1
|
Freiler MK, Deckard ML, Proffitt MR, Troy Smith G. Differential expression of steroid-related genes across electrosensory brain regions in two sexually dimorphic species of electric knifefish. Gen Comp Endocrinol 2024; 355:114549. [PMID: 38797340 PMCID: PMC11265523 DOI: 10.1016/j.ygcen.2024.114549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
The production of communication signals can be modulated by hormones acting on the brain regions that regulate these signals. However, less is known about how signal perception is regulated by hormones. The electrocommunication signals of weakly electric fishes are sexually dimorphic, sensitive to hormones, and vary across species. The neural circuits that regulate the production and perception of these signals are also well-characterized, and electric fishes are thus an excellent model to examine the neuroendocrine regulation of sensorimotor mechanisms of communication. We investigated (1) whether steroid-related genes are expressed in sensory brain regions that process communication signals; and (2) whether this expression differs across sexes and species that have different patterns of sexual dimorphism in their signals. Apteronotus leptorhynchus and Apteronotus albifrons produce continuous electric organ discharges (EODs) that are used for communication. Two brain regions, the electrosensory lateral line lobe (ELL) and the dorsal torus semicircularis (TSd), process inputs from electroreceptors to allow fish to detect and discriminate electrocommunication signals. We used qPCR to quantify the expression of genes for two androgen receptors (ar1, ar2), two estrogen receptors (esr1, esr2b), and aromatase (cyp19a1b). Four out of five steroid-related genes were expressed in both sensory brain regions, and their expression often varied between sexes and species. These results suggest that expression of steroid-related genes in the brain may differentially influence how EOD signals are encoded across species and sexes, and that gonadal steroids may coordinately regulate central circuits that control both the production and perception of EODs.
Collapse
Affiliation(s)
- Megan K Freiler
- Department of Biology, Indiana University, 1001 E 3(rd) St., Bloomington, IN 47405, United States; Center for the Integrative Study of Animal Behavior, Indiana University, 409 N. Park Ave, Bloomington, IN 47405, United States.
| | - Mikayla L Deckard
- Department of Biology, Indiana University, 1001 E 3(rd) St., Bloomington, IN 47405, United States
| | - Melissa R Proffitt
- Department of Biology, Indiana University, 1001 E 3(rd) St., Bloomington, IN 47405, United States; Center for the Integrative Study of Animal Behavior, Indiana University, 409 N. Park Ave, Bloomington, IN 47405, United States
| | - G Troy Smith
- Department of Biology, Indiana University, 1001 E 3(rd) St., Bloomington, IN 47405, United States; Center for the Integrative Study of Animal Behavior, Indiana University, 409 N. Park Ave, Bloomington, IN 47405, United States
| |
Collapse
|
2
|
Rogers LS, Lozier NR, Sapozhnikova YP, Diamond KM, Davis JL, Sisneros JA. Functional plasticity of the swim bladder as an acoustic organ for communication in a vocal fish. Proc Biol Sci 2023; 290:20231839. [PMID: 38087920 PMCID: PMC10716664 DOI: 10.1098/rspb.2023.1839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
Teleost fishes have evolved a number of sound-producing mechanisms, including vibrations of the swim bladder. In addition to sound production, the swim bladder also aids in sound reception. While the production and reception of sound by the swim bladder has been described separately in fishes, the extent to which it operates for both in a single species is unknown. Here, using morphological, electrophysiological and modelling approaches, we show that the swim bladder of male plainfin midshipman fish (Porichthys notatus) exhibits reproductive state-dependent changes in morphology and function for sound production and reception. Non-reproductive males possess rostral 'horn-like' swim bladder extensions that enhance low-frequency (less than 800 Hz) sound pressure sensitivity by decreasing the distance between the swim bladder and inner ear, thus enabling pressure-induced swim bladder vibrations to be transduced to the inner ear. By contrast, reproductive males display enlarged swim bladder sonic muscles that enable the production of advertisement calls but also alter swim bladder morphology and increase the swim bladder to inner ear distance, effectively reducing sound pressure sensitivity. Taken together, we show that the swim bladder exhibits a seasonal functional plasticity that allows it to effectively mediate both the production and reception of sound in a vocal teleost fish.
Collapse
Affiliation(s)
| | | | - Yulia P. Sapozhnikova
- Department of Psychology, University of Washington, Seattle, WA, USA
- Laboratory of Ichthyology, Limnological Institute Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - Kelly M. Diamond
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA
| | - Julian Ly Davis
- Department of Engineering, University of Southern Indiana, Evansville, IN, USA
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, USA
| | - Joseph A. Sisneros
- Department of Psychology, University of Washington, Seattle, WA, USA
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, USA
- Department of Biology, University of Washington, Seattle, WA, USA
| |
Collapse
|
3
|
Bhargava S, Shetye K, Shewale S, Sawant N, Sagarkar S, Subhedar N. Mate calling alters expression of neuropeptide, cocaine- and amphetamine- regulated transcript (CART) in the brain of male frog Microhyla nilphamariensis. Neuropeptides 2023; 102:102380. [PMID: 37690194 DOI: 10.1016/j.npep.2023.102380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/22/2023] [Accepted: 09/03/2023] [Indexed: 09/12/2023]
Abstract
Croaking is a unique component of reproductive behaviour in amphibians which plays a key role in intraspecies communication and mate evaluation. While gonadal hormones are known to induce croaking, central regulation of sound production is less studied. Croaking is a dramatic, transient activity that sets apart an animal from non-croaking individuals. Herein, we aim at examining the profile of the neuropeptide cocaine- and amphetamine-regulated transcript (CART) in actively croaking and non-croaking frog Microhyla nilphamariensis. In anurans, this peptide is widely expressed in the areas inclusive of acoustical nuclei as well as areas relevant to reproduction. CART immunoreactivity was far more in the preoptic area (POA), anteroventral tegmentum (AV), ventral hypothalamus (vHy), pineal (P) and pituitary gland of croaking frog compared to non-croaking animals. On similar lines, tissue fragments collected from the mid region of the brain inclusive of POA, vHy, AV, pineal and pituitary gland of croaking frog showed upregulation of CART mRNA. However, CART immunoreactivity in the neuronal perikarya of raphe (Ra) was completely abolished during croaking activity. The data suggest that CART signaling in the brain may be an important player in mediating croaking behaviour in the frog.
Collapse
Affiliation(s)
- Shobha Bhargava
- Department of Zoology, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India.
| | - Ketaki Shetye
- Department of Zoology, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India
| | - Swapnil Shewale
- Department of Zoology, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India
| | - Nitin Sawant
- Department of Zoology, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India
| | - Sneha Sagarkar
- Department of Zoology, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India
| | - Nishikant Subhedar
- Indian Institute of Science Education and Research, Ganeshkhind, Pune 411 008, India
| |
Collapse
|
4
|
Aloufi N, Heinrich A, Marshall K, Kluk K. Sex differences and the effect of female sex hormones on auditory function: a systematic review. Front Hum Neurosci 2023; 17:1077409. [PMID: 37151900 PMCID: PMC10161575 DOI: 10.3389/fnhum.2023.1077409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 03/30/2023] [Indexed: 05/09/2023] Open
Abstract
Aims First, to discuss sex differences in auditory function between women and men, and whether cyclic fluctuations in levels of female sex hormones (i.e., estradiol and progesterone) affect auditory function in pre-menopausal and post-menopausal women. Second, to systematically review the literature concerning the discussed patterns in order to give an overview of the methodologies used in research. Last, to identify the gap in knowledge and to make recommendations for future work. Methods for the systematic review Population, Exposure, Control, Outcome and Study design (PECOS) criteria were used in developing the review questions. The review protocol follows the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and was pre-registered in the Prospective Register of Systematic Reviews (PROSPERO; CRD42020201480). Data Sources: EMBASE, PubMed, MEDLINE (Ovid), PsycINFO, ComDisDome, CINAHL, Web of Science, Cochrane Central Register of Controlled Trials (CENTRAL) via Cochrane Library, and scanning reference lists of relevant studies, and internet resources (i.e., Mendeley) were used. Only studies published between 1999 and 2022, in English, or in English translation, were included. The quality of evidence was assessed using the Newcastle-Ottawa Scale (NOS). Results Sex differences: Women had more sensitive hearing (measured at the level of peripheral and central auditory system) than men. Cyclic fluctuations: Auditory function in women fluctuated during the menstrual cycle, while no such fluctuations in men over the same time period were reported. Hearing sensitivity improved in women during the late follicular phase, and decrease during the luteal phase, implying an effect of female sex hormones, although the specific effects of estradiol and progesterone fluctuations on the central auditory system remain unclear. Hearing sensitivity in women declined rapidly at the onset of menopause. Conclusion The review has shown the following. Consistent sex differences exist in auditory function across the auditory pathway with pre-menopausal women often showing better function than age-matched men. Moreover, pre-menopausal women show fluctuations in hearing function across the menstrual cycle with a better function during the peak of estradiol or when the ratio of estradiol to progesterone is high. Third, menopause marks the onset of hearing loss in women, characterized by a rapid decline in hearing sensitivity and a more pronounced loss than in age-matched men. Finally, the systematic review highlights the need for well-designed and -controlled studies to evaluate the influence of estradiol and progesterone on hearing by consistently including control groups (e.g., age-matched man), using objective tests to measure hormonal levels (e.g., in saliva or blood), and by testing participants at different points across the menstrual cycle. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020201480, identifier CRD42020201480.
Collapse
Affiliation(s)
- Nada Aloufi
- Manchester Centre for Audiology and Deafness, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Health Sciences, University of Manchester, Manchester, United Kingdom
- College of Medical Rehabilitation Sciences, Taibah University, Medina, Saudi Arabia
| | - Antje Heinrich
- Manchester Centre for Audiology and Deafness, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Health Sciences, University of Manchester, Manchester, United Kingdom
| | - Kay Marshall
- Division of Pharmacy and Optometry, Faculty of Biology, School of Health Sciences, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Karolina Kluk
- Manchester Centre for Audiology and Deafness, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Health Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
5
|
Li H, Chen S, Jiang J, He B, Zhang M. Exploring sexual differences in external morphology and limb muscles of
Hylarana guentheri
(Anura: Ranidae) during non‐breeding season. ACTA ZOOL-STOCKHOLM 2022. [DOI: 10.1111/azo.12448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hui Li
- College of Life Sciences Sichuan Normal University Chengdu China
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province Chengdu Institute of Biology, Chinese Academy of Sciences Chengdu China
| | - Shunde Chen
- College of Life Sciences Sichuan Normal University Chengdu China
| | - Jianping Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province Chengdu Institute of Biology, Chinese Academy of Sciences Chengdu China
| | - Bing He
- College of Life Sciences Sichuan Normal University Chengdu China
| | - Meihua Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province Chengdu Institute of Biology, Chinese Academy of Sciences Chengdu China
| |
Collapse
|
6
|
Chen Z, Liu Y, Liang R, Cui C, Zhu Y, Zhang F, Zhang J, Chen X. Comparative transcriptome analysis provides insights into the molecular mechanisms of high-frequency hearing differences between the sexes of Odorrana tormota. BMC Genomics 2022; 23:296. [PMID: 35410120 PMCID: PMC9004125 DOI: 10.1186/s12864-022-08536-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/07/2022] [Indexed: 11/15/2022] Open
Abstract
Background Acoustic communication is important for the survival and reproduction of anurans and masking background noise is a critical factor for their effective acoustic communication. Males of the concave-eared frog (Odorrana tormota) have evolved an ultrasonic communication capacity to avoid masking by the widespread background noise of local fast-flowing streams, whereas females exhibit no ultrasonic sensitivity. However, the molecular mechanisms underlying the high-frequency hearing differences between the sexes of O. tormota are still poorly understood. Results In this study, we sequenced the brain transcriptomes of male and female O. tormota, and compared their differential gene expression. A total of 4,605 differentially expressed genes (DEGs) between the sexes of O. tormota were identified and eleven of them were related to auditory based on the annotation and enrichment analysis. Most of these DEGs in males showed a higher expression trend than females in both quantity and expression quantity. The highly expressed genes in males were relatively concentrated in neurogenesis, signal transduction, ion transport and energy metabolism, whereas the up-expressed genes in females were mainly related to the growth and development regulation of specific auditory cells. Conclusions The transcriptome of male and female O. tormota has been sequenced and de novo assembled, which will provide gene reference for further genomic studies. In addition, this is the first research to reveal the molecular mechanisms of sex differences in ultrasonic hearing between the sexes of O. tormota and will provide new insights into the genetic basis of the auditory adaptation in amphibians during their transition from water to land. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08536-2.
Collapse
Affiliation(s)
- Zhuo Chen
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China.,The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province, Xinxiang, 453007, China
| | - Yao Liu
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Rui Liang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Chong Cui
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Yanjun Zhu
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Fang Zhang
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Jie Zhang
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China.
| | - Xiaohong Chen
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China. .,The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province, Xinxiang, 453007, China.
| |
Collapse
|
7
|
Partyka M, Neff P, Bacri T, Michels J, Weisz N, Schlee W. Gender differentiates effects of acoustic stimulation in patients with tinnitus. PROGRESS IN BRAIN RESEARCH 2021; 263:25-57. [PMID: 34243890 DOI: 10.1016/bs.pbr.2021.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Gender constitutes a major factor to consider when tailoring subtype-based therapies for tinnitus. Previous reports showed important differences between men and women concerning basic perceptual tinnitus characteristics (i.e., laterality, frequency, tinnitus loudness) as well as psychological reactions linked to this condition. Therapeutic approaches based on acoustic stimulation involve processes beyond a pure masking effect and consist of sound presentation temporarily altering or alleviating tinnitus perception via residual and/or lateral inhibition mechanisms. Presented stimuli may include pure tones, noise, and music adjusted to or modulated to filter out tinnitus pitch and therefore trigger reparative functional and structural changes in the auditory system. Furthermore, recent findings suggest that in tonal tinnitus, the presentation of pitch-adjusted sounds which were altered by a 10Hz modulation of amplitude was more efficient than unmodulated stimulation. In this paper, we investigate sex differences in the outcome of different variants of acoustic stimulation, looking for factors revealing predictive value in the efficiency of tinnitus relief.
Collapse
Affiliation(s)
- Marta Partyka
- Centre for Cognitive Neuroscience and Department of Psychology, University of Salzburg, Salzburg, Austria
| | - Patrick Neff
- Centre for Cognitive Neuroscience and Department of Psychology, University of Salzburg, Salzburg, Austria; University of Zurich, Zurich, Switzerland
| | - Timothée Bacri
- Department of Mathematics, University of Bergen, Bergen, Norway
| | - Jakob Michels
- Clinic and Policlinic for Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Nathan Weisz
- Centre for Cognitive Neuroscience and Department of Psychology, University of Salzburg, Salzburg, Austria
| | - Winfried Schlee
- Clinic and Policlinic for Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| |
Collapse
|
8
|
Gall MD, Baugh AT, Lucas JR, Bee MA. Social Communication across Reproductive Boundaries: Hormones and the Auditory Periphery of Songbirds and Frogs. Integr Comp Biol 2021; 61:292-301. [PMID: 33988694 DOI: 10.1093/icb/icab075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Most animals experience reproductive transitions in their lives; for example, reaching reproductive maturity or cycling in and out of breeding condition. Some reproductive transitions are abrupt, while others are more gradual. In most cases, changes in communication between the sexes follow the time course of these reproductive transitions and are typically thought to be coordinated by steroid hormones. We know a great deal about hormonal control of communication behaviors in birds and frogs, as well as the central neural control of these behaviors. There has also been significant interest in the effects of steroid hormones on central nervous system structures that control both the production and reception of communication signals associated with reproductive behaviors. However, peripheral sensory structures have typically received less attention, although there has been growing interest in recent years. It is becoming clear that peripheral sensory systems play an important role in reproductive communication, are plastic across reproductive conditions, and, in some cases, this plasticity may be mediated by steroid hormones. In this article, we discuss recent evidence for the role of peripheral auditory structures in reproductive communication in birds and frogs, the plasticity of the peripheral auditory system, and the role of steroid hormones in mediating the effects of the peripheral auditory system on reproductive communication. We focus on both seasonal and acute reproductive transitions, introduce new data on the role of hormones in modulating seasonal patterns, and make recommendations for future work.
Collapse
Affiliation(s)
- Megan D Gall
- Department of Biology, Vassar College, 124 Raymond Avenue, Poughkeepsie, NY 12604, USA
| | - Alexander T Baugh
- Department of Biology, Swarthmore College, 500 College Avenue, Swarthmore, PA 19081, USA
| | - Jeffrey R Lucas
- Department of Biological Sciences, Purdue University, West Lafayette, IN 65203, USA
| | - Mark A Bee
- Department of Ecology, Evolution, and Behavior, University of Minnesota, 1479 Gortner Avenue, St. Paul, MN 55108, USA.,Graduate Program in Neuroscience, University of Minnesota, 321 Church Street SE, Minneapolis, MN 55455, USA
| |
Collapse
|
9
|
Maruska KP, Butler JM. Endocrine Modulation of Sending and Receiving Signals in Context-Dependent Social Communication. Integr Comp Biol 2021. [DOI: 10.1093/icb/icab074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Abstract
Animal communication requires senders to transmit signals through the environment to conspecific receivers, which then leads to context-dependent behavioral decisions. Sending and receiving sensory information in social contexts, however, can be dramatically influenced by an individual’s internal state, particularly in species that cycle in and out of breeding or other physiological condition like nutritional state or social status. Modulatory substances like steroids, peptides, and biogenic amines can influence both the substrates used for sending social signals (e.g., motivation centers, sensorimotor pathways, and muscles) as well as the peripheral sensory organs and central neural circuitry involved in the reception of this information and subsequent execution of behavioral responses. This issue highlights research from neuroethologists on the topic of modulation of sending and receiving social signals and demonstrates that it can occur in both males and females, in different senses at both peripheral sensory organs and the brain, at different levels of biological organization, on different temporal scales, in various social contexts, and across many diverse vertebrate taxa. Modifying a signal produced by a sender or how that signal is perceived in a receiver provides flexibility in communication and has broad implications for influencing social decisions like mate choice, which ultimately affects reproductive fitness and species persistence. This phenomenon of modulators and internal physiological state impacting communication abilities is likely more widespread than currently realized and we hope this issue inspires others working on diverse systems to examine this topic from different perspectives. An integrative and comparative approach will advance discovery in this field and is needed to better understand how endocrine modulation contributes to sexual selection and the evolution of animal communication in general.
Collapse
Affiliation(s)
- Karen P Maruska
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg., Baton Rouge, LA 70803, USA
| | - Julie M Butler
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg., Baton Rouge, LA 70803, USA
- Biology Department, Stanford University, 371 Jane Stanford Way, Stanford, CA 94305-5020, USA
| |
Collapse
|
10
|
Maruska KP, Butler JM. Reproductive- and Social-State Plasticity of Multiple Sensory Systems in a Cichlid Fish. Integr Comp Biol 2021; 61:249-268. [PMID: 33963407 DOI: 10.1093/icb/icab062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Intra- and inter-sexual communications are vital to the survival and reproductive success of animals. In species that cycle in and out of breeding or other physiological condition, sensory function can be modulated to optimize communication at crucial times. Little is known, however, about how widespread this sensory plasticity is across taxa, whether it occurs in multiple senses or both sexes within a species, and what potential modulatory substances and substrates are involved. Thus, studying modulation of sensory communication in a single species can provide valuable insights for understanding how sensory abilities can be altered to optimize detection of salient signals in different sensory channels and social contexts. The African cichlid fish Astatotilapia burtoni uses multimodal communication in social contexts such as courtship, territoriality, and parental care and shows plasticity in sensory abilities. In this review, we synthesize what is known about how visual, acoustic, and chemosensory communication is used in A. burtoni in inter- and intra-specific social contexts, how sensory funtion is modulated by an individual's reproductive, metabolic, and social state, and discuss evidence for plasticity in potential modulators that may contribute to changes in sensory abilities and behaviors. Sensory plasticity in females is primarily associated with the natural reproductive cycle and functions to improve detection of courtship signals (visual, auditory, chemosensory, and likely mechanosensory) from high-quality males for reproduction. Plasticity in male sensory abilities seems to function in altering their ability to detect the status of other males in the service of territory ownership and future reproductive opportunities. Changes in different classes of potential modulators or their receptors (steroids, neuropeptides, and biogenic amines) occur at both peripheral sensory organs (eye, inner ear, and olfactory epithelium) and central visual, olfactory, and auditory processing regions, suggesting complex mechanisms contributing to plasticity of sensory function. This type of sensory plasticity revealed in males and females of A. burtoni is likely more widespread among diverse animals than currently realized, and future studies should take an integrative and comparative approach to better understand the proximate and ultimate mechanisms modulating communication abilities across taxa.
Collapse
Affiliation(s)
- Karen P Maruska
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg., Baton Rouge, LA 70803, USA
| | - Julie M Butler
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg., Baton Rouge, LA 70803, USA
| |
Collapse
|
11
|
Leslie CE, Walkowski W, Rosencrans RF, Gordon WC, Bazan NG, Ryan MJ, Farris HE. Estrogenic Modulation of Retinal Sensitivity in Reproductive Female Túngara Frogs. Integr Comp Biol 2021; 61:231-239. [PMID: 33901287 PMCID: PMC8300951 DOI: 10.1093/icb/icab032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although mate searching behavior in female túngara frogs (Physalaemus pustulosus) is nocturnal and largely mediated by acoustic cues, male signaling includes visual cues produced by the vocal sac. To compensate for these low light conditions, visual sensitivity in females is modulated when they are in a reproductive state, as retinal thresholds are decreased. This study tested whether estradiol (E2) plays a role in this modulation. Female túngara frogs were injected with either human chorionic gonadotropin (hCG) or a combination of hCG and fadrozole. hCG induces a reproductive state and increases retinal sensitivity, while fadrozole is an aromatase inhibitor that blocks hCG-induced E2 synthesis. In an analysis of scotopic electroretinograms (ERGs), hCG treatment lowered the threshold for eliciting a b-wave response, whereas the addition of fadrozole abolished this effect, matching thresholds in non-reproductive saline-injected controls. This suggests that blocking E2 synthesis blocked the hCG-mediated reproductive modulation of retinal sensitivity. By implicating E2 in control of retinal sensitivity, our data add to growing evidence that the targets of gonadal steroid feedback loops include sensory receptor organs, where stimulus sensitivity may be modulated, rather than more central brain nuclei, where modulation may affect mechanisms involved in motivation.
Collapse
Affiliation(s)
- Caitlin E Leslie
- Department of Integrative Biology, University of Texas, Austin, TX 78712, USA
| | - Whitney Walkowski
- Neuroscience Center, Louisiana State University School of Medicine, 2020 Gravier Street, New Orleans, LA 70112, USA.,Department of Cell Biology and Anatomy, Louisiana State University School of Medicine, New Orleans, LA 70112, USA
| | - Robert F Rosencrans
- Neuroscience Center, Louisiana State University School of Medicine, 2020 Gravier Street, New Orleans, LA 70112, USA
| | - William C Gordon
- Neuroscience Center, Louisiana State University School of Medicine, 2020 Gravier Street, New Orleans, LA 70112, USA.,Department of Ophthalmology, Louisiana State University School of Medicine, New Orleans, LA 70112, USA
| | - Nicolas G Bazan
- Neuroscience Center, Louisiana State University School of Medicine, 2020 Gravier Street, New Orleans, LA 70112, USA.,Department of Ophthalmology, Louisiana State University School of Medicine, New Orleans, LA 70112, USA
| | - Michael J Ryan
- Department of Integrative Biology, University of Texas, Austin, TX 78712, USA
| | - Hamilton E Farris
- Neuroscience Center, Louisiana State University School of Medicine, 2020 Gravier Street, New Orleans, LA 70112, USA.,Department of Cell Biology and Anatomy, Louisiana State University School of Medicine, New Orleans, LA 70112, USA.,Department of Otorhinolaryngology, Louisiana State University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
12
|
Adreani NM, D'Amelio PB, Gahr M, Ter Maat A. Life-Stage Dependent Plasticity in the Auditory System of a Songbird Is Signal and Emitter-Specific. Front Neurosci 2020; 14:588672. [PMID: 33343284 PMCID: PMC7746620 DOI: 10.3389/fnins.2020.588672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/10/2020] [Indexed: 11/25/2022] Open
Abstract
Social animals flexibly use a variety of vocalizations to communicate in complex and dynamic environments. However, it remains unknown whether the auditory perception of different vocalizations changes according to the ecological context. By using miniature wireless devices to synchronously record vocal interactions and local neural activity in freely-behaving zebra finches in combination with playback experiments, we investigate whether the auditory processing of vocalizations changes across life-history stages. We show that during breeding, females (but not males) increase their estrogen levels and reply faster to their mates when interacting vocally. These changes are associated with an increase in the amplitude of the female’s neural auditory responses. Furthermore, the changes in auditory response are not general, but specific to a subset of functionally distinct vocalizations and dependent on the emitter’s identity. These results provide novel insights into auditory plasticity of communication systems, showing that the perception of specific signals can shift according to ecologically-determined physiological states.
Collapse
Affiliation(s)
- Nicolas M Adreani
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Pöcking, Germany.,Konrad Lorenz Research Center, University of Vienna, Grünau im Almtal, Austria
| | - Pietro B D'Amelio
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Pöcking, Germany.,FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch, South Africa
| | - Manfred Gahr
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Pöcking, Germany
| | - Andries Ter Maat
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Pöcking, Germany
| |
Collapse
|
13
|
Frisina RD, Bazard P, Bauer M, Pineros J, Zhu X, Ding B. Translational implications of the interactions between hormones and age-related hearing loss. Hear Res 2020; 402:108093. [PMID: 33097316 DOI: 10.1016/j.heares.2020.108093] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/05/2020] [Accepted: 10/12/2020] [Indexed: 11/30/2022]
Abstract
Provocative research has revealed both positive and negative effects of hormones on hearing as we age; with in some cases, mis-regulation of hormonal levels in instances of medical comorbidities linked to aging, lying at the heart of the problem. Animal model studies have discovered that hormonal fluctuations can sharpen hearing for improved communication and processing of mating calls during reproductive seasons. Sex hormones sometimes have positive effects on auditory processing, as is often the case with estrogen, whereas combinations of estrogen and progesterone, and testosterone, can have negative effects on hearing abilities, particularly in aging subjects. Too much or too little of some hormones can be detrimental, as is the case for aldosterone and thyroid hormones, which generally decline in older individuals. Too little insulin, as in Type 1 diabetics, or poor regulation of insulin, as in Type 2 diabetics, is also harmful to hearing in our aged population. In terms of clinical translational possibilities, hormone therapies can be problematic due to systemic side effects, as has happened for estrogen/progestin combination hormone replacement therapy (HRT) in older women, where the HRT induces a hearing loss. As hormone therapy approaches are further developed, it may be possible to lower needed doses of hormones by combining them with supplements, such as antioxidants. Another option will be to take advantage of emerging technologies for local drug delivery to the inner ear, including biodegradeable, sustained-release hydrogels and micro-pumps which can be implanted in the middle ear near the round window. In closing, exciting research completed to date, summarized in the present report bodes well for emerging biomedical therapies to prevent or treat age-related hearing loss utilizing hormonal strategies.
Collapse
Affiliation(s)
- R D Frisina
- Dept. Medical Engineering, Global Center for Hearing & Speech Research, University of South Florida, Tampa FL, USA; Dept. Communication Sciences & Disorders, Global Center for Hearing & Speech Research, University of South Florida, Tampa FL, USA.
| | - P Bazard
- Dept. Medical Engineering, Global Center for Hearing & Speech Research, University of South Florida, Tampa FL, USA
| | - M Bauer
- Dept. Medical Engineering, Global Center for Hearing & Speech Research, University of South Florida, Tampa FL, USA
| | - J Pineros
- Dept. Medical Engineering, Global Center for Hearing & Speech Research, University of South Florida, Tampa FL, USA
| | - X Zhu
- Dept. Medical Engineering, Global Center for Hearing & Speech Research, University of South Florida, Tampa FL, USA
| | - B Ding
- Dept. Medical Engineering, Global Center for Hearing & Speech Research, University of South Florida, Tampa FL, USA
| |
Collapse
|
14
|
Schulte LM, Ringler E, Rojas B, Stynoski JL. Developments in Amphibian Parental Care Research: History, Present Advances, and Future Perspectives. HERPETOLOGICAL MONOGRAPH 2020; 34:71-97. [PMID: 38989507 PMCID: PMC7616153 DOI: 10.1655/herpmonographs-d-19-00002.1] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Despite rising interest among scientists for over two centuries, parental care behavior has not been as thoroughly studied in amphibians as it has in other taxa. The first reports of amphibian parental care date from the early 18th century, when Maria Sibylla Merian went on a field expedition in Suriname and reported frog metamorphs emerging from their mother's dorsal skin. Reports of this and other parental behaviors in amphibians remained descriptive for decades, often as side notes during expeditions with another purpose. However, since the 1980s, experimental approaches have proliferated, providing detailed knowledge about the adaptive value of observed behaviors. Today, we recognize more than 30 types of parental care in amphibians, but most studies focus on just a few families and have favored anurans over urodeles and caecilians. Here, we provide a synthesis of the last three centuries of parental care research in the three orders comprising the amphibians. We draw attention to the progress from the very first descriptions to the most recent experimental studies, and highlight the importance of natural history observations as a source of new hypotheses and necessary context to interpret experimental findings. We encourage amphibian parental care researchers to diversify their study systems to allow for a more comprehensive perspective of the behaviors that amphibians exhibit. Finally, we uncover knowledge gaps and suggest new avenues of research using a variety of disciplines and approaches that will allow us to better understand the function and evolution of parental care behaviors in this diverse group of animals.
Collapse
Affiliation(s)
- Lisa M. Schulte
- Goethe University Frankfurt, Faculty of Biological Sciences, Max-von-Laue-Strasse 13, 60438Frankfurt, Germany
| | - Eva Ringler
- Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna, University of Vienna, Veterinaerplatz 1, A-1210Vienna, Austria
- University of Vienna, Department of Integrative Zoology, Althanstrasse 14, A-1090Vienna, Austria
| | - Bibiana Rojas
- University of Jyvaskyla, Department of Biology and Environmental Science, P.O. Box 35, 40014, Jyväskylä, Finland
| | - Jennifer L. Stynoski
- Colorado State University, Department of Biology, 200 W. Lake Street, Fort Collins, CO, 48823USA
- Instituto Clodomiro Picado, Universidad de Costa Rica, Dulce Nombre de Coronado, San José, Costa Rica
| |
Collapse
|
15
|
Duque FG, Rodriguez-Saltos CA, Uma S, Nasir I, Monteros MF, Wilczynski W, Carruth LL. High-frequency hearing in a hummingbird. SCIENCE ADVANCES 2020; 6:eabb9393. [PMID: 32832648 PMCID: PMC7439503 DOI: 10.1126/sciadv.abb9393] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/03/2020] [Indexed: 06/08/2023]
Abstract
Some hummingbirds produce unique high-frequency vocalizations. It remains unknown whether these hummingbirds can hear these sounds, which are produced at frequencies beyond the range at which most birds can hear. Here, we show behavioral and neural evidence of high-frequency hearing in a hummingbird, the Ecuadorian Hillstar (Oreotrochilus chimborazo). In the field, hummingbirds responded to playback of high-frequency song with changes in body posture and approaching behavior. We assessed neural activation by inducing ZENK expression in the brain auditory areas in response to the high-frequency song. We found higher ZENK expression in the auditory regions of hummingbirds exposed to the high-frequency song compared to controls, while no difference was observed in the hippocampus between groups. The behavioral and neural responses show that this hummingbird can hear sounds at high frequencies. This is the first evidence of the use of high-frequency vocalizations and high-frequency hearing in conspecific communication in a bird.
Collapse
Affiliation(s)
- F. G. Duque
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | | | - S. Uma
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - I. Nasir
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - M. F. Monteros
- Facultad de Ingeniería en Ciencias Agropecuarias y Ambientales, Universidad Técnica del Norte, Ibarra, Ecuador
- Fundación Ecominga Red de Bosques Protectores Amenazados, Baños, Ecuador
| | - W. Wilczynski
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - L. L. Carruth
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
16
|
Swift KN, Marzluff JM, Templeton CN, Shimizu T, Cross DJ. Brain activity underlying American crow processing of encounters with dead conspecifics. Behav Brain Res 2020; 385:112546. [PMID: 32035868 DOI: 10.1016/j.bbr.2020.112546] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 11/27/2022]
Abstract
Animals utilize a variety of auditory and visual cues to navigate the landscape of fear. For some species, including corvids, dead conspecifics appear to act as one such visual cue of danger, and prompt alarm calling by attending conspecifics. Which brain regions mediate responses to dead conspecifics, and how this compares to other threats, has so far only been speculative. Using 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) we contrast the metabolic response to visual and auditory cues associated with a dead conspecific among five a priori selected regions in the American crow (Corvus brachyrhynchos) brain: the hippocampus, nidopallium caudolaterale, striatum, amygdala, and the septum. Using a repeated-measures, fully balanced approach, we exposed crows to four stimuli: a dead conspecific, a dead song sparrow (Melospiza melodia), conspecific alarm calls given in response to a dead crow, and conspecific food begging calls. We find that in response to observations of a dead crow, crows show significant activity in areas associated with higher-order decision-making (NCL), but not in areas associated with social behaviors or fear learning. We do not find strong differences in activation between hearing alarm calls and food begging calls; both activate the NCL. Lastly, repeated exposures to negative stimuli had a marginal effect on later increasing the subjects' brain activity in response to control stimuli, suggesting that crows might quickly learn from negative experiences.
Collapse
Affiliation(s)
- Kaeli N Swift
- School of Environmental and Forest Sciences, Seattle, WA, United States.
| | - John M Marzluff
- School of Environmental and Forest Sciences, Seattle, WA, United States
| | | | - Toru Shimizu
- Department of Psychology, University of South Florida, Tampa, FL, United States
| | - Donna J Cross
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
17
|
Robitaille J, Langlois VS. Consequences of steroid-5α-reductase deficiency and inhibition in vertebrates. Gen Comp Endocrinol 2020; 290:113400. [PMID: 31981690 DOI: 10.1016/j.ygcen.2020.113400] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/13/2020] [Accepted: 01/20/2020] [Indexed: 01/16/2023]
Abstract
In 1974, a lack of 5α-dihydrotestosterone (5α-DHT), the most potent androgen across species except for fish, was shown to be the origin of a type of pseudohermaphrodism in which boys have female-like external genitalia. This human intersex condition is linked to a mutation in the steroid-5α-reductase type 2 (SRD5α2) gene, which usually produces an important enzyme capable of reducing the Δ4-ene of steroid C-19 and C-21 into a 5α-stereoisomer. Seeing the potential of SRD5α2 as a target for androgen synthesis, pharmaceutical companies developed 5α-reductase inhibitors (5ARIs), such as finasteride (FIN) and dutasteride (DUT) to target SRD5α2 in benign prostatic hyperplasia and androgenic alopecia. In addition to human treatment, the development of 5ARIs also enabled further research of SRD5α functions. Therefore, this review details the morphological, physiological, and molecular effects of the lack of SRD5α activity induced by both SRD5α mutations and inhibitor exposures across species. More specifically, data highlights 1) the role of 5α-DHT in the development of male secondary sexual organs in vertebrates and sex determination in non-mammalian vertebrates, 2) the role of SRD5α1 in the synthesis of the neurosteroid allopregnanolone (ALLO) and 5α-androstane-3α,17β-diol (3α-diol), which are involved in anxiety and sexual behavior, respectively, and 3) the role of SRD5α3 in N-glycosylation. This review also features the lesser known functions of SRD5αs in steroid degradation in the uterus during pregnancy and glucocorticoid clearance in the liver. Additionally, the review describes the regulation of SRD5αs by the receptors of androgens, progesterone, estrogen, and thyroid hormones, as well as their differential DNA methylation. Factors known to be involved in their differential methylation are age, inflammation, and mental stimulation. Overall, this review helps shed light on the various essential functions of SRD5αs across species.
Collapse
Affiliation(s)
- Julie Robitaille
- Centre Eau Terre Environnement, Institut national de la recherche scientifique (INRS), Quebec City, QC, Canada
| | - Valerie S Langlois
- Centre Eau Terre Environnement, Institut national de la recherche scientifique (INRS), Quebec City, QC, Canada.
| |
Collapse
|
18
|
Walkowski WG, Crother BI, Valverde RA. Testosterone and Corticosterone Profiles and Body Condition of Calling and Non-calling Lithobates grylio. COPEIA 2019. [DOI: 10.1643/cp-18-134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Whitney G. Walkowski
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, Louisiana 70402; (WGW) . Send reprint requests to WGW
| | - Brian I. Crother
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, Louisiana 70402; (WGW) . Send reprint requests to WGW
| | - Roldán A. Valverde
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, Louisiana 70402; (WGW) . Send reprint requests to WGW
| |
Collapse
|
19
|
Pérez-Granados C, Schuchmann KL, Ramoni-Perazzi P, Marques MI. Calling behaviour of Elachistocleis matogrosso (Anura, Microhylidae) is associated with habitat temperature and rainfall. BIOACOUSTICS 2019. [DOI: 10.1080/09524622.2019.1658642] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Cristian Pérez-Granados
- National Institute for Science and Technology in Wetlands (INAU), Computational Bioacoustics Research Unit (CO.BRA), Federal University of Mato Grosso (UFMT), Cuiabá, Brazil
- Postgraduate Programme in Zoology, Institute of Biosciences, Federal University of Mato Grosso, Cuiabá, Brazil
| | - Karl-L. Schuchmann
- National Institute for Science and Technology in Wetlands (INAU), Computational Bioacoustics Research Unit (CO.BRA), Federal University of Mato Grosso (UFMT), Cuiabá, Brazil
- Postgraduate Programme in Zoology, Institute of Biosciences, Federal University of Mato Grosso, Cuiabá, Brazil
- Dept. of Vertebrates, Zoological Research Museum A. Koenig (ZFMK), Bonn, Germany
| | - Paolo Ramoni-Perazzi
- Laboratory of Ecology and Conservation of Mammals, Federal University of Lavras (UFLA), Minas Gerais, Brazil
- Laboratory of Applied Zoology, Department of Biology, Sciences Faculty, University of the Andes, Mérida, Venezuela
| | - Marinez I. Marques
- National Institute for Science and Technology in Wetlands (INAU), Computational Bioacoustics Research Unit (CO.BRA), Federal University of Mato Grosso (UFMT), Cuiabá, Brazil
- Postgraduate Programme in Zoology, Institute of Biosciences, Federal University of Mato Grosso, Cuiabá, Brazil
- Postgraduate Programme in Ecology and Biodiversity Conservation, Institute of Biosciences, Federal University of Mato Grosso, Cuiabá, Brazil
| |
Collapse
|
20
|
McClelland BE, Ryan MJ, Wilczynski W. Does sexual dimorphism vary by population? Laryngeal and ear anatomy in cricket frogs. Curr Zool 2019; 65:343-352. [PMID: 31263493 PMCID: PMC6595425 DOI: 10.1093/cz/zoy080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/23/2018] [Indexed: 12/19/2022] Open
Abstract
Acoustic communication in many anuran species can show the effects of both natural and sexual selection. This is reflected in the sexually dimorphic anatomy of the larynx and ear structures, as well as the allometric relationship of these morphological traits to head or body size. In this study, we examined laryngeal and ear structures of cricket frogs Acris crepitans not only as sexually dimorphic characteristics, but also as they differ across populations in environmentally different habitats. We used 2-way ANOVA to determine whether the volumetric or linear measurements of these structures differed by sex and population. Females have significantly larger body, head, and ear sizes, but significantly smaller larynges than males. Furthermore, females as well as males show larger body and head sizes, ears, and larynges in a dryer open habitat. An ANCOVA analysis shows that males, but not females, differ in laryngeal size across populations beyond the allometric changes attributable to head size alone indicating that males have a greater degree of laryngeal population variation. In contrast, our covariate analysis found that in both sexes many of the ear differences are non-significant once head size is accounted for, suggesting that most of the population-level ear variation is due to allometric effects of body size. We conclude that although both sexes show size differences in the larynx related to selection for larger body size in dry, open habitats, selection on males for larger larynx size related to the production of lower frequency calls in those habitats does not result in correlated changes in the female larynx. The results suggest that in anurans, selection for changes in body and head size affects both sexes equally, male calls and the vocal structures responsible for them can further diversify without concordant changes in females.
Collapse
Affiliation(s)
- Blinda E McClelland
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Michael J Ryan
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Walter Wilczynski
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
21
|
Fan Y, Yue X, Yang J, Shen J, Shen D, Tang Y, Fang G. Preference of spectral features in auditory processing for advertisement calls in the music frogs. Front Zool 2019; 16:13. [PMID: 31168310 PMCID: PMC6509768 DOI: 10.1186/s12983-019-0314-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 04/22/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Animal vocal signals encode very important information for communication during which the importance of temporal and spectral characteristics of vocalizations is always asymmetrical and species-specific. However, it is still unknown how auditory system represents this asymmetrical and species-specific patterns. In this study, auditory event related potential (ERP) changes were evaluated in the Emei music frog (Babina daunchina) to assess the differences in eliciting neural responses of both temporal and spectral features for the telencephalon, diencephalon and mesencephalon respectively. To do this, an acoustic playback experiment using an oddball paradigm design was conducted, in which an original advertisement call (OC), its spectral feature preserved version (SC) and temporal feature preserved version (TC) were used as deviant stimuli with synthesized white noise as standard stimulus. RESULTS The present results show that 1) compared with TC, more similar ERP components were evoked by OC and SC; and 2) the P3a amplitudes in the forebrain evoked by OC were significantly higher in males than in females. CONCLUSIONS Together, the results provide evidence for suggesting neural processing for conspecific vocalization may prefer to the spectral features in the music frog, prompting speculation that the spectral features may play more important roles in auditory object perception or vocal communication in this species. In addition, the neural processing for auditory perception is sexually dimorphic.
Collapse
Affiliation(s)
- Yanzhu Fan
- Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, No.9 Section 4, Renmin Nan Road, Chengdu, Sichuan 610041 People’s Republic of China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, People’s Republic of China
| | - Xizi Yue
- Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, No.9 Section 4, Renmin Nan Road, Chengdu, Sichuan 610041 People’s Republic of China
| | - Jing Yang
- Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, No.9 Section 4, Renmin Nan Road, Chengdu, Sichuan 610041 People’s Republic of China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, People’s Republic of China
| | - Jiangyan Shen
- Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, No.9 Section 4, Renmin Nan Road, Chengdu, Sichuan 610041 People’s Republic of China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, People’s Republic of China
| | - Di Shen
- Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, No.9 Section 4, Renmin Nan Road, Chengdu, Sichuan 610041 People’s Republic of China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, People’s Republic of China
| | - Yezhong Tang
- Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, No.9 Section 4, Renmin Nan Road, Chengdu, Sichuan 610041 People’s Republic of China
| | - Guangzhan Fang
- Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, No.9 Section 4, Renmin Nan Road, Chengdu, Sichuan 610041 People’s Republic of China
| |
Collapse
|
22
|
Fan Y, Yue X, Xue F, Cui J, Brauth SE, Tang Y, Fang G. Auditory perception exhibits sexual dimorphism and left telencephalic dominance in Xenopus laevis. Biol Open 2018; 7:7/12/bio035956. [PMID: 30509903 PMCID: PMC6310876 DOI: 10.1242/bio.035956] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Sex differences in both vocalization and auditory processing have been commonly found in vocal animals, although the underlying neural mechanisms associated with sexual dimorphism of auditory processing are not well understood. In this study we investigated whether auditory perception exhibits sexual dimorphism in Xenopus laevis. To do this we measured event-related potentials (ERPs) evoked by white noise (WN) and conspecific calls in the telencephalon, diencephalon and mesencephalon respectively. Results showed that (1) the N1 amplitudes evoked in the right telencephalon and right diencephalon of males by WN are significantly different from those evoked in females; (2) in males the N1 amplitudes evoked by conspecific calls are significantly different from those evoked by WN; (3) in females the N1 amplitude for the left mesencephalon was significantly lower than for other brain areas, while the P2 and P3 amplitudes for the right mesencephalon were the smallest; in contrast these amplitudes for the left mesencephalon were the smallest in males. These results suggest auditory perception is sexually dimorphic. Moreover, the amplitude of each ERP component (N1, P2 and P3) for the left telencephalon was the largest in females and/or males, suggesting that left telencephalic dominance exists for auditory perception in Xenopus. Summary: Investigation of auditory neural mechanisms in the South African clawed frog (Xenopus laevis) indicates that auditory perception exhibits sexual dimorphism and left telencephalic advantage.
Collapse
Affiliation(s)
- Yanzhu Fan
- Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, No.9 Section 4, Renmin South Road, Chengdu, Sichuan, People's Republic of China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, People's Republic of China
| | - Xizi Yue
- Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, No.9 Section 4, Renmin South Road, Chengdu, Sichuan, People's Republic of China
| | - Fei Xue
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 26 Panda Road, Northern Suburb, Chengdu, Sichuan 610081, People's Republic of China
| | - Jianguo Cui
- Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, No.9 Section 4, Renmin South Road, Chengdu, Sichuan, People's Republic of China
| | - Steven E Brauth
- Department of Psychology, University of Maryland, College Park, MD20742, USA
| | - Yezhong Tang
- Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, No.9 Section 4, Renmin South Road, Chengdu, Sichuan, People's Republic of China
| | - Guangzhan Fang
- Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, No.9 Section 4, Renmin South Road, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
23
|
Titon SCM, Titon Junior B, Assis VR, Kinker GS, Fernandes PACM, Gomes FR. Interplay among steroids, body condition and immunity in response to long-term captivity in toads. Sci Rep 2018; 8:17168. [PMID: 30464319 PMCID: PMC6249311 DOI: 10.1038/s41598-018-35495-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 11/02/2018] [Indexed: 12/13/2022] Open
Abstract
Stressful experiences can promote harmful effects on physiology and fitness. However, stress-mediated hormonal and immune changes are complex and may be highly dependent on body condition. Here, we investigated captivity-associated stress effects, over 7, 30, 60, and 90 days on plasma corticosterone (CORT) and testosterone (T) levels, body index, and innate immunity (bacterial killing ability and phagocytosis of peritoneal cells) in toads (Rhinella icterica). Toads in captivity exhibited elevated CORT and decreased T and immunity, without changes in body index. The inter-relationships between these variables were additionally contrasted with those obtained previously for R. schneideri, a related species that exhibited extreme loss of body mass under the same captive conditions. While T and phagocytosis were positively associated in both species, the relationship between CORT and bacterial killing ability was dependent on body index alterations. While CORT and bacterial killing ability were positively associated for toads that maintained body index, CORT was negatively associated with body index in toads that lost body mass over time in captivity. In these same toads, body index was positively associated with bacterial killing ability. These results demonstrate that steroids-immunity inter-relationships arising from prolonged exposure to a stressor in toads are highly dependent on body condition.
Collapse
Affiliation(s)
| | - Braz Titon Junior
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Sao Paulo, Brazil
| | - Vania Regina Assis
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Sao Paulo, Brazil
| | - Gabriela Sarti Kinker
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Sao Paulo, Brazil
| | | | - Fernando Ribeiro Gomes
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Sao Paulo, Brazil
| |
Collapse
|
24
|
Auditory sensitivity exhibits sexual dimorphism and seasonal plasticity in music frogs. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2018; 204:1029-1044. [DOI: 10.1007/s00359-018-1301-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 09/18/2018] [Accepted: 10/21/2018] [Indexed: 12/26/2022]
|
25
|
Lattin CR, Stabile FA, Carson RE. Estradiol modulates neural response to conspecific and heterospecific song in female house sparrows: An in vivo positron emission tomography study. PLoS One 2017; 12:e0182875. [PMID: 28832614 PMCID: PMC5568339 DOI: 10.1371/journal.pone.0182875] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 07/26/2017] [Indexed: 01/17/2023] Open
Abstract
Although there is growing evidence that estradiol modulates female perception of male sexual signals, relatively little research has focused on female auditory processing. We used in vivo 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) imaging to examine the neuronal effects of estradiol and conspecific song in female house sparrows (Passer domesticus). We assessed brain glucose metabolism, a measure of neuronal activity, in females with empty implants, estradiol implants, and empty implants ~1 month after estradiol implant removal. Females were exposed to conspecific or heterospecific songs immediately prior to imaging. The activity of brain regions involved in auditory perception did not differ between females with empty implants exposed to conspecific vs. heterospecific song, but neuronal activity was significantly reduced in females with estradiol implants exposed to heterospecific song. Furthermore, our within-individual design revealed that changes in brain activity due to high estradiol were actually greater several weeks after peak hormone exposure. Overall, this study demonstrates that PET imaging is a powerful tool for assessing large-scale changes in brain activity in living songbirds, and suggests that after breeding is done, specific environmental and physiological cues are necessary for estradiol-stimulated females to lose the selectivity they display in neural response to conspecific song.
Collapse
Affiliation(s)
- Christine R. Lattin
- Department of Radiology and Biomedical Imaging, Yale Positron Emission Tomography Center, Yale University, New Haven, Connecticut, United States of America
- * E-mail:
| | - Frank A. Stabile
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
| | - Richard E. Carson
- Department of Radiology and Biomedical Imaging, Yale Positron Emission Tomography Center, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
26
|
Bibikov N. Background firing in the auditory midbrain of the frog. IBRO Rep 2017; 2:54-62. [PMID: 30135933 PMCID: PMC6084817 DOI: 10.1016/j.ibror.2017.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 03/18/2017] [Accepted: 03/19/2017] [Indexed: 11/23/2022] Open
Abstract
Statistical characteristics of background firing in the midbrain auditory units of grass frog (Rana t. temporaria) located in torus semicircular (TS) were investigated. Only about 5% of the cells demonstrated prominent spontaneous firing. For such units the following characteristics were obtained: the distribution of interpulse intervals, the autocorrelation functions (ACF) for the real firing process and for the process with shuffled intervals, the hazard function (HF) and the joint distribution of adjacent interpulse intervals. The burstiness of firing was also estimated. In the absolute majority of the cells, the background firing demonstrated considerable deviation from the renewal process. There was weak but significant positive correlation between adjacent interpulse intervals. The burstiness of firing in the midbrain auditory units was moderate but higher than reported for medullary auditory neurons. The value of burstiness did not decrease after interval shuffling. Along with the reduction in excitability (generalized refractoriness) in many neurons observed post-spike facilitation effects were observed. Comparing background activity in medullary and midbrain nucleus suggests that there is an increase in complexity of the information processing along the auditory pathway.
Collapse
|
27
|
Hanson JL, Hurley LM. Serotonin, estrus, and social context influence c-Fos immunoreactivity in the inferior colliculus. Behav Neurosci 2016; 130:600-613. [PMID: 27657308 PMCID: PMC5114148 DOI: 10.1037/bne0000165] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A fundamental task of sensory systems is to extract relevant social information from a range of environmental stimuli in the face of changing behavioral contexts and reproductive states. Neuromodulatory pathways that interact with such contextual variables are 1 mechanism for achieving this. In the mouse inferior colliculus (IC), a midbrain auditory region, the neuromodulator serotonin increases in females interacting with courting males, but events downstream of serotonin release have not been investigated. Here, we manipulated serotonin levels in female mice with the serotonin releaser fenfluramine or the serotonin depleter para-chlorophenylalaninemethyl ester (pCPA). Females were then exposed to an empty cage, a male partner, or a playback of courtship vocalizations, and the numbers of neurons in the IC with positive immunoreactivity for the immediate early gene product c-Fos were measured. The effects of drug treatments depended on social context and estrous state. Fenfluramine had greater effects in the nonsocial than in the partner social treatments. Females in proestrus or estrus and given fenfluramine had higher densities of c-Fos immunoreactive neurons, while females in diestrus had fewer immunoreactive neurons. The drug pCPA had the expected opposite effect of fenfluramine, causing a decreased response in pro/estrus females and an increased response in diestrus females. These findings show that the effects of serotonin on c-Fos activity in the IC of females is dependent on both external context and reproductive state, and suggest that these effects occur downstream of serotonin release. (PsycINFO Database Record
Collapse
|
28
|
Titon SCM, de Assis VR, Titon B, Barsotti AMG, Flanagan SP, Gomes FR. Calling rate, corticosterone plasma levels and immunocompetence of Hypsiboas albopunctatus. Comp Biochem Physiol A Mol Integr Physiol 2016; 201:53-60. [DOI: 10.1016/j.cbpa.2016.06.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 10/21/2022]
|
29
|
Miller KE, Barr K, Krawczyk M, Covey E. Seasonal variations in auditory processing in the inferior colliculus of Eptesicus fuscus. Hear Res 2016; 341:91-99. [PMID: 27473507 DOI: 10.1016/j.heares.2016.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/18/2016] [Accepted: 07/24/2016] [Indexed: 12/28/2022]
Abstract
Eptesicus fuscus is typical of temperate zone bats in that both sexes undergo marked seasonal changes in behavior, endocrine status, and reproductive status. Acoustic communication plays a key role in many seasonal behaviors. For example, males emit specialized vocalizations during mating in the fall, and females use different specialized vocalizations to communicate with infants in late spring. Bats of both sexes use echolocation for foraging during times of activity, but engage in little sound-directed behavior during torpor and hibernation in winter. Auditory processing might be expected to reflect these marked seasonal changes. To explore the possibility that seasonal changes in hormonal status could drive functional plasticity in the central auditory system, we examined responses of single neurons in the inferior colliculus throughout the year. The average first spike latency in females varied seasonally, almost doubling in spring compared to other times of year. First spike latencies in males remained relatively stable throughout the year. Latency jitter for both sexes was higher in winter and spring than in summer or fall. Females had more burst responders than other discharge patterns throughout the year whereas males had more transient responders at all times of year except fall, when burst responses were the predominant type. The percentage of simple discharge patterns (sustained and transient) was higher in males than females in the spring and higher in females than males in the fall. In females, the percentage of shortpass duration-tuned neurons doubled in summer and remained elevated through fall and early winter. In males, the percentage of shortpass duration-tuned cells increased in spring and the percentage of bandpass duration-tuned cells doubled in the fall. These findings suggest that there are clear seasonal changes in basic response characteristics of midbrain auditory neurons in Eptesicus, especially in temporal response properties and duration sensitivity. Moreover, the pattern of changes is different in males and females, suggesting that hormone-driven plasticity adjusts central auditory processing to fit the characteristics of vocalizations specific to seasonal behavioral patterns.
Collapse
Affiliation(s)
- Kimberly E Miller
- University of Washington, Dept. of Psychology, Box 351525, Seattle, WA 98195, USA; University of Washington, Dept. of Otolaryngology, Box 356525, Seattle, WA 98195, USA.
| | - Kaitlyn Barr
- University of Washington, Dept. of Psychology, Box 351525, Seattle, WA 98195, USA
| | - Mitchell Krawczyk
- University of Washington, Dept. of Psychology, Box 351525, Seattle, WA 98195, USA
| | - Ellen Covey
- University of Washington, Dept. of Psychology, Box 351525, Seattle, WA 98195, USA.
| |
Collapse
|
30
|
Do Green Treefrogs Use Social Information to Orient Outside the Breeding Season? Zool Stud 2016; 55:e17. [PMID: 31966162 DOI: 10.6620/zs.2016.55-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 01/01/2016] [Indexed: 11/18/2022]
Abstract
Gerlinde Höbel and Ashley Christie (2016) To decide efficiently where to forage, rest or breed, animals need information about their environment, which they may gather by monitoring the behavior of others. For example, attending to the signals of conspecifics or heterospecifics with similar habitat requirements may facilitate habitat choice. Such social information use seems taxonomically widespread, yet there is currently a dearth of information for amphibians. Anuran amphibians, with their highly developed auditory system and robust phonotaxis towards advertisement calls when searching for mates seem predisposed to use this hearing capability in other behavioral contexts. We conducted playback experiments to test whether anurans exploit acoustic signals in a non-reproductive context. In our experiments female Green Treefrogs did not show phonotaxis to signals associated with the presence of other frogs, and the orientation and speed of their movement was not different from animals randomly moving inside a silent arena. Previous studies documenting social information use in anurans have tested reproductively active frogs during the breeding season. By contrast, our study examined non-reproductive animals, and these did not approach social signals. We propose two non-exclusive hypotheses for this observed difference in phonotaxis behavior: (1) attending to social signals is restricted to ecologically most relevant time periods in a frogs life (i.e., finding breeding sites during the mating season), or (2) the ability of acoustic signals to stimulate the auditory system may be influenced by hormone levels regulating the reproductive state.
Collapse
|
31
|
Gall MD, Wilczynski W. Hearing conspecific vocal signals alters peripheral auditory sensitivity. Proc Biol Sci 2016; 282:20150749. [PMID: 25972471 DOI: 10.1098/rspb.2015.0749] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We investigated whether hearing advertisement calls over several nights, as happens in natural frog choruses, modified the responses of the peripheral auditory system in the green treefrog, Hyla cinerea. Using auditory evoked potentials (AEP), we found that exposure to 10 nights of a simulated male chorus lowered auditory thresholds in males and females, while exposure to random tones had no effect in males, but did result in lower thresholds in females. The threshold change was larger at the lower frequencies stimulating the amphibian papilla than at higher frequencies stimulating the basilar papilla. Suprathreshold responses to tonal stimuli were assessed for two peaks in the AEP recordings. For the peak P1 (assessed for 0.8-1.25 kHz), peak amplitude increased following chorus exposure. For peak P2 (assessed for 2-4 kHz), peak amplitude decreased at frequencies between 2.5 and 4.0 kHz, but remained unaltered at 2.0 kHz. Our results show for the first time, to our knowledge, that hearing dynamic social stimuli, like frog choruses, can alter the responses of the auditory periphery in a way that could enhance the detection of and response to conspecific acoustic communication signals.
Collapse
Affiliation(s)
- Megan D Gall
- Department of Biology, Vassar College, 124 Raymond Avenue, Poughkeepsie, NY 12604, USA
| | - Walter Wilczynski
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
32
|
|
33
|
Hall IC, Woolley SMN, Kwong-Brown U, Kelley DB. Sex differences and endocrine regulation of auditory-evoked, neural responses in African clawed frogs (Xenopus). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2016; 202:17-34. [PMID: 26572136 PMCID: PMC4699871 DOI: 10.1007/s00359-015-1049-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/03/2015] [Accepted: 10/05/2015] [Indexed: 12/01/2022]
Abstract
Mating depends on the accurate detection of signals that convey species identity and reproductive state. In African clawed frogs, Xenopus, this information is conveyed by vocal signals that differ in temporal patterns and spectral features between sexes and across species. We characterized spectral sensitivity using auditory-evoked potentials (AEPs), commonly known as the auditory brainstem response, in males and females of four Xenopus species. In female X. amieti, X. petersii, and X. laevis, peripheral auditory sensitivity to their species own dyad-two, species-specific dominant frequencies in the male advertisement call-is enhanced relative to males. Males were most sensitive to lower frequencies including those in the male-directed release calls. Frequency sensitivity was influenced by endocrine state; ovariectomized females had male-like auditory tuning while dihydrotestosterone-treated, ovariectomized females maintained female-like tuning. Thus, adult, female Xenopus demonstrate an endocrine-dependent sensitivity to the spectral features of conspecific male advertisement calls that could facilitate mating. Xenopus AEPs resemble those of other species in stimulus and level dependence, and in sensitivity to anesthetic (MS222). AEPs were correlated with body size and sex within some species. A frequency following response, probably encoded by the amphibian papilla, might facilitate dyad source localization via interaural time differences.
Collapse
Affiliation(s)
- Ian C Hall
- Department of Biological Sciences, Columbia University, Fairchild Building, MC 2432, New York, NY, 10027, USA.
- Department of Biology, St. Mary's College of Maryland, Schaeffer Hall 258, St. Mary's City, MD, 20686, USA.
| | - Sarah M N Woolley
- Department of Psychology, Columbia University, Schermerhorn Hall, MC 5501, New York, NY, 10027, USA
| | - Ursula Kwong-Brown
- Department of Biological Sciences, Columbia University, Fairchild Building, MC 2432, New York, NY, 10027, USA
- Center for New Music and Audio Technologies, University of California, Berkeley, CA, 94720, USA
| | - Darcy B Kelley
- Department of Biological Sciences, Columbia University, Fairchild Building, MC 2432, New York, NY, 10027, USA
| |
Collapse
|
34
|
Faber-Hammond J, Samanta MP, Whitchurch EA, Manning D, Sisneros JA, Coffin AB. Saccular Transcriptome Profiles of the Seasonal Breeding Plainfin Midshipman Fish (Porichthys notatus), a Teleost with Divergent Sexual Phenotypes. PLoS One 2015; 10:e0142814. [PMID: 26560106 PMCID: PMC4641692 DOI: 10.1371/journal.pone.0142814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/27/2015] [Indexed: 11/18/2022] Open
Abstract
Acoustic communication is essential for the reproductive success of the plainfin midshipman fish (Porichthys notatus). During the breeding season, type I males use acoustic cues to advertise nest location to potential mates, creating an audible signal that attracts reproductive females. Type II (sneaker) males also likely use this social acoustic signal to find breeding pairs from which to steal fertilizations. Estrogen-induced changes in the auditory system of breeding females are thought to enhance neural encoding of the advertisement call, and recent anatomical data suggest the saccule (the main auditory end organ) as one possible target for this seasonal modulation. Here we describe saccular transcriptomes from all three sexual phenotypes (females, type I and II males) collected during the breeding season as a first step in understanding the mechanisms underlying sexual phenotype-specific and seasonal differences in auditory function. We used RNA-Seq on the Ion Torrent platform to create a combined transcriptome dataset containing over 79,000 assembled transcripts representing almost 9,000 unique annotated genes. These identified genes include several with known inner ear function and multiple steroid hormone receptors. Transcripts most closely matched to published genomes of nile tilapia and large yellow croaker, inconsistent with the phylogenetic relationship between these species but consistent with the importance of acoustic communication in their life-history strategies. We then compared the RNA-Seq results from the saccules of reproductive females with a separate transcriptome from the non-reproductive female phenotype and found over 700 differentially expressed transcripts, including members of the Wnt and Notch signaling pathways that mediate cell proliferation and hair cell addition in the inner ear. These data constitute a valuable resource for furthering our understanding of the molecular basis for peripheral auditory function as well as a range of future midshipman and cross-species comparative studies of the auditory periphery.
Collapse
Affiliation(s)
- Joshua Faber-Hammond
- College of Arts and Sciences, Washington State University, Vancouver, WA, United States of America
| | | | - Elizabeth A. Whitchurch
- Department of Biological Sciences, Humboldt State University, Arcata, CA, United States of America
| | - Dustin Manning
- College of Arts and Sciences, Washington State University, Vancouver, WA, United States of America
| | - Joseph A. Sisneros
- Department of Psychology, University of Washington, Seattle, WA, United States of America
| | - Allison B. Coffin
- College of Arts and Sciences, Washington State University, Vancouver, WA, United States of America
- Department of Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA, United States of America
- * E-mail:
| |
Collapse
|
35
|
Ward JL, Love EK, Baugh AT, Gordon NM, Tanner JC, Bee MA. Progesterone and prostaglandin F2α induce species-typical female preferences for male sexual displays in Cope's gray treefrog (Hyla chrysoscelis). Physiol Behav 2015; 152:280-7. [PMID: 26454212 DOI: 10.1016/j.physbeh.2015.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 10/01/2015] [Accepted: 10/05/2015] [Indexed: 01/28/2023]
Abstract
Endocrine systems play critical roles in facilitating sexual behavior in seasonally breeding vertebrates. Much of the research exploring this topic has focused on the endocrine correlates of signaling behavior in males and sexual proceptivity in females. What is less understood is how hormones promote the expression of the often complex and highly selective set of stimulus-response behaviors that are observed in naturally breeding animals. In female frogs, phonotaxis is a robust and sensitive bioassay of mate choice and is exhibited by gravid females during the breeding season. In stark contrast, females exhibit low phonotactic responsiveness outside the breeding season, but the administration of hormones can induce sexual proceptivity. Here we test the hypothesis that manipulation of a minimal set of reproductive hormones-progesterone and prostaglandin F2α-are capable of evoking not only proceptive behavior in non-breeding females, but also the patterns of intraspecific selectivity for male sexual displays observed in gravid females tested during the breeding season. Specifically, we investigated whether preferences for faster call rates, longer call durations, and higher call efforts were similar between breeding and hormone-treated females of Cope's gray treefrog (Hyla chrysoscelis). Hormone injections induced patterns of selective phonotaxis in non-breeding females that were remarkably similar to those observed in breeding females. These results suggest that there may be an important contribution of hormonal pleiotropy in regulating this complex, acoustically-guided sexual behavior. Our findings also support the idea that hormonal induction could be used to evaluate hypotheses about selective mate choice, and its underlying mechanisms, using non-breeding females.
Collapse
Affiliation(s)
- Jessica L Ward
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA
| | - Elliot K Love
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA
| | | | - Noah M Gordon
- Department of Biology, University of Evansville, Evansville, IN, USA
| | - Jessie C Tanner
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA
| | - Mark A Bee
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|
36
|
Chakraborty M, Burmeister SS. Effects of estradiol on neural responses to social signals in female túngara frogs. ACTA ACUST UNITED AC 2015; 218:3671-7. [PMID: 26449971 DOI: 10.1242/jeb.127738] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/21/2015] [Indexed: 11/20/2022]
Abstract
Estradiol plays an important role in mediating changes in female sexual behavior across reproductive cycles. In the túngara frog [Physalaemus (=Engystomops) pustulosus], the relationship between gonadal activity and female sexual behavior, as expressed by phonotaxis, is mediated primarily by estradiol. Estradiol receptors are expressed in auditory and motivational brain areas and the hormone could serve as an important modulator of neural responses to conspecific calls. To better understand how estradiol modifies neural responses to conspecific social signals, we manipulated estradiol levels and measured expression of the immediate early gene egr-1 in the auditory midbrain, thalamus and limbic forebrain in response to conspecific or heterospecific calls. We found that estradiol and conspecific calls increased egr-1 expression in the auditory midbrain and limbic forebrain, but in the thalamus, only conspecific calls were effective. In the preoptic area, estradiol enhanced the effect of the conspecific call on egr-1 expression, suggesting that the preoptic area could act as a hormonal gatekeeper to phonotaxis. Overall, the results suggest that estradiol has broad influences on the neural circuit involved in female reproduction, particularly those implicated in phonotaxis.
Collapse
Affiliation(s)
- Mukta Chakraborty
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Sabrina S Burmeister
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA Curriculum in Neurobiology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
37
|
Evolutionary Fate of the Androgen Receptor-Signaling Pathway in Ray-Finned Fishes with a Special Focus on Cichlids. G3-GENES GENOMES GENETICS 2015; 5:2275-83. [PMID: 26333839 PMCID: PMC4632047 DOI: 10.1534/g3.115.020685] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The emergence of the steroid system is coupled to the evolution of multicellular animals. In vertebrates in particular, the steroid receptor repertoire has been shaped by genome duplications characteristic to this lineage. Here, we investigate for the first time the composition of the androgen receptor–signaling pathway in ray-finned fish genomes by focusing in particular on duplicates that emerged from the teleost-specific whole-genome duplication. We trace lineage- and species-specific duplications and gene losses for the genomic and nongenomic pathway of androgen signaling and subsequently investigate the sequence evolution of these genes. In one particular fish lineage, the cichlids, we find evidence for differing selection pressures acting on teleost-specific whole-genome duplication paralogs at a derived evolutionary stage. We then look into the expression of these duplicated genes in four cichlid species from Lake Tanganyika indicating, once more, rapid changes in expression patterns in closely related fish species. We focus on a particular case, the cichlid specific duplication of the rac1 GTPase, which shows possible signs of a neofunctionalization event.
Collapse
|
38
|
Frisina RD, Frisina DR. Physiological and neurobiological bases of age-related hearing loss: biotherapeutic implications. Am J Audiol 2015; 22:299-302. [PMID: 24018570 DOI: 10.1044/1059-0889(2013/13-0003)] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
PURPOSE The aim of this study was to highlight growing evidence of interactions between hormones and the structure and function of the auditory system. METHOD Recent studies implicating sex hormones and other natural hormones in the modulation of hearing status in age-related hearing loss were reviewed. RESULTS Progesterone, a sex hormone, has been shown to have negative effects on the hearing of older women and aging mice, whereas, in contrast, estrogen was found in some cases to have a positive influence. Aldosterone, used in studies of animal models of autoimmune hearing loss, slowed the progression of hearing loss. Follow-up studies in humans revealed that auditory measures varied as serum aldosterone levels shifted within the normal range, in otherwise healthy older subjects. This was true for simple as well as complex auditory tasks (i.e., sound spatial processing), suggesting benefits of aldosterone to postperipheral auditory processing as well. In addition, evidence suggests that this functional hearing improvement occurred in association with anatomical improvements to the stria vascularis--an important site of anatomical change in presbycusis. CONCLUSIONS Audiology is now at the point where the search for biomedical interventions to modulate or prevent age-related hearing loss can move forward. Such interventions would require multidisciplinary collaborative initiatives by researchers in such areas as drug development, anatomy, auditory physiological and perceptual testing, and drug microdelivery systems.
Collapse
|
39
|
Desprat JL, Lengagne T, Dumet A, Desouhant E, Mondy N. Immunocompetence handicap hypothesis in tree frog: trade-off between sexual signals and immunity? Behav Ecol 2015. [DOI: 10.1093/beheco/arv057] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
40
|
Forlano PM, Sisneros JA, Rohmann KN, Bass AH. Neuroendocrine control of seasonal plasticity in the auditory and vocal systems of fish. Front Neuroendocrinol 2015; 37:129-45. [PMID: 25168757 PMCID: PMC4342331 DOI: 10.1016/j.yfrne.2014.08.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/09/2014] [Accepted: 08/14/2014] [Indexed: 11/27/2022]
Abstract
Seasonal changes in reproductive-related vocal behavior are widespread among fishes. This review highlights recent studies of the vocal plainfin midshipman fish, Porichthys notatus, a neuroethological model system used for the past two decades to explore neural and endocrine mechanisms of vocal-acoustic social behaviors shared with tetrapods. Integrative approaches combining behavior, neurophysiology, neuropharmacology, neuroanatomy, and gene expression methodologies have taken advantage of simple, stereotyped and easily quantifiable behaviors controlled by discrete neural networks in this model system to enable discoveries such as the first demonstration of adaptive seasonal plasticity in the auditory periphery of a vertebrate as well as rapid steroid and neuropeptide effects on vocal physiology and behavior. This simple model system has now revealed cellular and molecular mechanisms underlying seasonal and steroid-driven auditory and vocal plasticity in the vertebrate brain.
Collapse
Affiliation(s)
- Paul M Forlano
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY 11210, United States; Programs in Neuroscience, Ecology, Evolutionary Biology and Behavior, and Behavioral and Cognitive Neuroscience, The Graduate Center, City University of New York, New York, NY 10016, United States; Aquatic Research and Environmental Assessment Center, Brooklyn College, Brooklyn, NY 11210, United States.
| | - Joseph A Sisneros
- Department of Psychology, University of Washington, Seattle, WA 98195, United States; Department of Biology, University of Washington, Seattle, WA 98195, United States; Virginia Merrill Bloedel Hearing Research Center, Seattle, WA 98195, United States
| | - Kevin N Rohmann
- Department of Otolaryngology, Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Andrew H Bass
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, United States; Bodega Marine Laboratory, University of California, Bodega Bay, CA, 94923, United States
| |
Collapse
|
41
|
Santana FE, Swaisgood RR, Lemm JM, Fisher RN, Clark RW. Chilled frogs are hot: hibernation and reproduction of the Endangered mountain yellow-legged frog Rana muscosa. ENDANGER SPECIES RES 2015. [DOI: 10.3354/esr00648] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
42
|
Do Green Treefrogs (Hyla cinerea) Eavesdrop on Prey Calls? J HERPETOL 2014. [DOI: 10.1670/13-032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
43
|
Gall MD, Wilczynski W. Prior experience with conspecific signals enhances auditory midbrain responsiveness to conspecific vocalizations. J Exp Biol 2014; 217:1977-82. [DOI: 10.1242/jeb.096883] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
There is a long history in neuroethology of investigating how communication signals influence the brain and behavior. It has become increasingly clear that brain areas associated with sensory processing are plastic in adults and that this plasticity is related to reproductive condition. However, the role of communication signal reception in adult auditory plasticity has received relatively little attention. Here, we investigated whether the reception of communication signals (a frog chorus) could enhance the responsiveness of the auditory system to future reception of communication signals (a single male call). We found that animals that had been exposed to 10 days of a male chorus had stronger auditory midbrain immediate early gene expression than animals that had been exposed to 10 days of random tones when tested with 30 min of male calls or 30 min of tones. Our results suggest that exposure to dynamic social stimuli, like frog choruses, may play an important role in shaping the neural and behavioral responses to communication signals.
Collapse
Affiliation(s)
- Megan D. Gall
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
- Biology Department, Vassar College, Poughkeepsie, NY 12604, USA
| | - Walter Wilczynski
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
44
|
Electroencephalographic signals synchronize with behaviors and are sexually dimorphic during the light-dark cycle in reproductive frogs. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2013; 200:117-27. [PMID: 24337372 DOI: 10.1007/s00359-013-0866-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 10/19/2013] [Accepted: 10/19/2013] [Indexed: 10/25/2022]
Abstract
Male frogs behave differently from females during the breeding season, particularly with respect to courtship displays and in response to mating signals. In search of physiological correlates of these differences, the present study measured changes in baseline electroencephalogram (EEG) power output within four frequency bands in the telencephalon and mesencephalon, together with changes in locomotor activity as a function of the light-dark cycle in male and female Emei music frogs (Babina daunchina) at the reproductive stage. Previous studies have shown that male vocal activity varies both seasonally and daily in this species and that females use male advertisement calls to locate and select mates. The present results show that both EEG and locomotor activity exhibit highly correlated circadian patterns with peaks around light onset and offset. Importantly, during the reproductive stage, statistically significant sex differences in EEG output across brain regions during the light and dark phases were found indicating that sexual dimorphism exists for EEG activity which may underlie sexually specific information processing and behavioral activities.
Collapse
|
45
|
Moreno-Gómez FN, Sueur J, Soto-Gamboa M, Penna M. Female frog auditory sensitivity, male calls, and background noise: potential influences on the evolution of a peculiar matched filter. Biol J Linn Soc Lond 2013. [DOI: 10.1111/bij.12156] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Felipe N. Moreno-Gómez
- Instituto de Ciencias Ambientales y Evolutivas; Facultad de Ciencias; Universidad Austral de Chile; Avenida Rector Eduardo Morales Miranda, Edificio Pugín, Casilla(Box) 567 Valdivia Chile
| | - Jérôme Sueur
- Département Systématique et Evolution; Muséum National d'Histoire naturelle; UMR CNRS 7205 OSEB, 45 rue Buffon F-75005 Paris France
| | - Mauricio Soto-Gamboa
- Instituto de Ciencias Ambientales y Evolutivas; Facultad de Ciencias; Universidad Austral de Chile; Avenida Rector Eduardo Morales Miranda, Edificio Pugín, Casilla(Box) 567 Valdivia Chile
| | - Mario Penna
- Programa de Fisiología y Biofísica; Instituto de Ciencias Biomédicas; Facultad de Medicina; Universidad de Chile; Casilla 70005, Correo 7 Santiago Chile
| |
Collapse
|
46
|
Caras ML. Estrogenic modulation of auditory processing: a vertebrate comparison. Front Neuroendocrinol 2013; 34:285-99. [PMID: 23911849 PMCID: PMC3788044 DOI: 10.1016/j.yfrne.2013.07.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 07/18/2013] [Accepted: 07/21/2013] [Indexed: 11/30/2022]
Abstract
Sex-steroid hormones are well-known regulators of vocal motor behavior in several organisms. A large body of evidence now indicates that these same hormones modulate processing at multiple levels of the ascending auditory pathway. The goal of this review is to provide a comparative analysis of the role of estrogens in vertebrate auditory function. Four major conclusions can be drawn from the literature: First, estrogens may influence the development of the mammalian auditory system. Second, estrogenic signaling protects the mammalian auditory system from noise- and age-related damage. Third, estrogens optimize auditory processing during periods of reproductive readiness in multiple vertebrate lineages. Finally, brain-derived estrogens can act locally to enhance auditory response properties in at least one avian species. This comparative examination may lead to a better appreciation of the role of estrogens in the processing of natural vocalizations and mayprovide useful insights toward alleviating auditory dysfunctions emanating from hormonal imbalances.
Collapse
Affiliation(s)
- Melissa L Caras
- Neurobiology and Behavior Graduate Program, University of Washington, 1959 NE Pacific St., Seattle, WA 98195, USA; Virginia Merrill Bloedel Hearing Research Center, University of Washington, 1959 NE Pacific St., Seattle, WA 98195, USA.
| |
Collapse
|
47
|
Cousillas H, George I, Alcaix S, Henry L, Richard JP, Hausberger M. Seasonal female brain plasticity in processing social vs. sexual vocal signals. Eur J Neurosci 2013; 37:728-34. [PMID: 23294108 DOI: 10.1111/ejn.12089] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 11/05/2012] [Accepted: 11/08/2012] [Indexed: 11/29/2022]
Abstract
While cerebral plasticity has been extensively studied and demonstrated - during ontogenetic development, few studies have considered adult plasticity in different social contexts using relevant social communication signals. Communication requires adaptability throughout the life of an individual, especially in species for which breeding periods (when intersexual signaling prevails) are interspersed with more 'social' (non-sexual) periods when intrasexual bonding prevails. In songbirds, structure or frequency of songs or song elements may convey different information depending on the season. This is the case in the European starling, where some song structures characterize social bonds between females while other song structures are more characteristic of male courtship. We hypothesized that the female perceptual system may have adapted to these changes in song structure and function according to season, and we tested for potential seasonal brain plasticity. Electrophysiological recordings from adult female starlings during playback of song elements with different functions showed clear seasonal (breeding/non-breeding) changes in neuronal responses in the primary auditory area. The proportion of responsive sites was higher in response to social (non-sexual) songs during the non-reproductive season, and higher in response to sexual songs during the reproductive season.
Collapse
Affiliation(s)
- Hugo Cousillas
- Ethologie Animale et Humaine, Université Rennes1-UMR6552 CNRS, Rennes Cedex, France.
| | | | | | | | | | | |
Collapse
|
48
|
Ronald KL, Fernández-Juricic E, Lucas JR. Taking the sensory approach: how individual differences in sensory perception can influence mate choice. Anim Behav 2012. [DOI: 10.1016/j.anbehav.2012.09.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
49
|
Pinaud R, Tremere LA. Control of central auditory processing by a brain-generated oestrogen. Nat Rev Neurosci 2012; 13:521-7. [PMID: 22805907 DOI: 10.1038/nrn3291] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent discoveries show that behaviourally relevant sensory experience drives the production of oestradiol - the classic sex steroid oestrogen - in auditory neurons in the adult brain of both males and females. This brain-generated oestrogen markedly enhances the efficiency of the neural coding of acoustic cues and shapes auditory-based behaviours on a timescale that is relevant for sensory processing and congruent with the action of rapid neuromodulators. These findings are re-shaping our current understanding of the mechanistic framework that supports sensory processing and the functional roles of hormones in the brain, and have implications for multiple health issues.
Collapse
Affiliation(s)
- Raphael Pinaud
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208, USA.
| | | |
Collapse
|
50
|
The African cichlid fish Astatotilapia burtoni uses acoustic communication for reproduction: sound production, hearing, and behavioral significance. PLoS One 2012; 7:e37612. [PMID: 22624055 PMCID: PMC3356291 DOI: 10.1371/journal.pone.0037612] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 04/23/2012] [Indexed: 11/19/2022] Open
Abstract
Sexual reproduction in all animals depends on effective communication between signalers and receivers. Many fish species, especially the African cichlids, are well known for their bright coloration and the importance of visual signaling during courtship and mate choice, but little is known about what role acoustic communication plays during mating and how it contributes to sexual selection in this phenotypically diverse group of vertebrates. Here we examined acoustic communication during reproduction in the social cichlid fish, Astatotilapia burtoni. We characterized the sounds and associated behaviors produced by dominant males during courtship, tested for differences in hearing ability associated with female reproductive state and male social status, and then tested the hypothesis that female mate preference is influenced by male sound production. We show that dominant males produce intentional courtship sounds in close proximity to females, and that sounds are spectrally similar to their hearing abilities. Females were 2–5-fold more sensitive to low frequency sounds in the spectral range of male courtship sounds when they were sexually-receptive compared to during the mouthbrooding parental phase. Hearing thresholds were also negatively correlated with circulating sex-steroid levels in females but positively correlated in males, suggesting a potential role for steroids in reproductive-state auditory plasticity. Behavioral experiments showed that receptive females preferred to affiliate with males that were associated with playback of courtship sounds compared to noise controls, indicating that acoustic information is likely important for female mate choice. These data show for the first time in a Tanganyikan cichlid that acoustic communication is important during reproduction as part of a multimodal signaling repertoire, and that perception of auditory information changes depending on the animal's internal physiological state. Our results highlight the importance of examining non-visual sensory modalities as potential substrates for sexual selection contributing to the incredible phenotypic diversity of African cichlid fishes.
Collapse
|