1
|
Pino O, Di Pietro S, Poli D. Effect of Musical Stimulation on Placental Programming and Neurodevelopment Outcome of Preterm Infants: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2718. [PMID: 36768104 PMCID: PMC9915377 DOI: 10.3390/ijerph20032718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The fetal environment is modulated by the placenta, which integrates and transduces information from the maternal environment to the fetal developmental program and adapts rapidly to changes through epigenetic mechanisms that respond to internal (hereditary) and external (environmental and social) signals. Consequently, the fetus corrects the trajectory of own development. During the last trimester of gestation, plasticity shapes the fetal brain, and prematurity can alter the typical developmental trajectories. In this period, prevention through activity-inducing (e.g., music stimulation) interventions are currently tested. The purpose of this review is to describe the potentialities of music exposure on fetus, and on preterm newborns in the Neonatal Intensive Care Unit evaluating its influence on neurobehavioral development. METHODS Databases were searched from 2010 to 2022 for studies investigating mechanisms of placental epigenetic regulation and effects of music exposure on the fetus and pre-term neonates. RESULTS In this case, 28 selected papers were distributed into three research lines: studies on placental epigenetic regulation (13 papers), experimental studies of music stimulation on fetus or newborns (6 papers), and clinical studies on premature babies (9 papers). Placental epigenetic changes of the genes involved in the cortisol and serotonin response resulted associated with different neurobehavioral phenotypes in newborns. Prenatal music stimulation had positive effects on fetus, newborn, and pregnant mother while post-natal exposure affected the neurodevelopment of the preterm infants and parental interaction. CONCLUSIONS The results testify the relevance of environmental stimuli for brain development during the pre- and perinatal periods and the beneficial effects of musical stimulation that can handle the fetal programming and the main neurobehavioral disorders.
Collapse
Affiliation(s)
- Olimpia Pino
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Sofia Di Pietro
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Diana Poli
- INAIL Research, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene Via Fontana Candida 1, 00078 Monte Porzio Catone, Italy
| |
Collapse
|
2
|
Ferreira L, Pinto JD, Temp DA, Broman EN, Skarzynski PH, Skarzynska MB, Moraes DADO, Sanfins MD, Biaggio EPV. The effect of child development on the components of the Frequency Following Response: Child development and the Frequency Following Response. PLoS One 2022; 17:e0260739. [PMID: 36048883 PMCID: PMC9436099 DOI: 10.1371/journal.pone.0260739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/16/2021] [Indexed: 11/19/2022] Open
Abstract
During childhood, neuronal modifications occur so that typical childhood communicative development occurs. This work aims to contribute to the understanding of differences in the speech encoding of infants and school-age children by assessing the effects of child development, in different phases of early childhood, on the encoding of speech sounds. There were 98 subjects of both sexes, aged from 1 day to 8 years and 9 months who participated in the study. All subjects underwent a Frequency Following Response (FFR) assessment. A regression and linear correlation showed the effects of age in the FFR components, i.e., significant decrease in the latency and increased amplitude of all FFR waves with age. An increase in the slope measure was also observed. Younger infants require more time and show less robust responses when encoding speech than their older counterparts, which were shown to have more stable and well-organized FFR responses.
Collapse
Affiliation(s)
- Laís Ferreira
- Speech Therapy Department, Federal University of Santa Maria, Santa Maria, Brazil
- * E-mail:
| | - Julia Dalcin Pinto
- Speech Therapy Department, Federal University of Santa Maria, Santa Maria, Brazil
| | - Déborah Aurélio Temp
- Speech Therapy Department, Federal University of Santa Maria, Santa Maria, Brazil
| | - Eli Natáli Broman
- Speech Therapy Department, Federal University of Santa Maria, Santa Maria, Brazil
| | - Piotr H. Skarzynski
- Institute of Physiology and Pathology of Hearing, Warsaw, Poland
- Department of Heart Failure and Cardiac Rehabilitation, Warsaw, Poland
- Institute of Sensory Organs, Warsaw, Poland
| | - Magdalena B. Skarzynska
- Institute of Physiology and Pathology of Hearing, Warsaw, Poland
- Institute of Sensory Organs, Kajetany, Poland
- Center of Hearing and Speech, Kajetany, Poland
| | | | - Milaine Dominici Sanfins
- Faculty of Medical Science, State University of Campinas, Campinas, Brazil
- Advanced Neuroaudiology and Electrophysiology Center, São Paulo, Brazil
| | | |
Collapse
|
3
|
Zhao TC, Llanos F, Chandrasekaran B, Kuhl PK. Language experience during the sensitive period narrows infants' sensory encoding of lexical tones-Music intervention reverses it. Front Hum Neurosci 2022; 16:941853. [PMID: 36016666 PMCID: PMC9398460 DOI: 10.3389/fnhum.2022.941853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/19/2022] [Indexed: 01/13/2023] Open
Abstract
The sensitive period for phonetic learning (6∼12 months), evidenced by improved native speech processing and declined non-native speech processing, represents an early milestone in language acquisition. We examined the extent that sensory encoding of speech is altered by experience during this period by testing two hypotheses: (1) early sensory encoding of non-native speech declines as infants gain native-language experience, and (2) music intervention reverses this decline. We longitudinally measured the frequency-following response (FFR), a robust indicator of early sensory encoding along the auditory pathway, to a Mandarin lexical tone in 7- and 11-months-old monolingual English-learning infants. Infants received either no intervention (language-experience group) or music intervention (music-intervention group) randomly between FFR recordings. The language-experience group exhibited the expected decline in FFR pitch-tracking accuracy to the Mandarin tone, while the music-intervention group did not. Our results support both hypotheses and demonstrate that both language and music experiences alter infants' speech encoding.
Collapse
Affiliation(s)
- Tian Christina Zhao
- Institute for Learning & Brain Sciences, University of Washington, Seattle, WA, United States
- Department of Speech and Hearing Sciences, University of Washington, Seattle, WA, United States
| | - Fernando Llanos
- Department of Linguistics, University of Texas at Austin, Austin, TX, United States
| | - Bharath Chandrasekaran
- Department of Communication Sciences and Disorders, University of Pittsburgh, Pittsburgh, PA, United States
| | - Patricia K. Kuhl
- Institute for Learning & Brain Sciences, University of Washington, Seattle, WA, United States
- Department of Speech and Hearing Sciences, University of Washington, Seattle, WA, United States
| |
Collapse
|
4
|
Liu D, Hu J, Wang S, Fu X, Wang Y, Pugh E, Henderson Sabes J, Wang S. Aging Affects Subcortical Pitch Information Encoding Differently in Humans With Different Language Backgrounds. Front Aging Neurosci 2022; 14:816100. [PMID: 35493942 PMCID: PMC9043765 DOI: 10.3389/fnagi.2022.816100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
Aging and language background have been shown to affect pitch information encoding at the subcortical level. To study the individual and compounded effects on subcortical pitch information encoding, Frequency Following Responses were recorded from subjects across various ages and language backgrounds. Differences were found in pitch information encoding strength and accuracy among the groups, indicating that language experience and aging affect accuracy and magnitude of pitch information encoding ability at the subcortical level. Moreover, stronger effects of aging were seen in the magnitude of phase-locking in the native language speaker groups, while language background appears to have more impact on the accuracy of pitch tracking in older adult groups.
Collapse
Affiliation(s)
- Dongxin Liu
- Key Laboratory of Otolaryngology Head and Neck Surgery, Beijing Institute of Otolaryngology, Otolaryngology—Head and Neck Surgery, Ministry of Education, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jiong Hu
- Department of Audiology, University of the Pacific, San Francisco, CA, United States
| | - Songjian Wang
- Key Laboratory of Otolaryngology Head and Neck Surgery, Beijing Institute of Otolaryngology, Otolaryngology—Head and Neck Surgery, Ministry of Education, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xinxing Fu
- Key Laboratory of Otolaryngology Head and Neck Surgery, Beijing Institute of Otolaryngology, Otolaryngology—Head and Neck Surgery, Ministry of Education, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yuan Wang
- Key Laboratory of Otolaryngology Head and Neck Surgery, Beijing Institute of Otolaryngology, Otolaryngology—Head and Neck Surgery, Ministry of Education, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Esther Pugh
- Department of Otolaryngology, Keck School of Medicine of USC, Los Angeles, CA, United States
| | | | - Shuo Wang
- Key Laboratory of Otolaryngology Head and Neck Surgery, Beijing Institute of Otolaryngology, Otolaryngology—Head and Neck Surgery, Ministry of Education, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Gnanateja GN, Rupp K, Llanos F, Remick M, Pernia M, Sadagopan S, Teichert T, Abel TJ, Chandrasekaran B. Frequency-Following Responses to Speech Sounds Are Highly Conserved across Species and Contain Cortical Contributions. eNeuro 2021; 8:ENEURO.0451-21.2021. [PMID: 34799409 PMCID: PMC8704423 DOI: 10.1523/eneuro.0451-21.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/02/2021] [Indexed: 11/21/2022] Open
Abstract
Time-varying pitch is a vital cue for human speech perception. Neural processing of time-varying pitch has been extensively assayed using scalp-recorded frequency-following responses (FFRs), an electrophysiological signal thought to reflect integrated phase-locked neural ensemble activity from subcortical auditory areas. Emerging evidence increasingly points to a putative contribution of auditory cortical ensembles to the scalp-recorded FFRs. However, the properties of cortical FFRs and precise characterization of laminar sources are still unclear. Here we used direct human intracortical recordings as well as extracranial and intracranial recordings from macaques and guinea pigs to characterize the properties of cortical sources of FFRs to time-varying pitch patterns. We found robust FFRs in the auditory cortex across all species. We leveraged representational similarity analysis as a translational bridge to characterize similarities between the human and animal models. Laminar recordings in animal models showed FFRs emerging primarily from the thalamorecipient layers of the auditory cortex. FFRs arising from these cortical sources significantly contributed to the scalp-recorded FFRs via volume conduction. Our research paves the way for a wide array of studies to investigate the role of cortical FFRs in auditory perception and plasticity.
Collapse
Affiliation(s)
- G Nike Gnanateja
- Department of Communication Sciences and Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Kyle Rupp
- Department of Neurological Surgery, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Fernando Llanos
- Department of Linguistics, The University of Texas at Austin, Austin, Texas 78712
| | - Madison Remick
- Department of Neurological Surgery, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Marianny Pernia
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Srivatsun Sadagopan
- Department of Communication Sciences and Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Tobias Teichert
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Taylor J Abel
- Department of Neurological Surgery, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15213
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Bharath Chandrasekaran
- Department of Communication Sciences and Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
6
|
A Survey of Neonatal Nurses Perspectives on Voice Use and Auditory Needs with Premature Infants in the NICU. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18168471. [PMID: 34444220 PMCID: PMC8393431 DOI: 10.3390/ijerph18168471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Exposure to the voice and language during the critical period of auditory development associated with the third trimester is thought to be an essential building block for language. Differences in the auditory experience associated with early life in the NICU may increase the risk of language delays for premature infants. NICU nurses are fundamental in the care of premature infants; how they use their voices may be important in understanding auditory experiences in the NICU. This study examined voice use behaviors of NICU nurses in the United States and their current knowledge of early auditory development. METHOD An opt-in, online questionnaire. RESULTS Nurses reported using their voice more as the age of infants approached term gestation and speaking to infants was the most common type of voice use. Both infant and nurse factors influenced reported voice use decisions in the NICU. Nurses did not believe the NICU auditory environment to be sufficient to meet early auditory needs of premature infants but did believe that premature infants are exposed to adequate voice sounds. CONCLUSIONS A gap in knowledge regarding the importance of early exposure to voice sounds may be a barrier to nurses using their voices to support early auditory development.
Collapse
|
7
|
Richard C, Neel ML, Jeanvoine A, Connell SM, Gehred A, Maitre NL. Characteristics of the Frequency-Following Response to Speech in Neonates and Potential Applicability in Clinical Practice: A Systematic Review. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2020; 63:1618-1635. [PMID: 32407639 DOI: 10.1044/2020_jslhr-19-00322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Purpose We sought to critically analyze and evaluate published evidence regarding feasibility and clinical potential for predicting neurodevelopmental outcomes of the frequency-following responses (FFRs) to speech recordings in neonates (birth to 28 days). Method A systematic search of MeSH terms in the Cumulative Index to Nursing and Allied HealthLiterature, Embase, Google Scholar, Ovid Medline (R) and E-Pub Ahead of Print, In-Process & Other Non-Indexed Citations and Daily, Web of Science, SCOPUS, COCHRANE Library, and ClinicalTrials.gov was performed. Manual review of all items identified in the search was performed by two independent reviewers. Articles were evaluated based on the level of methodological quality and evidence according to the RTI item bank. Results Seven articles met inclusion criteria. None of the included studies reported neurodevelopmental outcomes past 3 months of age. Quality of the evidence ranged from moderate to high. Protocol variations were frequent. Conclusions Based on this systematic review, the FFR to speech can capture both temporal and spectral acoustic features in neonates. It can accurately be recorded in a fast and easy manner at the infant's bedside. However, at this time, further studies are needed to identify and validate which FFR features could be incorporated as an addition to standard evaluation of infant sound processing evaluation in subcortico-cortical networks. This review identifies the need for further research focused on identifying specific features of the neonatal FFRs, those with predictive value for early childhood outcomes to help guide targeted early speech and hearing interventions.
Collapse
Affiliation(s)
- Céline Richard
- Center for Perinatal Research and Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH
- Laboratory for Investigative Neurophysiology, Department of Radiology and Department of Clinical Neurosciences, University Hospital Center and University of Lausanne, Switzerland
| | - Mary Lauren Neel
- Center for Perinatal Research and Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH
| | - Arnaud Jeanvoine
- Center for Perinatal Research and Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH
| | - Sharon Mc Connell
- Center for Perinatal Research and Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH
| | - Alison Gehred
- Medical Library Division, Nationwide Children's Hospital, Columbus, OH
| | - Nathalie L Maitre
- Center for Perinatal Research and Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
8
|
Persic D, Thomas ME, Pelekanos V, Ryugo DK, Takesian AE, Krumbholz K, Pyott SJ. Regulation of auditory plasticity during critical periods and following hearing loss. Hear Res 2020; 397:107976. [PMID: 32591097 PMCID: PMC8546402 DOI: 10.1016/j.heares.2020.107976] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/15/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023]
Abstract
Sensory input has profound effects on neuronal organization and sensory maps in the brain. The mechanisms regulating plasticity of the auditory pathway have been revealed by examining the consequences of altered auditory input during both developmental critical periods—when plasticity facilitates the optimization of neural circuits in concert with the external environment—and in adulthood—when hearing loss is linked to the generation of tinnitus. In this review, we summarize research identifying the molecular, cellular, and circuit-level mechanisms regulating neuronal organization and tonotopic map plasticity during developmental critical periods and in adulthood. These mechanisms are shared in both the juvenile and adult brain and along the length of the auditory pathway, where they serve to regulate disinhibitory networks, synaptic structure and function, as well as structural barriers to plasticity. Regulation of plasticity also involves both neuromodulatory circuits, which link plasticity with learning and attention, as well as ascending and descending auditory circuits, which link the auditory cortex and lower structures. Further work identifying the interplay of molecular and cellular mechanisms associating hearing loss-induced plasticity with tinnitus will continue to advance our understanding of this disorder and lead to new approaches to its treatment. During CPs, brain plasticity is enhanced and sensitive to acoustic experience. Enhanced plasticity can be reinstated in the adult brain following hearing loss. Molecular, cellular, and circuit-level mechanisms regulate CP and adult plasticity. Plasticity resulting from hearing loss may contribute to the emergence of tinnitus. Modifying plasticity in the adult brain may offer new treatments for tinnitus.
Collapse
Affiliation(s)
- Dora Persic
- University of Groningen, University Medical Center Groningen, Groningen, Department of Otorhinolaryngology and Head/Neck Surgery, 9713, GZ, Groningen, the Netherlands
| | - Maryse E Thomas
- Eaton-Peabody Laboratories, Massachusetts Eye & Ear and Department of Otorhinolaryngology and Head/Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Vassilis Pelekanos
- Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, University Park, Nottingham, UK
| | - David K Ryugo
- Hearing Research, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia; School of Medical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia; Department of Otolaryngology, Head, Neck & Skull Base Surgery, St Vincent's Hospital, Sydney, NSW, 2010, Australia
| | - Anne E Takesian
- Eaton-Peabody Laboratories, Massachusetts Eye & Ear and Department of Otorhinolaryngology and Head/Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Katrin Krumbholz
- Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, University Park, Nottingham, UK
| | - Sonja J Pyott
- University of Groningen, University Medical Center Groningen, Groningen, Department of Otorhinolaryngology and Head/Neck Surgery, 9713, GZ, Groningen, the Netherlands.
| |
Collapse
|
9
|
Moossavi A, Lotfi Y, Javanbakht M, Faghihzadeh S. Speech-evoked auditory brainstem response; electrophysiological evidence of upper brainstem facilitative role on sound lateralization in noise. Neurol Sci 2019; 41:611-617. [PMID: 31732889 DOI: 10.1007/s10072-019-04102-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 10/04/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND AIM Sound lateralization/localization is one of the most important auditory processing abilities, which plays approved role in auditory streaming and speech perception in challenging situations like noisy places. In addition to the main role of lower brainstem centers like superior olivary complex in sound lateralization, efferent auditory system effects on improving auditory skills in everyday auditory challenging positions were revealed. This study evaluated noise effects on lateralization scores in correlation with an objective electrophysiologic test (Speech-ABR in noise), which objectively shows cumulative effects of the afferent and efferent auditory systems at the inferior colliculus and upper brainstem pathway. METHOD Fourteen normal-hearing subjects in the age range of 18 to 25 participated in this study. Lateralization scores in the quiet and noisy modes were evaluated. Speech-ABR in both ears for quiet mode and three different contralateral noise levels (SNR = + 5, 0, - 5) were recorded, too. Correlation of lateralization scores and Speech-ABR changes in noise was studied. RESULTS Significant decrease of lateralization scores with latency increase and amplitude decrease of Speech-ABR transient peaks (V, A, O) was seen with noise presentation. A high positive correlation between lateralization decrease with latency increase of onset peaks (V, A) and amplitude decrease of transient peaks (V, A, O) was found in low signal-to-noise ratios. CONCLUSION The study revealed that in high challenging auditory situations like auditory lateralization in noise, upper brainstem centers and pathways play a facilitative role for main auditory lateralization centers in lower levels.
Collapse
Affiliation(s)
- Abdollah Moossavi
- Department of Otolaryngology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Yones Lotfi
- Department of Audiology, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mohanna Javanbakht
- Department of Audiology, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| | - Soghrat Faghihzadeh
- Department of Biostatistics and Epidemiology, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
10
|
Llanos F, Xie Z, Chandrasekaran B. Biometric identification of listener identity from frequency following responses to speech. J Neural Eng 2019; 16:056004. [PMID: 31039552 DOI: 10.1088/1741-2552/ab1e01] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE We investigate the biometric specificity of the frequency following response (FFR), an EEG marker of early auditory processing that reflects phase-locked activity from neural ensembles in the auditory cortex and subcortex (Chandrasekaran and Kraus 2010, Bidelman, 2015a, 2018, Coffey et al 2017b). Our objective is two-fold: demonstrate that the FFR contains information beyond stimulus properties and broad group-level markers, and to assess the practical viability of the FFR as a biometric across different sounds, auditory experiences, and recording days. APPROACH We trained the hidden Markov model (HMM) to decode listener identity from FFR spectro-temporal patterns across multiple frequency bands. Our dataset included FFRs from twenty native speakers of English or Mandarin Chinese (10 per group) listening to Mandarin Chinese tones across three EEG sessions separated by days. We decoded subject identity within the same auditory context (same tone and session) and across different stimuli and recording sessions. MAIN RESULTS The HMM decoded listeners for averaging sizes as small as one single FFR. However, model performance improved for larger averaging sizes (e.g. 25 FFRs), similarity in auditory context (same tone and day), and lack of familiarity with the sounds (i.e. native English relative to native Chinese listeners). Our results also revealed important biometric contributions from frequency bands in the cortical and subcortical EEG. SIGNIFICANCE Our study provides the first deep and systematic biometric characterization of the FFR and provides the basis for biometric identification systems incorporating this neural signal.
Collapse
Affiliation(s)
- Fernando Llanos
- Department of Communication Sciences and Disorders, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | | | | |
Collapse
|
11
|
Malmierca MS, Niño-Aguillón BE, Nieto-Diego J, Porteros Á, Pérez-González D, Escera C. Pattern-sensitive neurons reveal encoding of complex auditory regularities in the rat inferior colliculus. Neuroimage 2019; 184:889-900. [DOI: 10.1016/j.neuroimage.2018.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 09/20/2018] [Accepted: 10/04/2018] [Indexed: 10/28/2022] Open
|
12
|
Hidden Markov modeling of frequency-following responses to Mandarin lexical tones. J Neurosci Methods 2017; 291:101-112. [PMID: 28807860 DOI: 10.1016/j.jneumeth.2017.08.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/03/2017] [Accepted: 08/08/2017] [Indexed: 11/23/2022]
Abstract
BACKGROUND The frequency-following response (FFR) is a scalp-recorded electrophysiological potential reflecting phase-locked activity from neural ensembles in the auditory system. The FFR is often used to assess the robustness of subcortical pitch processing. Due to low signal-to-noise ratio at the single-trial level, FFRs are typically averaged across thousands of stimulus repetitions. Prior work using this approach has shown that subcortical encoding of linguistically-relevant pitch patterns is modulated by long-term language experience. NEW METHOD We examine the extent to which a machine learning approach using hidden Markov modeling (HMM) can be utilized to decode Mandarin tone-categories from scalp-record electrophysiolgical activity. We then assess the extent to which the HMM can capture biologically-relevant effects (language experience-driven plasticity). To this end, we recorded FFRs to four Mandarin tones from 14 adult native speakers of Chinese and 14 of native English. We trained a HMM to decode tone categories from the FFRs with varying size of averages. RESULTS AND COMPARISONS WITH EXISTING METHODS Tone categories were decoded with above-chance accuracies using HMM. The HMM derived metric (decoding accuracy) revealed a robust effect of language experience, such that FFRs from native Chinese speakers yielded greater accuracies than native English speakers. Critically, the language experience-driven plasticity was captured with average sizes significantly smaller than those used in the extant literature. CONCLUSIONS Our results demonstrate the feasibility of HMM in assessing the robustness of neural pitch. Machine-learning approaches can complement extant analytical methods that capture auditory function and could reduce the number of trials needed to capture biological phenomena.
Collapse
|
13
|
Involvement of the Serotonin Transporter Gene in Accurate Subcortical Speech Encoding. J Neurosci 2017; 36:10782-10790. [PMID: 27798133 DOI: 10.1523/jneurosci.1595-16.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/27/2016] [Indexed: 11/21/2022] Open
Abstract
A flourishing line of evidence has highlighted the encoding of speech sounds in the subcortical auditory system as being shaped by acoustic, linguistic, and musical experience and training. And while the heritability of auditory speech as well as nonspeech processing has been suggested, the genetic determinants of subcortical speech processing have not yet been uncovered. Here, we postulated that the serotonin transporter-linked polymorphic region (5-HTTLPR), a common functional polymorphism located in the promoter region of the serotonin transporter gene (SLC6A4), is implicated in speech encoding in the human subcortical auditory pathway. Serotonin has been shown as essential for modulating the brain response to sound both cortically and subcortically, yet the genetic factors regulating this modulation regarding speech sounds have not been disclosed. We recorded the frequency following response, a biomarker of the neural tracking of speech sounds in the subcortical auditory pathway, and cortical evoked potentials in 58 participants elicited to the syllable /ba/, which was presented >2000 times. Participants with low serotonin transporter expression had higher signal-to-noise ratios as well as a higher pitch strength representation of the periodic part of the syllable than participants with medium to high expression, possibly by tuning synaptic activity to the stimulus features and hence a more efficient suppression of noise. These results imply the 5-HTTLPR in subcortical auditory speech encoding and add an important, genetically determined layer to the factors shaping the human subcortical response to speech sounds. SIGNIFICANCE STATEMENT The accurate encoding of speech sounds in the subcortical auditory nervous system is of paramount relevance for human communication, and it has been shown to be altered in different disorders of speech and auditory processing. Importantly, this encoding is plastic and can therefore be enhanced by language and music experience. Whether genetic factors play a role in speech encoding at the subcortical level remains unresolved. Here we show that a common polymorphism in the serotonin transporter gene relates to an accurate and robust neural tracking of speech stimuli in the subcortical auditory pathway. This indicates that serotonin transporter expression, eventually in combination with other polymorphisms, delimits the extent to which lifetime experience shapes the subcortical encoding of speech.
Collapse
|
14
|
Skoe E, Burakiewicz E, Figueiredo M, Hardin M. Basic neural processing of sound in adults is influenced by bilingual experience. Neuroscience 2017; 349:278-290. [DOI: 10.1016/j.neuroscience.2017.02.049] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 02/18/2017] [Accepted: 02/21/2017] [Indexed: 11/30/2022]
|
15
|
The Role of the Auditory Brainstem in Regularity Encoding and Deviance Detection. THE FREQUENCY-FOLLOWING RESPONSE 2017. [DOI: 10.1007/978-3-319-47944-6_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
16
|
Blind people are more sensitive than sighted people to binaural sound-location cues, particularly inter-aural level differences. Hear Res 2016; 332:223-232. [DOI: 10.1016/j.heares.2015.09.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 09/12/2015] [Accepted: 09/15/2015] [Indexed: 11/20/2022]
|
17
|
Lahav A, Skoe E. An acoustic gap between the NICU and womb: a potential risk for compromised neuroplasticity of the auditory system in preterm infants. Front Neurosci 2014; 8:381. [PMID: 25538543 PMCID: PMC4256984 DOI: 10.3389/fnins.2014.00381] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 11/08/2014] [Indexed: 11/17/2022] Open
Abstract
The intrauterine environment allows the fetus to begin hearing low-frequency sounds in a protected fashion, ensuring initial optimal development of the peripheral and central auditory system. However, the auditory nursery provided by the womb vanishes once the preterm newborn enters the high-frequency (HF) noisy environment of the neonatal intensive care unit (NICU). The present article draws a concerning line between auditory system development and HF noise in the NICU, which we argue is not necessarily conducive to fostering this development. Overexposure to HF noise during critical periods disrupts the functional organization of auditory cortical circuits. As a result, we theorize that the ability to tune out noise and extract acoustic information in a noisy environment may be impaired, leading to increased risks for a variety of auditory, language, and attention disorders. Additionally, HF noise in the NICU often masks human speech sounds, further limiting quality exposure to linguistic stimuli. Understanding the impact of the sound environment on the developing auditory system is an important first step in meeting the developmental demands of preterm newborns undergoing intensive care.
Collapse
Affiliation(s)
- Amir Lahav
- Department of Pediatrics and Newborn Medicine, Brigham and Women's Hospital Boston, MA, USA ; Department of Pediatrics, Harvard Medical School, MassGeneral Hospital for Children Boston, MA, USA
| | - Erika Skoe
- Department of Speech, Language, and Hearing Sciences, Department of Psychology Affiliate, Cognitive Sciences Program Affiliate, University of Connecticut Storrs, CT, USA
| |
Collapse
|
18
|
Kouni SN, Koutsojannis C, Ziavra N, Giannopoulos S. A novel method of brainstem auditory evoked potentials using complex verbal stimuli. NORTH AMERICAN JOURNAL OF MEDICAL SCIENCES 2014; 6:418-21. [PMID: 25210677 PMCID: PMC4158652 DOI: 10.4103/1947-2714.139303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND The click and tone-evoked auditory brainstem responses are widely used in clinical practice due to their consistency and predictability. More recently, the speech-evoked responses have been used to evaluate subcortical processing of complex signals, not revealed by responses to clicks and tones. AIMS Disyllable stimuli corresponding to familiar words can induce a pattern of voltage fluctuations in the brain stem resulting in a familiar waveform, and they can yield better information about brain stem nuclei along the ascending central auditory pathway. MATERIALS AND METHODS We describe a new method with the use of the disyllable word "baba" corresponding to English "daddy" that is commonly used in many other ethnic languages spanning from West Africa to the Eastern Mediterranean all the way to the East Asia. RESULTS This method was applied in 20 young adults institutionally diagnosed as dyslexic (10 subjects) or light dyslexic (10 subjects) who were matched with 20 sex, age, education, hearing sensitivity, and IQ-matched normal subjects. The absolute peak latencies of the negative wave C and the interpeak latencies of A-C elicited by verbal stimuli "baba" were found to be significantly increased in the dyslexic group in comparison with the control group. CONCLUSIONS The method is easy and helpful to diagnose abnormalities affecting the auditory pathway, to identify subjects with early perception and cortical representation abnormalities, and to apply the suitable therapeutic and rehabilitation management.
Collapse
Affiliation(s)
- Sophia N Kouni
- Department of Neurology, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Constantinos Koutsojannis
- Department of Physiotherapy, School of Health Sciences, Technological and Educational Institute of Patras, Patras, Greece
| | - Nausika Ziavra
- Department of Speech Therapy, School of Health Sciences, Technological and Educational Institute of Ioannina, Ioannina, Greece
| | - Sotirios Giannopoulos
- Department of Neurology, School of Health Sciences, University of Ioannina, Ioannina, Greece
| |
Collapse
|
19
|
Canlon B. Progress in hearing research 2014. Hear Res 2014; 311:1-2. [PMID: 25151010 DOI: 10.1016/j.heares.2014.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 02/18/2014] [Indexed: 11/19/2022]
Affiliation(s)
- Barbara Canlon
- Karolinska Institutet, Department of Physiology and Pharmacology, von Eulers vag 8, 171 77 Stockholm, Sweden.
| |
Collapse
|