speech perception. Several simulation conditions were produced by varying number of spectral bands, input frequency range, envelope cut-off frequency, envelope dynamic range and envelope quantization. Our results demonstrate that the deep-learning model exhibits human-like robustness to simulation parameters in quiet and noise, closely resembling existing human subject results. This approach is not only significantly quicker and less expensive than traditional human studies, but it also eliminates individual human variables such as attention and learning. Our findings pave the way for efficient and accurate evaluation of auditory implant simulations, aiding the future development of auditory neural prosthesis technologies.
Collapse
Affiliation(s)
- Rahul Sinha
- New York University Grossman School of Medicine
| | | |
Collapse
|
13
|
Sinha R, Azadpour M. Employing Deep Learning Model to Evaluate Speech Information in Vocoder Simulations of Auditory Implants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.541843. [PMID: 37292787 PMCID: PMC10245887 DOI: 10.1101/2023.05.23.541843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Vocoder simulations have played a crucial role in the development of sound coding and speech processing techniques for auditory implant devices. Vocoders have been extensively used to model the effects of implant signal processing as well as individual anatomy and physiology on speech perception of implant users. Traditionally, such simulations have been conducted on human subjects, which can be time-consuming and costly. In addition, perception of vocoded speech varies significantly across individual subjects, and can be significantly affected by small amounts of familiarization or exposure to vocoded sounds. In this study, we propose a novel method that differs from traditional vocoder studies. Rather than using actual human participants, we use a speech recognition model to examine the influence of vocoder-simulated cochlear implant processing on speech perception. We used the OpenAI Whisper, a recently developed advanced open-source deep learning speech recognition model. The Whisper model's performance was evaluated on vocoded words and sentences in both quiet and noisy conditions with respect to several vocoder parameters such as number of spectral bands, input frequency range, envelope cut-off frequency, envelope dynamic range, and number of discriminable envelope steps. Our results indicate that the Whisper model exhibited human-like robustness to vocoder simulations, with performance closely mirroring that of human subjects in response to modifications in vocoder parameters. Furthermore, this proposed method has the advantage of being far less expensive and quicker than traditional human studies, while also being free from inter-individual variability in learning abilities, cognitive factors, and attentional states. Our study demonstrates the potential of employing advanced deep learning models of speech recognition in auditory prosthesis research.
Collapse
|
14
|
Harding EE, Gaudrain E, Hrycyk IJ, Harris RL, Tillmann B, Maat B, Free RH, Başkent D. Musical Emotion Categorization with Vocoders of Varying Temporal and Spectral Content. Trends Hear 2023; 27:23312165221141142. [PMID: 36628512 PMCID: PMC9837297 DOI: 10.1177/23312165221141142] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
While previous research investigating music emotion perception of cochlear implant (CI) users observed that temporal cues informing tempo largely convey emotional arousal (relaxing/stimulating), it remains unclear how other properties of the temporal content may contribute to the transmission of arousal features. Moreover, while detailed spectral information related to pitch and harmony in music - often not well perceived by CI users- reportedly conveys emotional valence (positive, negative), it remains unclear how the quality of spectral content contributes to valence perception. Therefore, the current study used vocoders to vary temporal and spectral content of music and tested music emotion categorization (joy, fear, serenity, sadness) in 23 normal-hearing participants. Vocoders were varied with two carriers (sinewave or noise; primarily modulating temporal information), and two filter orders (low or high; primarily modulating spectral information). Results indicated that emotion categorization was above-chance in vocoded excerpts but poorer than in a non-vocoded control condition. Among vocoded conditions, better temporal content (sinewave carriers) improved emotion categorization with a large effect while better spectral content (high filter order) improved it with a small effect. Arousal features were comparably transmitted in non-vocoded and vocoded conditions, indicating that lower temporal content successfully conveyed emotional arousal. Valence feature transmission steeply declined in vocoded conditions, revealing that valence perception was difficult for both lower and higher spectral content. The reliance on arousal information for emotion categorization of vocoded music suggests that efforts to refine temporal cues in the CI user signal may immediately benefit their music emotion perception.
Collapse
Affiliation(s)
- Eleanor E. Harding
- Department of Otorhinolaryngology/Head and Neck Surgery, University Medical Center Groningen, University of Groningen, Groningen,
The Netherlands,Graduate School of Medical Sciences, Research School of Behavioural
and Cognitive Neurosciences, University of Groningen, Groningen,
The Netherlands,Prins Claus Conservatoire, Hanze University of Applied Sciences, Groningen, The Netherlands,Eleanor E. Harding, Department of Otorhinolarynology, University Medical Center Groningen, Hanzeplein 1 9713 GZ, Groningen, The Netherlands.
| | - Etienne Gaudrain
- Department of Otorhinolaryngology/Head and Neck Surgery, University Medical Center Groningen, University of Groningen, Groningen,
The Netherlands,Lyon Neuroscience Research Center, CNRS UMR5292, Inserm U1028, Université Lyon 1, Université de Saint-Etienne, Lyon, France
| | - Imke J. Hrycyk
- Department of Otorhinolaryngology/Head and Neck Surgery, University Medical Center Groningen, University of Groningen, Groningen,
The Netherlands,Graduate School of Medical Sciences, Research School of Behavioural
and Cognitive Neurosciences, University of Groningen, Groningen,
The Netherlands
| | - Robert L. Harris
- Department of Otorhinolaryngology/Head and Neck Surgery, University Medical Center Groningen, University of Groningen, Groningen,
The Netherlands,Prins Claus Conservatoire, Hanze University of Applied Sciences, Groningen, The Netherlands
| | - Barbara Tillmann
- Lyon Neuroscience Research Center, CNRS UMR5292, Inserm U1028, Université Lyon 1, Université de Saint-Etienne, Lyon, France
| | - Bert Maat
- Department of Otorhinolaryngology/Head and Neck Surgery, University Medical Center Groningen, University of Groningen, Groningen,
The Netherlands,Graduate School of Medical Sciences, Research School of Behavioural
and Cognitive Neurosciences, University of Groningen, Groningen,
The Netherlands,Cochlear Implant Center Northern Netherlands, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Rolien H. Free
- Department of Otorhinolaryngology/Head and Neck Surgery, University Medical Center Groningen, University of Groningen, Groningen,
The Netherlands,Graduate School of Medical Sciences, Research School of Behavioural
and Cognitive Neurosciences, University of Groningen, Groningen,
The Netherlands,Cochlear Implant Center Northern Netherlands, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Deniz Başkent
- Department of Otorhinolaryngology/Head and Neck Surgery, University Medical Center Groningen, University of Groningen, Groningen,
The Netherlands,Graduate School of Medical Sciences, Research School of Behavioural
and Cognitive Neurosciences, University of Groningen, Groningen,
The Netherlands
| |
Collapse
|
15
|
Jürgens T, Wesarg T, Oetting D, Jung L, Williges B. Spatial speech-in-noise performance in simulated single-sided deaf and bimodal cochlear implant users in comparison with real patients. Int J Audiol 2023; 62:30-43. [PMID: 34962428 DOI: 10.1080/14992027.2021.2015633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Speech reception thresholds (SRTs) in spatial scenarios were measured in simulated cochlear implant (CI) listeners with either contralateral normal hearing, or aided hearing impairment (bimodal), and compared to SRTs of real patients, who were measured using the exact same paradigm, to assess goodness of simulation. DESIGN CI listening was simulated using a vocoder incorporating actual CI signal processing and physiologic details of electric stimulation on one side. Unprocessed signals or simulation of aided moderate or profound hearing impairment was used contralaterally. Three spatial speech-in-noise scenarios were tested using virtual acoustics to assess spatial release from masking (SRM) and combined benefit. STUDY SAMPLE Eleven normal-hearing listeners participated in the experiment. RESULTS For contralateral normal and aided moderately impaired hearing, bilaterally assessed SRTs were not statistically different from unilateral SRTs of the better ear, indicating "better-ear-listening". Combined benefit was only found for contralateral profound impaired hearing. As in patients, SRM was highest for contralateral normal hearing and decreased systematically with more severe simulated impairment. Comparison to actual patients showed good reproduction of SRTs, SRM, and better-ear-listening. CONCLUSIONS The simulations reproduced better-ear-listening as in patients and suggest that combined benefit in spatial scenes predominantly occurs when both ears show poor speech-in-noise performance.
Collapse
Affiliation(s)
- Tim Jürgens
- Institute of Acoustics, University of Applied Sciences Lübeck, Lübeck, Germany
- Medical Physics and Cluster of Excellence "Hearing4all", Carl-von-Ossietzky University, Oldenburg, Germany
| | - Thomas Wesarg
- Faculty of Medicine, Department of Otorhinolaryngology - Head and Neck Surgery, Medical Center, University of Freiburg, Freiburg, Germany
| | | | - Lorenz Jung
- Faculty of Medicine, Department of Otorhinolaryngology - Head and Neck Surgery, Medical Center, University of Freiburg, Freiburg, Germany
| | - Ben Williges
- Medical Physics and Cluster of Excellence "Hearing4all", Carl-von-Ossietzky University, Oldenburg, Germany
- SOUND Lab, Cambridge Hearing Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
16
|
Winn MB, O’Brien G. Distortion of Spectral Ripples Through Cochlear Implants Has Major Implications for Interpreting Performance Scores. Ear Hear 2022; 43:764-772. [PMID: 34966157 PMCID: PMC9010354 DOI: 10.1097/aud.0000000000001162] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The spectral ripple discrimination task is a psychophysical measure that has been found to correlate with speech recognition in listeners with cochlear implants (CIs). However, at ripple densities above a critical value (around 2 RPO, but device-specific), the sparse spectral sampling of CI processors results in stimulus distortions resulting in aliasing and unintended changes in modulation depth. As a result, spectral ripple thresholds above a certain number are not ordered monotonically along the RPO dimension and thus cannot be considered better or worse spectral resolution than each other, thus undermining correlation measurements. These stimulus distortions are not remediated by changing stimulus phase, indicating these issues cannot be solved by spectrotemporally modulated stimuli. Speech generally has very low-density spectral modulations, leading to questions about the mechanism of correlation between high ripple thresholds and speech recognition. Existing data showing correlations between ripple discrimination and speech recognition include many observations above the aliasing limit. These scores should be treated with caution, and experimenters could benefit by prospectively considering the limitations of the spectral ripple test.
Collapse
Affiliation(s)
- Matthew B. Winn
- Department of Speech-Language-Hearing Sciences, University of Minnesota, USA
| | | |
Collapse
|
17
|
Tamati TN, Sevich VA, Clausing EM, Moberly AC. Lexical Effects on the Perceived Clarity of Noise-Vocoded Speech in Younger and Older Listeners. Front Psychol 2022; 13:837644. [PMID: 35432072 PMCID: PMC9010567 DOI: 10.3389/fpsyg.2022.837644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/16/2022] [Indexed: 11/13/2022] Open
Abstract
When listening to degraded speech, such as speech delivered by a cochlear implant (CI), listeners make use of top-down linguistic knowledge to facilitate speech recognition. Lexical knowledge supports speech recognition and enhances the perceived clarity of speech. Yet, the extent to which lexical knowledge can be used to effectively compensate for degraded input may depend on the degree of degradation and the listener's age. The current study investigated lexical effects in the compensation for speech that was degraded via noise-vocoding in younger and older listeners. In an online experiment, younger and older normal-hearing (NH) listeners rated the clarity of noise-vocoded sentences on a scale from 1 ("very unclear") to 7 ("completely clear"). Lexical information was provided by matching text primes and the lexical content of the target utterance. Half of the sentences were preceded by a matching text prime, while half were preceded by a non-matching prime. Each sentence also consisted of three key words of high or low lexical frequency and neighborhood density. Sentences were processed to simulate CI hearing, using an eight-channel noise vocoder with varying filter slopes. Results showed that lexical information impacted the perceived clarity of noise-vocoded speech. Noise-vocoded speech was perceived as clearer when preceded by a matching prime, and when sentences included key words with high lexical frequency and low neighborhood density. However, the strength of the lexical effects depended on the level of degradation. Matching text primes had a greater impact for speech with poorer spectral resolution, but lexical content had a smaller impact for speech with poorer spectral resolution. Finally, lexical information appeared to benefit both younger and older listeners. Findings demonstrate that lexical knowledge can be employed by younger and older listeners in cognitive compensation during the processing of noise-vocoded speech. However, lexical content may not be as reliable when the signal is highly degraded. Clinical implications are that for adult CI users, lexical knowledge might be used to compensate for the degraded speech signal, regardless of age, but some CI users may be hindered by a relatively poor signal.
Collapse
Affiliation(s)
- Terrin N. Tamati
- Department of Otolaryngology – Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Otorhinolaryngology/Head and Neck Surgery, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Victoria A. Sevich
- Department of Speech and Hearing Science, The Ohio State University, Columbus, OH, United States
| | - Emily M. Clausing
- Department of Otolaryngology – Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Aaron C. Moberly
- Department of Otolaryngology – Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
18
|
Joly CA, Reynard P, Hermann R, Seldran F, Gallego S, Idriss S, Thai-Van H. Intra-Cochlear Current Spread Correlates with Speech Perception in Experienced Adult Cochlear Implant Users. J Clin Med 2021; 10:jcm10245819. [PMID: 34945115 PMCID: PMC8709369 DOI: 10.3390/jcm10245819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
Broader intra-cochlear current spread (ICCS) implies higher cochlear implant (CI) channel interactions. This study aimed to investigate the relationship between ICCS and speech intelligibility in experienced CI users. Using voltage matrices collected for impedance measurements, an individual exponential spread coefficient (ESC) was computed. Speech audiometry was performed to determine the intelligibility at 40 dB Sound Pressure Level (SPL) and the 50% speech reception threshold: I40 and SRT50 respectively. Correlations between ESC and either I40 or SRT50 were assessed. A total of 36 adults (mean age: 50 years) with more than 11 months (mean: 34 months) of CI experience were included. In the 21 subjects for whom all electrodes were active, ESC was moderately correlated with both I40 (r = −0.557, p = 0.009) and SRT50 (r = 0.569, p = 0.007). The results indicate that speech perception performance is negatively affected by the ICCS. Estimates of current spread at the closest vicinity of CI electrodes and prior to any activation of auditory neurons are indispensable to better characterize the relationship between CI stimulation and auditory perception in cochlear implantees.
Collapse
Affiliation(s)
- Charles-Alexandre Joly
- Institut de l’Audition, Institut Pasteur, Université de Paris, INSERM, 75012 Paris, France; (C.-A.J.); (P.R.)
- Université Claude Bernard Lyon 1, 69100 Villeurbanne, France; (R.H.); (S.G.)
- Service d’Audiologie et d’Explorations Otoneurologiques, Hôpital Edouard Herriot, Hospices Civils de Lyon, 69003 Lyon, France;
| | - Pierre Reynard
- Institut de l’Audition, Institut Pasteur, Université de Paris, INSERM, 75012 Paris, France; (C.-A.J.); (P.R.)
- Université Claude Bernard Lyon 1, 69100 Villeurbanne, France; (R.H.); (S.G.)
- Service d’Audiologie et d’Explorations Otoneurologiques, Hôpital Edouard Herriot, Hospices Civils de Lyon, 69003 Lyon, France;
| | - Ruben Hermann
- Université Claude Bernard Lyon 1, 69100 Villeurbanne, France; (R.H.); (S.G.)
- Integrative, Multisensory, Perception, Action and Cognition Team (IMPACT), Inserm U1028, CNRS UMR5292, Lyon Neuroscience Research Center, 69675 Bron, France
- Service d’ORL, Chirurgie Cervico-Faciale et d’Audiophonologie, Hospices Civils de Lyon, Hôpital Edouard Herriot, 69003 Lyon, France
| | | | - Stéphane Gallego
- Université Claude Bernard Lyon 1, 69100 Villeurbanne, France; (R.H.); (S.G.)
- Neuronal Dynamics and Audition Team (DNA), Laboratory of Cognitive Neuroscience, CNRS UMR7291, Aix-Marseille University, CEDEX 3, 13331 Marseille, France
| | - Samar Idriss
- Service d’Audiologie et d’Explorations Otoneurologiques, Hôpital Edouard Herriot, Hospices Civils de Lyon, 69003 Lyon, France;
| | - Hung Thai-Van
- Institut de l’Audition, Institut Pasteur, Université de Paris, INSERM, 75012 Paris, France; (C.-A.J.); (P.R.)
- Université Claude Bernard Lyon 1, 69100 Villeurbanne, France; (R.H.); (S.G.)
- Service d’Audiologie et d’Explorations Otoneurologiques, Hôpital Edouard Herriot, Hospices Civils de Lyon, 69003 Lyon, France;
- Correspondence:
| |
Collapse
|
19
|
The effect of increased channel interaction on speech perception with cochlear implants. Sci Rep 2021; 11:10383. [PMID: 34001987 PMCID: PMC8128897 DOI: 10.1038/s41598-021-89932-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/29/2021] [Indexed: 11/30/2022] Open
Abstract
Cochlear implants (CIs) are neuroprostheses that partially restore hearing for people with severe-to-profound hearing loss. While CIs can provide good speech perception in quiet listening situations for many, they fail to do so in environments with interfering sounds for most listeners. Previous research suggests that this is due to detrimental interaction effects between CI electrode channels, limiting their function to convey frequency-specific information, but evidence is still scarce. In this study, an experimental manipulation called spectral blurring was used to increase channel interaction in CI listeners using Advanced Bionics devices with HiFocus 1J and MS electrode arrays to directly investigate its causal effect on speech perception. Instead of using a single electrode per channel as in standard CI processing, spectral blurring used up to 6 electrodes per channel simultaneously to increase the overlap between adjacent frequency channels as would occur in cases with severe channel interaction. Results demonstrated that this manipulation significantly degraded CI speech perception in quiet by 15% and speech reception thresholds in babble noise by 5 dB when all channels were blurred by a factor of 6. Importantly, when channel interaction was increased just on a subset of electrodes, speech scores were mostly unaffected and were only significantly degraded when the 5 most apical channels were blurred. These apical channels convey information up to 1 kHz at the apical end of the electrode array and are typically located at angular insertion depths of about 250 up to 500°. These results confirm and extend earlier findings indicating that CI speech perception may not benefit from deactivating individual channels along the array and that efforts should instead be directed towards reducing channel interaction per se and in particular for the most-apical electrodes. Hereby, causal methods such as spectral blurring could be used in future research to control channel interaction effects within listeners for evaluating compensation strategies.
Collapse
|
20
|
Söderqvist S, Lamminmäki S, Aarnisalo A, Hirvonen T, Sinkkonen ST, Sivonen V. Intraoperative transimpedance and spread of excitation profile correlations with a lateral-wall cochlear implant electrode array. Hear Res 2021; 405:108235. [PMID: 33901994 DOI: 10.1016/j.heares.2021.108235] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/21/2021] [Accepted: 03/25/2021] [Indexed: 01/18/2023]
Abstract
A limiting factor of cochlear implant technology is the spread of electrode-generated intracochlear electrical field (EF) leading to spread of neural excitation (SOE). In this study, we investigated the relation of the spread of the intracochlear EF, assessed via transimpedance matrix (TIM), and SOE. A total of 43 consecutive patients (ages 0.7-82 years; 31.0 ± 25.7 years, mean ± SD) implanted with a Cochlear Nucleus CI522 or CI622 cochlear implant with Slim Straight electrode array (altogether 51 ears) were included in the study. Cochlear nerve was visualized for all patients in preoperative imaging and there were no cochlear anomalies in the study sample. The stimulated electrodes were in the basal, middle, and apical parts of the electrode array (electrode numbers 6, 11, and 19, respectively). The stimulation level was 210 CL on average for the TIM measurement and always 230 CL for the SOE measurement. Approximately 90% of the individual TIM and SOE profiles correlated with each other (p < .05; r = 0.61-0.99). Also, the widths of the TIM and SOE peaks, computed at 50% of the maximum height, exhibited a weak correlation (r = 0.39, p = .007). The 50% widths of TIM and SOE were the same only in the apical part of the electrode array; in the basal part SOE was wider than TIM, and in the middle part TIM was wider than SOE (p < .01 and p = .048, respectively). Within each measurement, TIM 50% widths were different between all three parts of the electrode array, while for SOE, only the basal electrode differed from the middle electrode. Finally, the size of the cochlea and the 50% widths of TIM and SOE had the strongest correlation in the middle part of the electrode array (r = -0.63, and -0.37, respectively). Our results suggest that there is a correlation between the spread of intracochlear EF and neural SOE at least in the apical part of the electrode array used in this study, and that larger cochleae are associated with more focused TIM and SOE.
Collapse
Affiliation(s)
- Samuel Söderqvist
- Department of Otorhinolaryngology - Head and Neck Surgery, Head and Neck Center, Helsinki University Hospital and University of Helsinki, Kasarmikatu 11-13, 00130 Helsinki, Finland.
| | - Satu Lamminmäki
- Department of Otorhinolaryngology - Head and Neck Surgery, Head and Neck Center, Helsinki University Hospital and University of Helsinki, Kasarmikatu 11-13, 00130 Helsinki, Finland
| | - Antti Aarnisalo
- Department of Otorhinolaryngology - Head and Neck Surgery, Head and Neck Center, Helsinki University Hospital and University of Helsinki, Kasarmikatu 11-13, 00130 Helsinki, Finland
| | - Timo Hirvonen
- Department of Otorhinolaryngology - Head and Neck Surgery, Head and Neck Center, Helsinki University Hospital and University of Helsinki, Kasarmikatu 11-13, 00130 Helsinki, Finland
| | - Saku T Sinkkonen
- Department of Otorhinolaryngology - Head and Neck Surgery, Head and Neck Center, Helsinki University Hospital and University of Helsinki, Kasarmikatu 11-13, 00130 Helsinki, Finland
| | - Ville Sivonen
- Department of Otorhinolaryngology - Head and Neck Surgery, Head and Neck Center, Helsinki University Hospital and University of Helsinki, Kasarmikatu 11-13, 00130 Helsinki, Finland
| |
Collapse
|
21
|
Aronoff JM, Duitsman L, Matusik DK, Hussain S, Lippmann E. Examining the Relationship Between Speech Recognition and a Spectral-Temporal Test With a Mixed Group of Hearing Aid and Cochlear Implant Users. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2021; 64:1073-1080. [PMID: 33719538 DOI: 10.1044/2020_jslhr-20-00352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Purpose Audiology clinics have a need for a nonlinguistic test for assessing speech scores for patients using hearing aids or cochlear implants. One such test, the Spectral-Temporally Modulated Ripple Test Lite for computeRless Measurement (SLRM), has been developed for use in clinics, but it, as well as the related Spectral-Temporally Modulated Ripple Test, has primarily been assessed with cochlear implant users. The main goal of this study was to examine the relationship between SLRM and the Arizona Biomedical Institute Sentence Test (AzBio) for a mixed group of hearing aid and cochlear implant users. Method Adult hearing aid users and cochlear implant users were tested with SLRM, AzBio in quiet, and AzBio in multitalker babble with a +8 dB signal-to-noise ratio. Results SLRM scores correlated with both AzBio recognition scores in quiet and in noise. Conclusions The results indicated that there is a significant relationship between SLRM and AzBio scores when testing a mixed group of cochlear implant and hearing aid users. This suggests that SLRM may be a useful nonlinguistic test for use with individuals with a variety of hearing devices.
Collapse
Affiliation(s)
- Justin M Aronoff
- Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign
- Department of Otolaryngology, College of Medicine, University of Illinois at Chicago
| | - Leah Duitsman
- Department of Otolaryngology, College of Medicine, University of Illinois at Chicago
| | - Deanna K Matusik
- Department of Otolaryngology, College of Medicine, University of Illinois at Chicago
| | - Senad Hussain
- Department of Medicine, College of Medicine, University of Illinois at Chicago
| | - Elise Lippmann
- Department of Otolaryngology, College of Medicine, University of Illinois at Chicago
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Massachusetts Eye and Ear, Boston
| |
Collapse
|
22
|
Cucis PA, Berger-Vachon C, Thaï-Van H, Hermann R, Gallego S, Truy E. Word Recognition and Frequency Selectivity in Cochlear Implant Simulation: Effect of Channel Interaction. J Clin Med 2021; 10:jcm10040679. [PMID: 33578696 PMCID: PMC7916371 DOI: 10.3390/jcm10040679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 11/16/2022] Open
Abstract
In cochlear implants (CI), spread of neural excitation may produce channel interaction. Channel interaction disturbs the spectral resolution and, among other factors, seems to impair speech recognition, especially in noise. In this study, two tests were performed with 20 adult normal-hearing (NH) subjects under different vocoded simulations. First, there was a measurement of word recognition in noise while varying the number of selected channels (4, 8, 12 or 16 maxima out of 20) and the degree of simulated channel interaction (“Low”, “Medium” and “High”). Then, there was an evaluation of spectral resolution function of the degree of simulated channel interaction, reflected by the sharpness (Q10dB) of psychophysical tuning curves (PTCs). The results showed a significant effect of the simulated channel interaction on word recognition but did not find an effect of the number of selected channels. The intelligibility decreased significantly for the highest degree of channel interaction. Similarly, the highest simulated channel interaction impaired significantly the Q10dB. Additionally, a strong intra-individual correlation between frequency selectivity and word recognition in noise was observed. Lastly, the individual changes in frequency selectivity were positively correlated with the changes in word recognition when the degree of interaction went from “Low” to “High”. To conclude, the degradation seen for the highest degree of channel interaction suggests a threshold effect on frequency selectivity and word recognition. The correlation between frequency selectivity and intelligibility in noise supports the hypothesis that PTCs Q10dB can account for word recognition in certain conditions. Moreover, the individual variations of performances observed among subjects suggest that channel interaction does not have the same effect on each individual. Finally, these results highlight the importance of taking into account subjects’ individuality and to evaluate channel interaction through the speech processor.
Collapse
Affiliation(s)
- Pierre-Antoine Cucis
- Integrative, Multisensory, Perception, Action and Cognition Team (IMPACT), Lyon Neuroscience Research Center, CRNL Inserm U1028, CNRS UMR5292, 69675 Bron, France; (R.H.); (E.T.)
- Claude Bernard Lyon 1 University, 69100 Villeurbanne, France; (C.B.-V.); (H.T.-V.); (S.G.)
- ENT and Cervico-Facial Surgery Department, Edouard Herriot Hospital, Hospices Civils de Lyon, 69003 Lyon, France
- Correspondence: ; Tel.: +33-472-110-0518
| | - Christian Berger-Vachon
- Claude Bernard Lyon 1 University, 69100 Villeurbanne, France; (C.B.-V.); (H.T.-V.); (S.G.)
- Brain Dynamics and Cognition Team (DYCOG), Lyon Neuroscience Research Center, CRNL Inserm U1028, CNRS UMR5292, 69675 Bron, France
- Biomechanics and Impact Mechanics Laboratory (LBMC), French Institute of Science and Technology for Transport, Development and Networks (IFSTTAR), Gustave Eiffel University, 69675 Bron, France
| | - Hung Thaï-Van
- Claude Bernard Lyon 1 University, 69100 Villeurbanne, France; (C.B.-V.); (H.T.-V.); (S.G.)
- Paris Hearing Institute, Institut Pasteur, Inserm U1120, 75015 Paris, France
- Department of Audiology and Otoneurological Evaluation, Edouard Herriot Hospital, Hospices Civils de Lyon, 69003 Lyon, France
| | - Ruben Hermann
- Integrative, Multisensory, Perception, Action and Cognition Team (IMPACT), Lyon Neuroscience Research Center, CRNL Inserm U1028, CNRS UMR5292, 69675 Bron, France; (R.H.); (E.T.)
- Claude Bernard Lyon 1 University, 69100 Villeurbanne, France; (C.B.-V.); (H.T.-V.); (S.G.)
- ENT and Cervico-Facial Surgery Department, Edouard Herriot Hospital, Hospices Civils de Lyon, 69003 Lyon, France
| | - Stéphane Gallego
- Claude Bernard Lyon 1 University, 69100 Villeurbanne, France; (C.B.-V.); (H.T.-V.); (S.G.)
- Neuronal Dynamics and Audition Team (DNA), Laboratory of Cognitive Neuroscience (LNSC), CNRS UMR 7291, Aix-Marseille University, CEDEX 3, 13331 Marseille, France
| | - Eric Truy
- Integrative, Multisensory, Perception, Action and Cognition Team (IMPACT), Lyon Neuroscience Research Center, CRNL Inserm U1028, CNRS UMR5292, 69675 Bron, France; (R.H.); (E.T.)
- Claude Bernard Lyon 1 University, 69100 Villeurbanne, France; (C.B.-V.); (H.T.-V.); (S.G.)
- ENT and Cervico-Facial Surgery Department, Edouard Herriot Hospital, Hospices Civils de Lyon, 69003 Lyon, France
| |
Collapse
|
23
|
Agarwal A, Tan X, Xu Y, Richter CP. Channel Interaction During Infrared Light Stimulation in the Cochlea. Lasers Surg Med 2021; 53:986-997. [PMID: 33476051 DOI: 10.1002/lsm.23360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 10/21/2020] [Accepted: 11/07/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND OBJECTIVES The number of perceptually independent channels to encode acoustic information is limited in contemporary cochlear implants (CIs) because of the current spread in the tissue. It has been suggested that neighboring electrodes have to be separated in humans by a distance of more than 2 mm to eliminate significant overlap of the electric current fields and subsequent interaction between the channels. It has also been argued that an increase in the number of independent channels could improve CI user performance in challenging listening environments, such as speech in noise, tonal languages, or music perception. Optical stimulation has been suggested as an alternative modality for neural stimulation because it is spatially selective. This study reports the results of experiments designed to quantify the interaction between neighboring optical sources in the cochlea during stimulation with infrared radiation. STUDY DESIGN/MATERIALS AND METHODS In seven adult albino guinea pigs, a forward masking method was used to quantify the interaction between two neighboring optical sources during stimulation. Two optical fibers were placed through cochleostomies into the scala tympani of the basal cochlear turn. The radiation beams were directed towards different neuron populations along the spiral ganglion. Optically evoked compound action potentials were recorded for different radiant energies and distances between the optical fibers. The outcome measure was the radiant energy of a masker pulse delivered 3 milliseconds before a probe pulse to reduce the response evoked by the probe pulse by 3 dB. Results were compared for different distances between the fibers placed along the cochlea. RESULTS The energy required to reduce the probe's response by 3 dB increased by 20.4 dB/mm and by 26.0 dB/octave. The inhibition was symmetrical for the masker placed basal to the probe (base-to-apex) and the masker placed apical to the probe (apex-to-base). CONCLUSION The interaction between neighboring optical sources during infrared laser stimulation is less than the interaction between neighboring electrical contacts during electrical stimulation. Previously published data for electrical stimulation reported an average current spread in human and cat cochleae of 2.8 dB/mm. With the increased number of independent channels for optical stimulation, it is anticipated that speech and music performance will improve. Lasers Surg. Med. © 2020 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Aditi Agarwal
- Department of Otolaryngology, Feinberg School of Medicine, Northwestern University, 320 E. Superior Street, Searle 12-561, Chicago, Illinois, 60611
| | - Xiaodong Tan
- Department of Otolaryngology, Feinberg School of Medicine, Northwestern University, 320 E. Superior Street, Searle 12-561, Chicago, Illinois, 60611
| | - Yingyue Xu
- Department of Otolaryngology, Feinberg School of Medicine, Northwestern University, 320 E. Superior Street, Searle 12-561, Chicago, Illinois, 60611
| | - Claus-Peter Richter
- Department of Otolaryngology, Feinberg School of Medicine, Northwestern University, 320 E. Superior Street, Searle 12-561, Chicago, Illinois, 60611.,Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Tech E310, Evanston, Illinois, 60208.,Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois, 60208.,Department of Communication Sciences and Disorders, The Hugh Knowles Center, Northwestern University, Evanston, Illinois, 60208
| |
Collapse
|
24
|
Quass GL, Baumhoff P, Gnansia D, Stahl P, Kral A. Level coding by phase duration and asymmetric pulse shape reduce channel interactions in cochlear implants. Hear Res 2020; 396:108070. [PMID: 32950954 DOI: 10.1016/j.heares.2020.108070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/21/2020] [Accepted: 08/31/2020] [Indexed: 10/23/2022]
Abstract
Conventional loudness coding with CIs by pulse current amplitude has a disadvantage: Increasing the stimulation current increases the spread of excitation in the auditory nerve, resulting in stronger channel interactions at high stimulation levels. These limit the number of effective information channels that a CI user can perceive. Stimulus intensity information (loudness) can alternatively be transmitted via pulse phase duration. We hypothesized that loudness coding by phase duration avoids the increase in the spread of the electric field and thus leads to less channel interactions at high stimulation levels. To avoid polarity effects, we combined this coding with pseudomonophasic stimuli. To test whether this affects the spread of excitation, 16 acutely deafened guinea pigs were implanted with CIs and neural activity from the inferior colliculus was recorded while stimulating with either biphasic, amplitude-coded pulses, or pseudomonophasic, duration- or amplitude-coded pulses. Pseudomonophasic stimuli combined with phase duration loudness coding reduced the lowest response thresholds and the spread of excitation. We investigated the channel interactions at suprathreshold levels by computing the phase-locking to a pulse train in the presence of an interacting pulse train on a different electrode on the CI. Pseudomonophasic pulses coupled with phase duration loudness coding reduced the interference by 4-5% compared to biphasic pulses, depending on the place of stimulation. This effect of pseudomonophasic stimuli was achieved with amplitude coding only in the basal cochlea, indicating a distance- or volume dependent effect. Our results show that pseudomonophasic, phase-duration-coded stimuli slightly reduce channel interactions, suggesting a potential benefit for speech understanding in humans.
Collapse
Affiliation(s)
- Gunnar Lennart Quass
- Institute for AudioNeuroTechnology (VIANNA), ENT Clinics, Hannover Medical School, 30625 Hannover, Germany; Cluster of Excellence "Hearing4All" (EXC 2177).
| | - Peter Baumhoff
- Institute for AudioNeuroTechnology (VIANNA), ENT Clinics, Hannover Medical School, 30625 Hannover, Germany
| | | | | | - Andrej Kral
- Institute for AudioNeuroTechnology (VIANNA), ENT Clinics, Hannover Medical School, 30625 Hannover, Germany; Cluster of Excellence "Hearing4All" (EXC 2177)
| |
Collapse
|
25
|
Goehring T, Arenberg JG, Carlyon RP. Using Spectral Blurring to Assess Effects of Channel Interaction on Speech-in-Noise Perception with Cochlear Implants. J Assoc Res Otolaryngol 2020; 21:353-371. [PMID: 32519088 PMCID: PMC7445227 DOI: 10.1007/s10162-020-00758-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/21/2020] [Indexed: 01/07/2023] Open
Abstract
Cochlear implant (CI) listeners struggle to understand speech in background noise. Interactions between electrode channels due to current spread increase the masking of speech by noise and lead to difficulties with speech perception. Strategies that reduce channel interaction therefore have the potential to improve speech-in-noise perception by CI listeners, but previous results have been mixed. We investigated the effects of channel interaction on speech-in-noise perception and its association with spectro-temporal acuity in a listening study with 12 experienced CI users. Instead of attempting to reduce channel interaction, we introduced spectral blurring to simulate some of the effects of channel interaction by adjusting the overlap between electrode channels at the input level of the analysis filters or at the output by using several simultaneously stimulated electrodes per channel. We measured speech reception thresholds in noise as a function of the amount of blurring applied to either all 15 electrode channels or to 5 evenly spaced channels. Performance remained roughly constant as the amount of blurring applied to all channels increased up to some knee point, above which it deteriorated. This knee point differed across listeners in a way that correlated with performance on a non-speech spectro-temporal task, and is proposed here as an individual measure of channel interaction. Surprisingly, even extreme amounts of blurring applied to 5 channels did not affect performance. The effects on speech perception in noise were similar for blurring at the input and at the output of the CI. The results are in line with the assumption that experienced CI users can make use of a limited number of effective channels of information and tolerate some deviations from their everyday settings when identifying speech in the presence of a masker. Furthermore, these findings may explain the mixed results by strategies that optimized or deactivated a small number of electrodes evenly distributed along the array by showing that blurring or deactivating one-third of the electrodes did not harm speech-in-noise performance.
Collapse
Affiliation(s)
- Tobias Goehring
- Cambridge Hearing Group, Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK.
| | - Julie G Arenberg
- Massachusetts Eye and Ear, Harvard Medical School, 243 Charles St, Boston, MA, 02114, USA
| | - Robert P Carlyon
- Cambridge Hearing Group, Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK
| |
Collapse
|
26
|
Karoui C, James C, Barone P, Bakhos D, Marx M, Macherey O. Searching for the Sound of a Cochlear Implant: Evaluation of Different Vocoder Parameters by Cochlear Implant Users With Single-Sided Deafness. Trends Hear 2020; 23:2331216519866029. [PMID: 31533581 PMCID: PMC6753516 DOI: 10.1177/2331216519866029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cochlear implantation in subjects with single-sided deafness (SSD) offers a unique opportunity to directly compare the percepts evoked by a cochlear implant (CI) with those evoked acoustically. Here, nine SSD-CI users performed a forced-choice task evaluating the similarity of speech processed by their CI with speech processed by several vocoders presented to their healthy ear. In each trial, subjects heard two intervals: their CI followed by a certain vocoder in Interval 1 and their CI followed by a different vocoder in Interval 2. The vocoders differed either (i) in carrier type-(sinusoidal [SINE], bandfiltered noise [NOISE], and pulse-spreading harmonic complex) or (ii) in frequency mismatch between the analysis and synthesis frequency ranges-(no mismatch, and two frequency-mismatched conditions of 2 and 4 equivalent rectangular bandwidths [ERBs]). Subjects had to state in which of the two intervals the CI and vocoder sounds were more similar. Despite a large intersubject variability, the PSHC vocoder was judged significantly more similar to the CI than SINE or NOISE vocoders. Furthermore, the No-mismatch and 2-ERB mismatch vocoders were judged significantly more similar to the CI than the 4-ERB mismatch vocoder. The mismatch data were also interpreted by comparing spiral ganglion characteristic frequencies with electrode contact positions determined from postoperative computed tomography scans. Only one subject demonstrated a pattern of preference consistent with adaptation to the CI sound processor frequency-to-electrode allocation table and two subjects showed possible partial adaptation. Those subjects with adaptation patterns presented overall small and consistent frequency mismatches across their electrode arrays.
Collapse
Affiliation(s)
- Chadlia Karoui
- Centre de Recherche Cerveau et Cognition, Toulouse, France.,Cochlear France SAS, Toulouse, France
| | - Chris James
- Cochlear France SAS, Toulouse, France.,Department of Otology-Neurotology and Skull Base Surgery, Purpan University Hospital, Toulouse, France
| | - Pascal Barone
- Centre de Recherche Cerveau et Cognition, Toulouse, France
| | - David Bakhos
- Université François-Rabelais de Tours, CHRU de Tours, France.,Ear Nose and Throat department, CHUR de Tours, Tours, France
| | - Mathieu Marx
- Centre de Recherche Cerveau et Cognition, Toulouse, France.,Department of Otology-Neurotology and Skull Base Surgery, Purpan University Hospital, Toulouse, France
| | - Olivier Macherey
- Aix Marseille University, CNRS, Centrale Marseille, LMA, Marseille, France
| |
Collapse
|
27
|
Winn MB. Accommodation of gender-related phonetic differences by listeners with cochlear implants and in a variety of vocoder simulations. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 147:174. [PMID: 32006986 PMCID: PMC7341679 DOI: 10.1121/10.0000566] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 12/06/2019] [Accepted: 12/13/2019] [Indexed: 06/01/2023]
Abstract
Speech perception requires accommodation of a wide range of acoustic variability across talkers. A classic example is the perception of "sh" and "s" fricative sounds, which are categorized according to spectral details of the consonant itself, and also by the context of the voice producing it. Because women's and men's voices occupy different frequency ranges, a listener is required to make a corresponding adjustment of acoustic-phonetic category space for these phonemes when hearing different talkers. This pattern is commonplace in everyday speech communication, and yet might not be captured in accuracy scores for whole words, especially when word lists are spoken by a single talker. Phonetic accommodation for fricatives "s" and "sh" was measured in 20 cochlear implant (CI) users and in a variety of vocoder simulations, including those with noise carriers with and without peak picking, simulated spread of excitation, and pulsatile carriers. CI listeners showed strong phonetic accommodation as a group. Each vocoder produced phonetic accommodation except the 8-channel noise vocoder, despite its historically good match with CI users in word intelligibility. Phonetic accommodation is largely independent of linguistic factors and thus might offer information complementary to speech intelligibility tests which are partially affected by language processing.
Collapse
Affiliation(s)
- Matthew B Winn
- Department of Speech & Hearing Sciences, University of Minnesota, 164 Pillsbury Drive Southeast, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
28
|
The Sound of a Cochlear Implant Investigated in Patients With Single-Sided Deafness and a Cochlear Implant. Otol Neurotol 2019; 39:707-714. [PMID: 29889780 DOI: 10.1097/mao.0000000000001821] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
HYPOTHESIS A cochlear implant (CI) restores hearing in patients with profound sensorineural hearing loss by electrical stimulation of the auditory nerve. It is unknown how this electrical stimulation sounds. BACKGROUND Patients with single-sided deafness (SSD) and a CI form a unique population, since they can compare the sound of their CI with simulations of the CI sound played to their nonimplanted ear. METHODS We tested six stimuli (speech and music) in 10 SSD patients implanted with a CI (Cochlear Ltd). Patients listened to the original stimulus with their CI ear while their nonimplanted ear was masked. Subsequently, patients listened to two CI simulations, created with a vocoder, with their nonimplanted ear alone. They selected the CI simulation with greatest similarity to the sound as perceived by their CI ear and they graded similarity on a 1 to 10 scale. We tested three vocoders: two known from the literature, and one supplied by Cochlear Ltd. Two carriers (noise, sine) were tested for each vocoder. RESULTS Carrier noise and the vocoders from the literature were most often selected as best match to the sound as perceived by the CI ear. However, variability in selections was substantial both between patients and within patients between sound samples. The average grade for similarity was 6.8 for speech stimuli and 6.3 for music stimuli. CONCLUSION We obtained a fairly good impression of what a CI can sound like for SSD patients. This may help to better inform and educate patients and family members about the sound of a CI.
Collapse
|
29
|
Gianakas SP, Winn MB. Lexical bias in word recognition by cochlear implant listeners. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3373. [PMID: 31795696 PMCID: PMC6948217 DOI: 10.1121/1.5132938] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/04/2019] [Accepted: 10/14/2019] [Indexed: 06/03/2023]
Abstract
When hearing an ambiguous speech sound, listeners show a tendency to perceive it as a phoneme that would complete a real word, rather than completing a nonsense/fake word. For example, a sound that could be heard as either /b/ or /ɡ/ is perceived as /b/ when followed by _ack but perceived as /ɡ/ when followed by "_ap." Because the target sound is acoustically identical across both environments, this effect demonstrates the influence of top-down lexical processing in speech perception. Degradations in the auditory signal were hypothesized to render speech stimuli more ambiguous, and therefore promote increased lexical bias. Stimuli included three speech continua that varied by spectral cues of varying speeds, including stop formant transitions (fast), fricative spectra (medium), and vowel formants (slow). Stimuli were presented to listeners with cochlear implants (CIs), and also to listeners with normal hearing with clear spectral quality, or with varying amounts of spectral degradation using a noise vocoder. Results indicated an increased lexical bias effect with degraded speech and for CI listeners, for whom the effect size was related to segment duration. This method can probe an individual's reliance on top-down processing even at the level of simple lexical/phonetic perception.
Collapse
Affiliation(s)
- Steven P Gianakas
- Department of Speech-Language-Hearing Sciences, University of Minnesota, 164 Pillsbury Drive SE, Minneapolis, Minnesota 55455, USA
| | - Matthew B Winn
- Department of Speech-Language-Hearing Sciences, University of Minnesota, 164 Pillsbury Drive SE, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
30
|
Tillmann B, Poulin-Charronnat B, Gaudrain E, Akhoun I, Delbé C, Truy E, Collet L. Implicit Processing of Pitch in Postlingually Deafened Cochlear Implant Users. Front Psychol 2019; 10:1990. [PMID: 31572253 PMCID: PMC6749036 DOI: 10.3389/fpsyg.2019.01990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/14/2019] [Indexed: 11/29/2022] Open
Abstract
Cochlear implant (CI) users can only access limited pitch information through their device, which hinders music appreciation. Poor music perception may not only be due to CI technical limitations; lack of training or negative attitudes toward the electric sound might also contribute to it. Our study investigated with an implicit (indirect) investigation method whether poorly transmitted pitch information, presented as musical chords, can activate listeners’ knowledge about musical structures acquired prior to deafness. Seven postlingually deafened adult CI users participated in a musical priming paradigm investigating pitch processing without explicit judgments. Sequences made of eight sung-chords that ended on either a musically related (expected) target chord or a less-related (less-expected) target chord were presented. The use of a priming task based on linguistic features allowed CI patients to perform fast judgments on target chords in the sung music. If listeners’ musical knowledge is activated and allows for tonal expectations (as in normal-hearing listeners), faster response times were expected for related targets than less-related targets. However, if the pitch percept is too different and does not activate musical knowledge acquired prior to deafness, storing pitch information in a short-term memory buffer predicts the opposite pattern. If transmitted pitch information is too poor, no difference in response times should be observed. Results showed that CI patients were able to perform the linguistic task on the sung chords, but correct response times indicated sensory priming, with faster response times observed for the less-related targets: CI patients processed at least some of the pitch information of the musical sequences, which was stored in an auditory short-term memory and influenced chord processing. This finding suggests that the signal transmitted via electric hearing led to a pitch percept that was too different from that based on acoustic hearing, so that it did not automatically activate listeners’ previously acquired musical structure knowledge. However, the transmitted signal seems sufficiently informative to lead to sensory priming. These findings are encouraging for the development of pitch-related training programs for CI patients, despite the current technological limitations of the CI coding.
Collapse
Affiliation(s)
- Barbara Tillmann
- CNRS UMR5292, INSERM U1028, Auditory Cognition and Psychoacoustics Team, Lyon Neuroscience Research Center, Lyon, France.,University of Lyon, Lyon, France.,Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Bénédicte Poulin-Charronnat
- CNRS UMR5292, INSERM U1028, Auditory Cognition and Psychoacoustics Team, Lyon Neuroscience Research Center, Lyon, France.,University of Lyon, Lyon, France.,Université Claude Bernard Lyon 1, Villeurbanne, France.,LEAD-CNRS, UMR5022, Université Bourgogne Franche-Comté, Dijon, France
| | - Etienne Gaudrain
- CNRS UMR5292, INSERM U1028, Auditory Cognition and Psychoacoustics Team, Lyon Neuroscience Research Center, Lyon, France.,University of Lyon, Lyon, France.,Université Claude Bernard Lyon 1, Villeurbanne, France.,University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Idrick Akhoun
- School of Psychological Sciences, The University of Manchester, Manchester, United Kingdom
| | - Charles Delbé
- CNRS UMR5292, INSERM U1028, Auditory Cognition and Psychoacoustics Team, Lyon Neuroscience Research Center, Lyon, France.,University of Lyon, Lyon, France.,Université Claude Bernard Lyon 1, Villeurbanne, France.,LEAD-CNRS, UMR5022, Université Bourgogne Franche-Comté, Dijon, France
| | - Eric Truy
- University of Lyon, Lyon, France.,Université Claude Bernard Lyon 1, Villeurbanne, France.,CNRS UMR5292, INSERM U1028, Brain Dynamics and Cognition Team, Lyon Neuroscience Research Center, Lyon, France
| | - Lionel Collet
- University of Lyon, Lyon, France.,Université Claude Bernard Lyon 1, Villeurbanne, France
| |
Collapse
|
31
|
Reducing Simulated Channel Interaction Reveals Differences in Phoneme Identification Between Children and Adults With Normal Hearing. Ear Hear 2019; 40:295-311. [PMID: 29927780 DOI: 10.1097/aud.0000000000000615] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Channel interaction, the stimulation of overlapping populations of auditory neurons by distinct cochlear implant (CI) channels, likely limits the speech perception performance of CI users. This study examined the role of vocoder-simulated channel interaction in the ability of children with normal hearing (cNH) and adults with normal hearing (aNH) to recognize spectrally degraded speech. The primary aim was to determine the interaction between number of processing channels and degree of simulated channel interaction on phoneme identification performance as a function of age for cNH and to relate those findings to aNH and to CI users. DESIGN Medial vowel and consonant identification of cNH (age 8-17 years) and young aNH were assessed under six (for children) or nine (for adults) different conditions of spectral degradation. Stimuli were processed using a noise-band vocoder with 8, 12, and 15 channels and synthesis filter slopes of 15 (aNH only), 30, and 60 dB/octave (all NH subjects). Steeper filter slopes (larger numbers) simulated less electrical current spread and, therefore, less channel interaction. Spectrally degraded performance of the NH listeners was also compared with the unprocessed phoneme identification of school-aged children and adults with CIs. RESULTS Spectrally degraded phoneme identification improved as a function of age for cNH. For vowel recognition, cNH exhibited an interaction between the number of processing channels and vocoder filter slope, whereas aNH did not. Specifically, for cNH, increasing the number of processing channels only improved vowel identification in the steepest filter slope condition. Additionally, cNH were more sensitive to changes in filter slope. As the filter slopes increased, cNH continued to receive vowel identification benefit beyond where aNH performance plateaued or reached ceiling. For all NH participants, consonant identification improved with increasing filter slopes but was unaffected by the number of processing channels. Although cNH made more phoneme identification errors overall, their phoneme error patterns were similar to aNH. Furthermore, consonant identification of adults with CI was comparable to aNH listening to simulations with shallow filter slopes (15 dB/octave). Vowel identification of earlier-implanted pediatric ears was better than that of later-implanted ears and more comparable to cNH listening in conditions with steep filter slopes (60 dB/octave). CONCLUSIONS Recognition of spectrally degraded phonemes improved when simulated channel interaction was reduced, particularly for children. cNH showed an interaction between number of processing channels and filter slope for vowel identification. The differences observed between cNH and aNH suggest that identification of spectrally degraded phonemes continues to improve through adolescence and that children may benefit from reduced channel interaction beyond where adult performance has plateaued. Comparison to CI users suggests that early implantation may facilitate development of better phoneme discrimination.
Collapse
|
32
|
O'Neill ER, Kreft HA, Oxenham AJ. Cognitive factors contribute to speech perception in cochlear-implant users and age-matched normal-hearing listeners under vocoded conditions. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:195. [PMID: 31370651 PMCID: PMC6637026 DOI: 10.1121/1.5116009] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
This study examined the contribution of perceptual and cognitive factors to speech-perception abilities in cochlear-implant (CI) users. Thirty CI users were tested on word intelligibility in sentences with and without semantic context, presented in quiet and in noise. Performance was compared with measures of spectral-ripple detection and discrimination, thought to reflect peripheral processing, as well as with cognitive measures of working memory and non-verbal intelligence. Thirty age-matched and thirty younger normal-hearing (NH) adults also participated, listening via tone-excited vocoders, adjusted to produce mean performance for speech in noise comparable to that of the CI group. Results suggest that CI users may rely more heavily on semantic context than younger or older NH listeners, and that non-auditory working memory explains significant variance in the CI and age-matched NH groups. Between-subject variability in spectral-ripple detection thresholds was similar across groups, despite the spectral resolution for all NH listeners being limited by the same vocoder, whereas speech perception scores were more variable between CI users than between NH listeners. The results highlight the potential importance of central factors in explaining individual differences in CI users and question the extent to which standard measures of spectral resolution in CIs reflect purely peripheral processing.
Collapse
Affiliation(s)
- Erin R O'Neill
- Department of Psychology, University of Minnesota, Elliott Hall, 75 East River Parkway, Minneapolis, Minnesota 55455, USA
| | - Heather A Kreft
- Department of Psychology, University of Minnesota, Elliott Hall, 75 East River Parkway, Minneapolis, Minnesota 55455, USA
| | - Andrew J Oxenham
- Department of Psychology, University of Minnesota, Elliott Hall, 75 East River Parkway, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
33
|
Croghan NBH, Smith ZM. Speech Understanding With Various Maskers in Cochlear-Implant and Simulated Cochlear-Implant Hearing: Effects of Spectral Resolution and Implications for Masking Release. Trends Hear 2019; 22:2331216518787276. [PMID: 30022730 PMCID: PMC6053854 DOI: 10.1177/2331216518787276] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The purpose of this study was to investigate the relationship between psychophysical spectral resolution and sentence reception in various types of interfering backgrounds for listeners with cochlear implants and normal-hearing subjects listening to vocoded speech. Spectral resolution was measured with a spectral modulation detection (SMD) task. For speech testing, maskers included stationary speech-shaped noise (SSN), four-talker babble, multitone noise, and a competing talker. To explore the possible trade-offs between spectral resolution and susceptibility to different types of maskers, the degree of simulated current spread was varied within the vocoder group, achieving a range of performance for SMD and speech tasks. Greater simulated current spread was detrimental to both spectral resolution and speech recognition, suggesting that interventions that decrease current spread may improve performance for both tasks. Better SMD sensitivity was significantly correlated with improved sentence reception. In addition, differences in sentence reception across the four maskers were significantly associated with SMD across the combined group of cochlear-implant and vocoder subjects. Masking release (MR) was quantified as the signal-to-noise ratio difference in speech reception threshold between the SSN and competing talker. Several individual cochlear-implant subjects demonstrated substantial MR, in contrast to previous studies, and the degree of MR increased with better SMD thresholds across subjects. The results of this study suggest that alternative masker types, particularly competing talkers, are more sensitive than stationary SSN to differences in spectral resolution in the cochlear-implant population.
Collapse
Affiliation(s)
- Naomi B H Croghan
- 1 Denver Research & Technology Labs, Cochlear Ltd., Centennial, CO, USA.,2 Department of Speech, Language, and Hearing Sciences, University of Colorado, Boulder, CO, USA
| | - Zachary M Smith
- 1 Denver Research & Technology Labs, Cochlear Ltd., Centennial, CO, USA.,3 Department of Physiology and Biophysics, School of Medicine, University of Colorado, Aurora, CO, USA
| |
Collapse
|
34
|
Speech Perception with Spectrally Non-overlapping Maskers as Measure of Spectral Resolution in Cochlear Implant Users. J Assoc Res Otolaryngol 2018; 20:151-167. [PMID: 30456730 DOI: 10.1007/s10162-018-00702-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 10/07/2018] [Indexed: 10/27/2022] Open
Abstract
Poor spectral resolution contributes to the difficulties experienced by cochlear implant (CI) users when listening to speech in noise. However, correlations between measures of spectral resolution and speech perception in noise have not always been found to be robust. It may be that the relationship between spectral resolution and speech perception in noise becomes clearer in conditions where the speech and noise are not spectrally matched, so that improved spectral resolution can assist in separating the speech from the masker. To test this prediction, speech intelligibility was measured with noise or tone maskers that were presented either in the same spectral channels as the speech or in interleaved spectral channels. Spectral resolution was estimated via a spectral ripple discrimination task. Results from vocoder simulations in normal-hearing listeners showed increasing differences in speech intelligibility between spectrally overlapped and interleaved maskers as well as improved spectral ripple discrimination with increasing spectral resolution. However, no clear differences were observed in CI users between performance with spectrally interleaved and overlapped maskers, or between tone and noise maskers. The results suggest that spectral resolution in current CIs is too poor to take advantage of the spectral separation produced by spectrally interleaved speech and maskers. Overall, the spectrally interleaved and tonal maskers produce a much larger difference in performance between normal-hearing listeners and CI users than do traditional speech-in-noise measures, and thus provide a more sensitive test of speech perception abilities for current and future implantable devices.
Collapse
|
35
|
Archer-Boyd AW, Southwell RV, Deeks JM, Turner RE, Carlyon RP. Development and validation of a spectro-temporal processing test for cochlear-implant listeners. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 144:2983. [PMID: 30522311 PMCID: PMC6805218 DOI: 10.1121/1.5079636] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 11/01/2018] [Indexed: 06/06/2023]
Abstract
Psychophysical tests of spectro-temporal resolution may aid the evaluation of methods for improving hearing by cochlear implant (CI) listeners. Here the STRIPES (Spectro-Temporal Ripple for Investigating Processor EffectivenesS) test is described and validated. Like speech, the test requires both spectral and temporal processing to perform well. Listeners discriminate between complexes of sine sweeps which increase or decrease in frequency; difficulty is controlled by changing the stimulus spectro-temporal density. Care was taken to minimize extraneous cues, forcing listeners to perform the task only on the direction of the sweeps. Vocoder simulations with normal hearing listeners showed that the STRIPES test was sensitive to the number of channels and temporal information fidelity. An evaluation with CI listeners compared a standard processing strategy with one having very wide filters, thereby spectrally blurring the stimulus. Psychometric functions were monotonic for both strategies and five of six participants performed better with the standard strategy. An adaptive procedure revealed significant differences, all in favour of the standard strategy, at the individual listener level for six of eight CI listeners. Subsequent measures validated a faster version of the test, and showed that STRIPES could be performed by recently implanted listeners having no experience of psychophysical testing.
Collapse
Affiliation(s)
- Alan W. Archer-Boyd
- MRC Cognition & Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF, United Kingdom
| | - Rosy V. Southwell
- MRC Cognition & Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF, United Kingdom
| | - John M. Deeks
- MRC Cognition & Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF, United Kingdom
| | - Richard E. Turner
- MRC Cognition & Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF, United Kingdom
| | - Robert P. Carlyon
- MRC Cognition & Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF, United Kingdom
| |
Collapse
|
36
|
Feng L, Oxenham AJ. Auditory enhancement and the role of spectral resolution in normal-hearing listeners and cochlear-implant users. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 144:552. [PMID: 30180692 PMCID: PMC6072550 DOI: 10.1121/1.5048414] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/25/2018] [Accepted: 07/11/2018] [Indexed: 05/17/2023]
Abstract
Detection of a target tone in a simultaneous multi-tone masker can be improved by preceding the stimulus with the masker alone. The mechanisms underlying this auditory enhancement effect may enable the efficient detection of new acoustic events and may help to produce perceptual constancy under varying acoustic conditions. Previous work in cochlear-implant (CI) users has suggested reduced or absent enhancement, due perhaps to poor spatial resolution in the cochlea. This study used a supra-threshold enhancement paradigm that in normal-hearing listeners results in large enhancement effects, exceeding 20 dB. Results from vocoder simulations using normal-hearing listeners showed that near-normal enhancement was observed if the simulated spread of excitation was limited to spectral slopes no shallower than 24 dB/oct. No significant enhancement was observed on average in CI users with their clinical monopolar stimulation strategy. The variability in enhancement between CI users, and between electrodes in a single CI user, could not be explained by the spread of excitation, as estimated from auditory nerve evoked potentials. Enhancement remained small, but did reach statistical significance, under the narrower partial-tripolar stimulation strategy. The results suggest that enhancement may be at least partially restored by improvements in the spatial resolution of current CIs.
Collapse
Affiliation(s)
- Lei Feng
- Department of Psychology, University of Minnesota, N218 Elliott Hall, 75 East River Parkway, Minneapolis, Minnesota 55455, USA
| | - Andrew J Oxenham
- Department of Psychology, University of Minnesota, N218 Elliott Hall, 75 East River Parkway, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
37
|
Montazeri V, Assmann PF. Constraints on ideal binary masking for the perception of spectrally-reduced speech. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 144:EL59. [PMID: 30075663 DOI: 10.1121/1.5046442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/26/2018] [Indexed: 06/08/2023]
Abstract
This study investigated recognition of sentences processed using ideal binary masking (IBM) with limited spectral resolution. Local thresholds (LCs) of -12, 0, and 5 dB were applied which altered the target and masker power following IBM. Recognition was reduced due to persistence of the masker and limited target recovery, thus preventing IBM from ideal target-masker segregation. Linear regression and principal component analyses showed that, regardless of masker type and number of spectral channels, higher LCs were associated with poorer recognition. In addition, limitations on target recovery led to more detrimental effects on speech recognition compared to persistence of the masker.
Collapse
Affiliation(s)
- Vahid Montazeri
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas 75080, USA ,
| | - Peter F Assmann
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas 75080, USA ,
| |
Collapse
|
38
|
Jürgens T, Hohmann V, Büchner A, Nogueira W. The effects of electrical field spatial spread and some cognitive factors on speech-in-noise performance of individual cochlear implant users-A computer model study. PLoS One 2018; 13:e0193842. [PMID: 29652892 PMCID: PMC5898708 DOI: 10.1371/journal.pone.0193842] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 02/19/2018] [Indexed: 11/18/2022] Open
Abstract
The relation of the individual speech-in-noise performance differences in cochlear implant (CI) users to underlying physiological factors is currently poorly understood. This study approached this research question by a step-wise individualization of a computer model of speech intelligibility mimicking the details of CI signal processing and some details of the physiology present in CI users. Two factors, the electrical field spatial spread and internal noise (as a coarse model of the individual cognitive performance) were incorporated. Internal representations of speech-in-noise mixtures calculated by the model were classified using an automatic speech recognizer backend employing Hidden Markov Models with a Gaussian probability distribution. One-dimensional electric field spatial spread functions were inferred from electrical field imaging data of 14 CI users. Simplified assumptions of homogenously distributed auditory nerve fibers along the cochlear array and equal distance between electrode array and nerve tissue were assumed in the model. Internal noise, whose standard deviation was adjusted based on either anamnesis data, or text-reception-threshold data, or a combination thereof, was applied to the internal representations before classification. A systematic model evaluation showed that predicted speech-reception-thresholds (SRTs) in stationary noise improved (decreased) with decreasing internal noise standard deviation and with narrower electric field spatial spreads. The model version that was individualized to actual listeners using internal noise alone (containing average spatial spread) showed significant correlations to measured SRTs, reflecting the high correlation of the text-reception threshold data with SRTs. However, neither individualization to spatial spread functions alone, nor a combined individualization based on spatial spread functions and internal noise standard deviation did produce significant correlations with measured SRTs.
Collapse
Affiliation(s)
- Tim Jürgens
- Medizinische Physik, Cluster of Excellence “Hearing4all” and Forschungszentrum Neurosensorik, Carl-von-Ossietzky Universität Oldenburg, Germany
- * E-mail:
| | - Volker Hohmann
- Medizinische Physik, Cluster of Excellence “Hearing4all” and Forschungszentrum Neurosensorik, Carl-von-Ossietzky Universität Oldenburg, Germany
| | - Andreas Büchner
- Medical University Hannover, Cluster of Excellence “Hearing4all”, Hannover, Germany
| | - Waldo Nogueira
- Medical University Hannover, Cluster of Excellence “Hearing4all”, Hannover, Germany
| |
Collapse
|
39
|
Hu H, Dietz M, Williges B, Ewert SD. Better-ear glimpsing with symmetrically-placed interferers in bilateral cochlear implant users. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 143:2128. [PMID: 29716260 DOI: 10.1121/1.5030918] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
For a frontal target in spatially symmetrically placed interferers, normal hearing (NH) listeners can use "better-ear glimpsing" to select time-frequency segments with favorable signal-to-noise ratio in either ear. With an ideal monaural better-ear mask (IMBM) processing, some studies showed that NH listeners can reach similar performance as in the natural binaural listening condition, although interaural phase differences at low frequencies can further improve performance. In principle, bilateral cochlear implant (BiCI) listeners could use the same better-ear glimpsing, albeit without exploiting interaural phase differences. Speech reception thresholds of NH and BiCI listeners were measured in three interferers (speech-shaped stationary noise, nonsense speech, or single talker) either co-located with the target, symmetrically placed at ±60°, or independently presented to each ear, with and without IMBM processing. Furthermore, a bilateral noise vocoder based on the BiCI electrodogram was used in the same NH listeners. Headphone presentation and direct stimulation with head-related transfer functions for spatialization were used in NH and BiCI listeners, respectively. Compared to NH listeners, both NH listeners with vocoder and BiCI listeners showed strongly reduced binaural benefit from spatial separation. However, both groups greatly benefited from IMBM processing as part of the stimulation strategy.
Collapse
Affiliation(s)
- Hongmei Hu
- Medizinische Physik, Carl von Ossietzky Universität Oldenburg and Cluster of Excellence "Hearing4all," Küpkersweg 74, 26129, Oldenburg, Germany
| | - Mathias Dietz
- Medizinische Physik, Carl von Ossietzky Universität Oldenburg and Cluster of Excellence "Hearing4all," Küpkersweg 74, 26129, Oldenburg, Germany
| | - Ben Williges
- Medizinische Physik, Carl von Ossietzky Universität Oldenburg and Cluster of Excellence "Hearing4all," Küpkersweg 74, 26129, Oldenburg, Germany
| | - Stephan D Ewert
- Medizinische Physik, Carl von Ossietzky Universität Oldenburg and Cluster of Excellence "Hearing4all," Küpkersweg 74, 26129, Oldenburg, Germany
| |
Collapse
|
40
|
Başkent D, Luckmann A, Ceha J, Gaudrain E, Tamati TN. The discrimination of voice cues in simulations of bimodal electro-acoustic cochlear-implant hearing. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 143:EL292. [PMID: 29716273 DOI: 10.1121/1.5034171] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In discriminating speakers' voices, normal-hearing individuals effectively use two vocal characteristics, vocal pitch (related to fundamental frequency, F0) and vocal-tract length (VTL, related to speaker size). Typical cochlear-implant users show poor perception of these cues. However, in implant users with low-frequency residual acoustic hearing, this bimodal electro-acoustic stimulation may provide additional voice-related cues, such as low-numbered harmonics and formants, which could improve F0/VTL perception. In acoustic noise-vocoder simulations, where added low-pass filtered speech simulated residual hearing, a strong bimodal benefit was observed for F0 perception. No bimodal benefit was observed for VTL, which seems to mainly rely on vocoder spectral resolution.
Collapse
Affiliation(s)
- Deniz Başkent
- Department of Otorhinolaryngology/Head and Neck Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands , , , ,
| | - Annika Luckmann
- Department of Otorhinolaryngology/Head and Neck Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands , , , ,
| | - Jessy Ceha
- Department of Otorhinolaryngology/Head and Neck Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands , , , ,
| | - Etienne Gaudrain
- Department of Otorhinolaryngology/Head and Neck Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands , , , ,
| | - Terrin N Tamati
- Department of Otorhinolaryngology/Head and Neck Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands , , , ,
| |
Collapse
|
41
|
Grange JA, Culling JF, Harris NSL, Bergfeld S. Cochlear implant simulator with independent representation of the full spiral ganglion. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 142:EL484. [PMID: 29195445 DOI: 10.1121/1.5009602] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In cochlear implant simulation with vocoders, narrow-band carriers deliver the envelopes from each analysis band to the cochlear positions of the simulated electrodes. However, this approach does not faithfully represent the continuous nature of the spiral ganglion. The proposed "SPIRAL" vocoder simulates current spread by mixing all envelopes across many tonal carriers. SPIRAL demonstrated that the classic finding of reduced speech-intelligibility benefit with additional electrodes could be due to current spread. SPIRAL produced lower speech reception thresholds than an equivalent noise vocoder. These thresholds are stable for between 20 and 160 carriers.
Collapse
Affiliation(s)
- Jacques A Grange
- School of Psychology, Cardiff University, CF103AT, Cardiff, United Kingdom , ,
| | - John F Culling
- School of Psychology, Cardiff University, CF103AT, Cardiff, United Kingdom , ,
| | - Naomi S L Harris
- School of Psychology, Cardiff University, CF103AT, Cardiff, United Kingdom , ,
| | - Sven Bergfeld
- Department of Cognitive Neuroscience, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
42
|
Abstract
Auditory perception is our main gateway to communication with others via speech and music, and it also plays an important role in alerting and orienting us to new events. This review provides an overview of selected topics pertaining to the perception and neural coding of sound, starting with the first stage of filtering in the cochlea and its profound impact on perception. The next topic, pitch, has been debated for millennia, but recent technical and theoretical developments continue to provide us with new insights. Cochlear filtering and pitch both play key roles in our ability to parse the auditory scene, enabling us to attend to one auditory object or stream while ignoring others. An improved understanding of the basic mechanisms of auditory perception will aid us in the quest to tackle the increasingly important problem of hearing loss in our aging population.
Collapse
Affiliation(s)
- Andrew J Oxenham
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota 55455;
| |
Collapse
|
43
|
Vocoder Simulations Explain Complex Pitch Perception Limitations Experienced by Cochlear Implant Users. J Assoc Res Otolaryngol 2017; 18:789-802. [PMID: 28733803 DOI: 10.1007/s10162-017-0632-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/26/2017] [Indexed: 01/06/2023] Open
Abstract
Pitch plays a crucial role in speech and music, but is highly degraded for people with cochlear implants, leading to severe communication challenges in noisy environments. Pitch is determined primarily by the first few spectrally resolved harmonics of a tone. In implants, access to this pitch is limited by poor spectral resolution, due to the limited number of channels and interactions between adjacent channels. Here we used noise-vocoder simulations to explore how many channels, and how little channel interaction, are required to elicit pitch. Results suggest that two to four times the number of channels are needed, along with interactions reduced by an order of magnitude, than available in current devices. These new constraints not only provide insights into the basic mechanisms of pitch coding in normal hearing but also suggest that spectrally based complex pitch is unlikely to be generated in implant users without significant changes in the method or site of stimulation.
Collapse
|
44
|
van de Velde DJ, Schiller NO, van Heuven VJ, Levelt CC, van Ginkel J, Beers M, Briaire JJ, Frijns JHM. The perception of emotion and focus prosody with varying acoustic cues in cochlear implant simulations with varying filter slopes. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 141:3349. [PMID: 28599540 PMCID: PMC5436976 DOI: 10.1121/1.4982198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/15/2017] [Accepted: 04/11/2017] [Indexed: 06/07/2023]
Abstract
This study aimed to find the optimal filter slope for cochlear implant simulations (vocoding) by testing the effect of a wide range of slopes on the discrimination of emotional and linguistic (focus) prosody, with varying availability of F0 and duration cues. Forty normally hearing participants judged if (non-)vocoded sentences were pronounced with happy or sad emotion, or with adjectival or nominal focus. Sentences were recorded as natural stimuli and manipulated to contain only emotion- or focus-relevant segmental duration or F0 information or both, and then noise-vocoded with 5, 20, 80, 120, and 160 dB/octave filter slopes. Performance increased with steeper slopes, but only up to 120 dB/octave, with bigger effects for emotion than for focus perception. For emotion, results with both cues most closely resembled results with F0, while for focus results with both cues most closely resembled those with duration, showing emotion perception relies primarily on F0, and focus perception on duration. This suggests that filter slopes affect focus perception less than emotion perception because for emotion, F0 is both more informative and more affected. The performance increase until extreme filter slope values suggests that much performance improvement in prosody perception is still to be gained for CI users.
Collapse
Affiliation(s)
- Daan J van de Velde
- Leiden University Centre for Linguistics, Leiden University, Van Wijkplaats 3, 2311 BX, Leiden, the Netherlands
| | - Niels O Schiller
- Leiden University Centre for Linguistics, Leiden University, Van Wijkplaats 3, 2311 BX, Leiden, the Netherlands
| | - Vincent J van Heuven
- Department of Applied Linguistics, Pannon Egyetem, 10 Egyetem Utca, 8200 Veszprém, Hungary
| | - Claartje C Levelt
- Leiden University Centre for Linguistics, Leiden University, Van Wijkplaats 3, 2311 BX, Leiden, the Netherlands
| | - Joost van Ginkel
- Leiden University Centre for Child and Family Studies, Wassenaarseweg 52, 2333 AK, Leiden, the Netherlands
| | - Mieke Beers
- Leiden University Medical Center, Ears, Nose, and Throat Department, Postbus 9600, 2300 RC, Leiden, the Netherlands
| | - Jeroen J Briaire
- Leiden University Medical Center, Ears, Nose, and Throat Department, Postbus 9600, 2300 RC, Leiden, the Netherlands
| | - Johan H M Frijns
- Leiden University Medical Center, Ears, Nose, and Throat Department, Postbus 9600, 2300 RC, Leiden, the Netherlands
| |
Collapse
|
45
|
DiNino M, Wright RA, Winn MB, Bierer JA. Vowel and consonant confusions from spectrally manipulated stimuli designed to simulate poor cochlear implant electrode-neuron interfaces. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2016; 140:4404. [PMID: 28039993 PMCID: PMC5392103 DOI: 10.1121/1.4971420] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 10/15/2016] [Accepted: 11/22/2016] [Indexed: 05/26/2023]
Abstract
Suboptimal interfaces between cochlear implant (CI) electrodes and auditory neurons result in a loss or distortion of spectral information in specific frequency regions, which likely decreases CI users' speech identification performance. This study exploited speech acoustics to model regions of distorted CI frequency transmission to determine the perceptual consequences of suboptimal electrode-neuron interfaces. Normal hearing adults identified naturally spoken vowels and consonants after spectral information was manipulated through a noiseband vocoder: either (1) low-, middle-, or high-frequency regions of information were removed by zeroing the corresponding channel outputs, or (2) the same regions were distorted by splitting filter outputs to neighboring filters. These conditions simulated the detrimental effects of suboptimal CI electrode-neuron interfaces on spectral transmission. Vowel and consonant confusion patterns were analyzed with sequential information transmission, perceptual distance, and perceptual vowel space analyses. Results indicated that both types of spectral manipulation were equally destructive. Loss or distortion of frequency information produced similar effects on phoneme identification performance and confusion patterns. Consonant error patterns were consistently based on place of articulation. Vowel confusions showed that perceptions gravitated away from the degraded frequency region in a predictable manner, indicating that vowels can probe frequency-specific regions of spectral degradations.
Collapse
Affiliation(s)
- Mishaela DiNino
- Department of Speech and Hearing Sciences, University of Washington, 1417 NE 42nd Street, Box 354875, Seattle, Washington 98105, USA
| | - Richard A Wright
- Department of Linguistics, University of Washington, Guggenheim Hall, Box 352425, Seattle, Washington, 98195, USA
| | - Matthew B Winn
- Department of Speech and Hearing Sciences, University of Washington, 1417 NE 42nd Street, Box 354875, Seattle, Washington 98105, USA
| | - Julie Arenberg Bierer
- Department of Speech and Hearing Sciences, University of Washington, 1417 NE 42nd Street, Box 354875, Seattle, Washington 98105, USA
| |
Collapse
|
46
|
Mukesh S, Blake DT, McKinnon BJ, Bhatti PT. Modeling Intracochlear Magnetic Stimulation: A Finite-Element Analysis. IEEE Trans Neural Syst Rehabil Eng 2016; 25:1353-1362. [PMID: 27831887 DOI: 10.1109/tnsre.2016.2624275] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This study models induced electric fields, and their gradient, produced by pulsatile current stimulation of submillimeter inductors for cochlear implantation. Using finite-element analysis, the lower chamber of the cochlea, scala tympani, is modeled as a cylindrical structure filled with perilymph bounded by tissue, bone, and cochlear neural elements. Single inductors as well as an array of inductors are modeled. The coil strength (~100 nH) and excitation parameters (peak current of 1-5 A, voltages of 16-20 V) are based on a formative feasibility study conducted by our group. In that study, intracochlear micromagnetic stimulation achieved auditory activation as measured through the auditory brainstem response in a feline model. With respect to the finite element simulations, axial symmetry of the inductor geometry is exploited to improve computation time. It is verified that the inductor coil orientation greatly affects the strength of the induced electric field and thereby the ability to affect the transmembrane potential of nearby neural elements. Furthermore, upon comparing an array of micro-inductors with a typical multi-site electrode array, magnetically excited arrays retain greater focus in terms of the gradient of induced electric fields. Once combined with further in vivo analysis, this modeling study may enable further exploration of the mechanism of magnetically induced, and focused neural stimulation.
Collapse
|
47
|
Langner F, Jürgens T. Forward-Masked Frequency Selectivity Improvements in Simulated and Actual Cochlear Implant Users Using a Preprocessing Algorithm. Trends Hear 2016; 20:20/0/2331216516659632. [PMID: 27604785 PMCID: PMC5017570 DOI: 10.1177/2331216516659632] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Frequency selectivity can be quantified using masking paradigms, such as psychophysical tuning curves (PTCs). Normal-hearing (NH) listeners show sharp PTCs that are level- and frequency-dependent, whereas frequency selectivity is strongly reduced in cochlear implant (CI) users. This study aims at (a) assessing individual shapes of PTCs in CI users, (b) comparing these shapes to those of simulated CI listeners (NH listeners hearing through a CI simulation), and (c) increasing the sharpness of PTCs using a biologically inspired dynamic compression algorithm, BioAid, which has been shown to sharpen the PTC shape in hearing-impaired listeners. A three-alternative-forced-choice forward-masking technique was used to assess PTCs in 8 CI users (with their own speech processor) and 11 NH listeners (with and without listening through a vocoder to simulate electric hearing). CI users showed flat PTCs with large interindividual variability in shape, whereas simulated CI listeners had PTCs of the same average flatness, but more homogeneous shapes across listeners. The algorithm BioAid was used to process the stimuli before entering the CI users’ speech processor or the vocoder simulation. This algorithm was able to partially restore frequency selectivity in both groups, particularly in seven out of eight CI users, meaning significantly sharper PTCs than in the unprocessed condition. The results indicate that algorithms can improve the large-scale sharpness of frequency selectivity in some CI users. This finding may be useful for the design of sound coding strategies particularly for situations in which high frequency selectivity is desired, such as for music perception.
Collapse
Affiliation(s)
- Florian Langner
- Medizinische Physik, Cluster of Excellence "Hearing4all," Carl von Ossietzky University, Oldenburg, Germany Forschungszentrum Neurosensorik, Carl von Ossietzky University, Oldenburg, Germany Department of Otolaryngology, Medical University Hannover, Hannover, Germany
| | - Tim Jürgens
- Medizinische Physik, Cluster of Excellence "Hearing4all," Carl von Ossietzky University, Oldenburg, Germany Forschungszentrum Neurosensorik, Carl von Ossietzky University, Oldenburg, Germany
| |
Collapse
|
48
|
Malherbe TK, Hanekom T, Hanekom JJ. Constructing a three-dimensional electrical model of a living cochlear implant user's cochlea. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2016; 32:e02751. [PMID: 26430919 DOI: 10.1002/cnm.2751] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 09/18/2015] [Accepted: 09/30/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Hearing performance varies greatly among users of cochlear implants. Current three-dimensional cochlear models that predict the electrical fields inside a stimulated cochlea and their effect on neural excitation are generally based on a generic human or guinea pig cochlear shape that does not take inter-user morphological variations into account. This precludes prediction of user-specific performance. AIMS The aim of this study is to develop a model of the implanted cochlea of a specific living human individual and to assess if the inclusion of morphological variations in cochlear models affects predicted outcomes significantly. METHODS Five three-dimensional electric volume conduction models of the implanted cochleae of individual living users were constructed from standard CT scan data. These models were embedded in head models that include monopolar return electrodes in accurate anatomic positions. Potential distributions and neural excitation patterns were predicted for each of the models. RESULTS Modeled potential distributions and neural excitation profiles (threshold amplitudes, center frequencies, and bandwidths) are affected by user-specific cochlear morphology and electrode placement within the cochlea. CONCLUSIONS This work suggests that the use of user-specific models is indicated when more detailed analysis is required than what is available from generic models. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- T K Malherbe
- Department of Electrical, Electronic and Computer Engineering, Bioengineering Group, University of Pretoria, Lynnwood Road, Pretoria, Gauteng, 0002, South Africa
| | - T Hanekom
- Department of Electrical, Electronic and Computer Engineering, Bioengineering Group, University of Pretoria, Lynnwood Road, Pretoria, Gauteng, 0002, South Africa
| | - J J Hanekom
- Department of Electrical, Electronic and Computer Engineering, Bioengineering Group, University of Pretoria, Lynnwood Road, Pretoria, Gauteng, 0002, South Africa
| |
Collapse
|
49
|
Abstract
OBJECTIVES This study measured the impact of auditory spectral resolution on listening effort. Systematic degradation in spectral resolution was hypothesized to elicit corresponding systematic increases in pupil dilation, consistent with the notion of pupil dilation as a marker of cognitive load. DESIGN Spectral resolution of sentences was varied with two different vocoders: (1) a noise-channel vocoder with a variable number of spectral channels; and (2) a vocoder designed to simulate front-end processing of a cochlear implant, including peak-picking channel selection with variable synthesis filter slopes to simulate spread of neural excitation. Pupil dilation was measured after subject-specific luminance adjustment and trial-specific baseline measures. Mixed-effects growth curve analysis was used to model pupillary responses over time. RESULTS For both types of vocoder, pupil dilation grew with each successive degradation in spectral resolution. Within each condition, pupillary responses were not related to intelligibility scores, and the effect of spectral resolution on pupil dilation persisted even when only analyzing trials in which responses were 100% correct. CONCLUSIONS Intelligibility scores alone were not sufficient to quantify the effort required to understand speech with poor resolution. Degraded spectral resolution results in increased effort required to understand speech, even when intelligibility is at 100%. Pupillary responses were a sensitive and highly granular measurement to reveal changes in listening effort. Pupillary responses might potentially reveal the benefits of aural prostheses that are not captured by speech intelligibility performance alone as well as the disadvantages that are overcome by increased listening effort.
Collapse
|
50
|
Mesnildrey Q, Hilkhuysen G, Macherey O. Pulse-spreading harmonic complex as an alternative carrier for vocoder simulations of cochlear implants. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2016; 139:986-91. [PMID: 26936577 DOI: 10.1121/1.4941451] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Noise- and sine-carrier vocoders are often used to acoustically simulate the information transmitted by a cochlear implant (CI). However, sine-waves fail to mimic the broad spread of excitation produced by a CI and noise-bands contain intrinsic modulations that are absent in CIs. The present study proposes pulse-spreading harmonic complexes (PSHCs) as an alternative acoustic carrier in vocoders. Sentence-in-noise recognition was measured in 12 normal-hearing subjects for noise-, sine-, and PSHC-vocoders. Consistent with the amount of intrinsic modulations present in each vocoder condition, the average speech reception threshold obtained with the PSHC-vocoder was higher than with sine-vocoding but lower than with noise-vocoding.
Collapse
Affiliation(s)
- Quentin Mesnildrey
- LMA-CNRS, UPR 7051, Aix-Marseille Université, Centrale Marseille, 4 impasse Nikola TESLA CS 40006, F-13453, Marseille Cedex 13, France
| | - Gaston Hilkhuysen
- LMA-CNRS, UPR 7051, Aix-Marseille Université, Centrale Marseille, 4 impasse Nikola TESLA CS 40006, F-13453, Marseille Cedex 13, France
| | - Olivier Macherey
- LMA-CNRS, UPR 7051, Aix-Marseille Université, Centrale Marseille, 4 impasse Nikola TESLA CS 40006, F-13453, Marseille Cedex 13, France
| |
Collapse
|