1
|
Bidelman GM, Bernard F, Skubic K. Hearing in categories and speech perception at the "cocktail party". PLoS One 2025; 20:e0318600. [PMID: 39883695 PMCID: PMC11781644 DOI: 10.1371/journal.pone.0318600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 01/17/2025] [Indexed: 02/01/2025] Open
Abstract
We aimed to test whether hearing speech in phonetic categories (as opposed to a continuous/gradient fashion) affords benefits to "cocktail party" speech perception. We measured speech perception performance (recognition, localization, and source monitoring) in a simulated 3D cocktail party environment. We manipulated task difficulty by varying the number of additional maskers presented at other spatial locations in the horizontal soundfield (1-4 talkers) and via forward vs. time-reversed maskers, the latter promoting a release from masking. In separate tasks, we measured isolated phoneme categorization using two-alternative forced choice (2AFC) and visual analog scaling (VAS) tasks designed to promote more/less categorical hearing and thus test putative links between categorization and real-world speech-in-noise skills. We first show cocktail party speech recognition accuracy and speed decline with additional competing talkers and amidst forward compared to reverse maskers. Dividing listeners into "discrete" vs. "continuous" categorizers based on their VAS labeling (i.e., whether responses were binary or continuous judgments), we then show the degree of release from masking experienced at the cocktail party is predicted by their degree of categoricity in phoneme labeling and not high-frequency audiometric thresholds; more discrete listeners make less effective use of time-reversal and show less release from masking than their gradient responding peers. Our results suggest a link between speech categorization skills and cocktail party processing, with a gradient (rather than discrete) listening strategy benefiting degraded speech perception. These findings suggest that less flexibility in binning sounds into categories may be one factor that contributes to figure-ground deficits.
Collapse
Affiliation(s)
- Gavin M. Bidelman
- Department of Speech, Language and Hearing Sciences, Indiana University, Bloomington, Indiana, United States of America
- Program in Neuroscience, Indiana University, Bloomington, Indiana, United States of America
- Cognitive Science Program, Indiana University, Bloomington, Indiana, United States of America
| | - Fallon Bernard
- School of Communication Sciences & Disorders, University of Memphis, Memphis, Tennessee, United States of America
| | - Kimberly Skubic
- School of Communication Sciences & Disorders, University of Memphis, Memphis, Tennessee, United States of America
| |
Collapse
|
2
|
Rizzi R, Bidelman GM. Functional benefits of continuous vs. categorical listening strategies on the neural encoding and perception of noise-degraded speech. Brain Res 2024; 1844:149166. [PMID: 39151718 PMCID: PMC11399885 DOI: 10.1016/j.brainres.2024.149166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/26/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Acoustic information in speech changes continuously, yet listeners form discrete perceptual categories to ease the demands of perception. Being a more continuous/gradient as opposed to a more discrete/categorical listener may be further advantageous for understanding speech in noise by increasing perceptual flexibility and resolving ambiguity. The degree to which a listener's responses to a continuum of speech sounds are categorical versus continuous can be quantified using visual analog scaling (VAS) during speech labeling tasks. Here, we recorded event-related brain potentials (ERPs) to vowels along an acoustic-phonetic continuum (/u/ to /a/) while listeners categorized phonemes in both clean and noise conditions. Behavior was assessed using standard two alternative forced choice (2AFC) and VAS paradigms to evaluate categorization under task structures that promote discrete vs. continuous hearing, respectively. Behaviorally, identification curves were steeper under 2AFC vs. VAS categorization but were relatively immune to noise, suggesting robust access to abstract, phonetic categories even under signal degradation. Behavioral slopes were correlated with listeners' QuickSIN scores; shallower slopes corresponded with better speech in noise performance, suggesting a perceptual advantage to noise degraded speech comprehension conferred by a more gradient listening strategy. At the neural level, P2 amplitudes and latencies of the ERPs were modulated by task and noise; VAS responses were larger and showed greater noise-related latency delays than 2AFC responses. More gradient responders had smaller shifts in ERP latency with noise, suggesting their neural encoding of speech was more resilient to noise degradation. Interestingly, source-resolved ERPs showed that more gradient listening was also correlated with stronger neural responses in left superior temporal gyrus. Our results demonstrate that listening strategy modulates the categorical organization of speech and behavioral success, with more continuous/gradient listening being advantageous to sentential speech in noise perception.
Collapse
Affiliation(s)
- Rose Rizzi
- Department of Speech, Language and Hearing Sciences, Indiana University, Bloomington, IN, USA; Program in Neuroscience, Indiana University, Bloomington, IN, USA
| | - Gavin M Bidelman
- Department of Speech, Language and Hearing Sciences, Indiana University, Bloomington, IN, USA; Program in Neuroscience, Indiana University, Bloomington, IN, USA; Cognitive Science Program, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
3
|
García-Lázaro HG, Teng S. Sensory and Perceptual Decisional Processes Underlying the Perception of Reverberant Auditory Environments. eNeuro 2024; 11:ENEURO.0122-24.2024. [PMID: 39122554 PMCID: PMC11335967 DOI: 10.1523/eneuro.0122-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/29/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Reverberation, a ubiquitous feature of real-world acoustic environments, exhibits statistical regularities that human listeners leverage to self-orient, facilitate auditory perception, and understand their environment. Despite the extensive research on sound source representation in the auditory system, it remains unclear how the brain represents real-world reverberant environments. Here, we characterized the neural response to reverberation of varying realism by applying multivariate pattern analysis to electroencephalographic (EEG) brain signals. Human listeners (12 males and 8 females) heard speech samples convolved with real-world and synthetic reverberant impulse responses and judged whether the speech samples were in a "real" or "fake" environment, focusing on the reverberant background rather than the properties of speech itself. Participants distinguished real from synthetic reverberation with ∼75% accuracy; EEG decoding reveals a multistage decoding time course, with dissociable components early in the stimulus presentation and later in the perioffset stage. The early component predominantly occurred in temporal electrode clusters, while the later component was prominent in centroparietal clusters. These findings suggest distinct neural stages in perceiving natural acoustic environments, likely reflecting sensory encoding and higher-level perceptual decision-making processes. Overall, our findings provide evidence that reverberation, rather than being largely suppressed as a noise-like signal, carries relevant environmental information and gains representation along the auditory system. This understanding also offers various applications; it provides insights for including reverberation as a cue to aid navigation for blind and visually impaired people. It also helps to enhance realism perception in immersive virtual reality settings, gaming, music, and film production.
Collapse
Affiliation(s)
| | - Santani Teng
- Smith-Kettlewell Eye Research Institute, San Francisco, California 94115
| |
Collapse
|
4
|
Bidelman GM, Sisson A, Rizzi R, MacLean J, Baer K. Myogenic artifacts masquerade as neuroplasticity in the auditory frequency-following response. Front Neurosci 2024; 18:1422903. [PMID: 39040631 PMCID: PMC11260751 DOI: 10.3389/fnins.2024.1422903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
The frequency-following response (FFR) is an evoked potential that provides a neural index of complex sound encoding in the brain. FFRs have been widely used to characterize speech and music processing, experience-dependent neuroplasticity (e.g., learning and musicianship), and biomarkers for hearing and language-based disorders that distort receptive communication abilities. It is widely assumed that FFRs stem from a mixture of phase-locked neurogenic activity from the brainstem and cortical structures along the hearing neuraxis. In this study, we challenge this prevailing view by demonstrating that upwards of ~50% of the FFR can originate from an unexpected myogenic source: contamination from the postauricular muscle (PAM) vestigial startle reflex. We measured PAM, transient auditory brainstem responses (ABRs), and sustained frequency-following response (FFR) potentials reflecting myogenic (PAM) and neurogenic (ABR/FFR) responses in young, normal-hearing listeners with varying degrees of musical training. We first establish that PAM artifact is present in all ears, varies with electrode proximity to the muscle, and can be experimentally manipulated by directing listeners' eye gaze toward the ear of sound stimulation. We then show this muscular noise easily confounds auditory FFRs, spuriously amplifying responses 3-4-fold with tandem PAM contraction and even explaining putative FFR enhancements observed in highly skilled musicians. Our findings expose a new and unrecognized myogenic source to the FFR that drives its large inter-subject variability and cast doubt on whether changes in the response typically attributed to neuroplasticity/pathology are solely of brain origin.
Collapse
Affiliation(s)
- Gavin M. Bidelman
- Department of Speech, Language and Hearing Sciences, Indiana University, Bloomington, IN, United States
- Program in Neuroscience, Indiana University, Bloomington, IN, United States
- Cognitive Science Program, Indiana University, Bloomington, IN, United States
| | - Alexandria Sisson
- Department of Speech, Language and Hearing Sciences, Indiana University, Bloomington, IN, United States
| | - Rose Rizzi
- Department of Speech, Language and Hearing Sciences, Indiana University, Bloomington, IN, United States
- Program in Neuroscience, Indiana University, Bloomington, IN, United States
| | - Jessica MacLean
- Department of Speech, Language and Hearing Sciences, Indiana University, Bloomington, IN, United States
- Program in Neuroscience, Indiana University, Bloomington, IN, United States
| | - Kaitlin Baer
- School of Communication Sciences and Disorders, University of Memphis, Memphis, TN, United States
- Veterans Affairs Medical Center, Memphis, TN, United States
| |
Collapse
|
5
|
Easwar V, Peng ZE, Boothalingam S, Seeto M. Neural Envelope Processing at Low Frequencies Predicts Speech Understanding of Children With Hearing Loss in Noise and Reverberation. Ear Hear 2024; 45:837-849. [PMID: 38768048 PMCID: PMC11175738 DOI: 10.1097/aud.0000000000001481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/22/2023] [Indexed: 05/22/2024]
Abstract
OBJECTIVE Children with hearing loss experience greater difficulty understanding speech in the presence of noise and reverberation relative to their normal hearing peers despite provision of appropriate amplification. The fidelity of fundamental frequency of voice (f0) encoding-a salient temporal cue for understanding speech in noise-could play a significant role in explaining the variance in abilities among children. However, the nature of deficits in f0 encoding and its relationship with speech understanding are poorly understood. To this end, we evaluated the influence of frequency-specific f0 encoding on speech perception abilities of children with and without hearing loss in the presence of noise and/or reverberation. METHODS In 14 school-aged children with sensorineural hearing loss fitted with hearing aids and 29 normal hearing peers, envelope following responses (EFRs) were elicited by the vowel /i/, modified to estimate f0 encoding in low (<1.1 kHz) and higher frequencies simultaneously. EFRs to /i/ were elicited in quiet, in the presence of speech-shaped noise at +5 dB signal to noise ratio, with simulated reverberation time of 0.62 sec, as well as both noise and reverberation. EFRs were recorded using single-channel electroencephalogram between the vertex and the nape while children watched a silent movie with captions. Speech discrimination accuracy was measured using the University of Western Ontario Distinctive Features Differences test in each of the four acoustic conditions. Stimuli for EFR recordings and speech discrimination were presented monaurally. RESULTS Both groups of children demonstrated a frequency-dependent dichotomy in the disruption of f0 encoding, as reflected in EFR amplitude and phase coherence. Greater disruption (i.e., lower EFR amplitudes and phase coherence) was evident in EFRs elicited by low frequencies due to noise and greater disruption was evident in EFRs elicited by higher frequencies due to reverberation. Relative to normal hearing peers, children with hearing loss demonstrated: (a) greater disruption of f0 encoding at low frequencies, particularly in the presence of reverberation, and (b) a positive relationship between f0 encoding at low frequencies and speech discrimination in the hardest listening condition (i.e., when both noise and reverberation were present). CONCLUSIONS Together, these results provide new evidence for the persistence of suprathreshold temporal processing deficits related to f0 encoding in children despite the provision of appropriate amplification to compensate for hearing loss. These objectively measurable deficits may underlie the greater difficulty experienced by children with hearing loss.
Collapse
Affiliation(s)
- Vijayalakshmi Easwar
- Waisman Center, University of Wisconsin Madison, Madison, Wisconsin, USA
- Communcation Sciences and Disorders, University of Wisconsin Madison, Madison, Wisconsin, USA
- Communication Sciences Department, National Acoustic Laboratories, Sydney, Australia
- Linguistics, Macquarie University, Sydney, Australia
| | - Z. Ellen Peng
- Waisman Center, University of Wisconsin Madison, Madison, Wisconsin, USA
- Boys Town National Research Hospital, Omaha, Nebraska, USA
| | - Sriram Boothalingam
- Waisman Center, University of Wisconsin Madison, Madison, Wisconsin, USA
- Communcation Sciences and Disorders, University of Wisconsin Madison, Madison, Wisconsin, USA
- Communication Sciences Department, National Acoustic Laboratories, Sydney, Australia
- Linguistics, Macquarie University, Sydney, Australia
| | | |
Collapse
|
6
|
Rizzi R, Bidelman GM. Functional benefits of continuous vs. categorical listening strategies on the neural encoding and perception of noise-degraded speech. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594387. [PMID: 38798410 PMCID: PMC11118460 DOI: 10.1101/2024.05.15.594387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Acoustic information in speech changes continuously, yet listeners form discrete perceptual categories to ease the demands of perception. Being a more continuous/gradient as opposed to a discrete/categorical listener may be further advantageous for understanding speech in noise by increasing perceptual flexibility and resolving ambiguity. The degree to which a listener's responses to a continuum of speech sounds are categorical versus continuous can be quantified using visual analog scaling (VAS) during speech labeling tasks. Here, we recorded event-related brain potentials (ERPs) to vowels along an acoustic-phonetic continuum (/u/ to /a/) while listeners categorized phonemes in both clean and noise conditions. Behavior was assessed using standard two alternative forced choice (2AFC) and VAS paradigms to evaluate categorization under task structures that promote discrete (2AFC) vs. continuous (VAS) hearing, respectively. Behaviorally, identification curves were steeper under 2AFC vs. VAS categorization but were relatively immune to noise, suggesting robust access to abstract, phonetic categories even under signal degradation. Behavioral slopes were positively correlated with listeners' QuickSIN scores, suggesting a behavioral advantage for speech in noise comprehension conferred by gradient listening strategy. At the neural level, electrode level data revealed P2 peak amplitudes of the ERPs were modulated by task and noise; responses were larger under VAS vs. 2AFC categorization and showed larger noise-related delay in latency in the VAS vs. 2AFC condition. More gradient responders also had smaller shifts in ERP latency with noise, suggesting their neural encoding of speech was more resilient to noise degradation. Interestingly, source-resolved ERPs showed that more gradient listening was also correlated with stronger neural responses in left superior temporal gyrus. Our results demonstrate that listening strategy (i.e., being a discrete vs. continuous listener) modulates the categorical organization of speech and behavioral success, with continuous/gradient listening being more advantageous to speech in noise perception.
Collapse
|
7
|
Bidelman GM, Bernard F, Skubic K. Hearing in categories aids speech streaming at the "cocktail party". BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.587795. [PMID: 38617284 PMCID: PMC11014555 DOI: 10.1101/2024.04.03.587795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Our perceptual system bins elements of the speech signal into categories to make speech perception manageable. Here, we aimed to test whether hearing speech in categories (as opposed to a continuous/gradient fashion) affords yet another benefit to speech recognition: parsing noisy speech at the "cocktail party." We measured speech recognition in a simulated 3D cocktail party environment. We manipulated task difficulty by varying the number of additional maskers presented at other spatial locations in the horizontal soundfield (1-4 talkers) and via forward vs. time-reversed maskers, promoting more and less informational masking (IM), respectively. In separate tasks, we measured isolated phoneme categorization using two-alternative forced choice (2AFC) and visual analog scaling (VAS) tasks designed to promote more/less categorical hearing and thus test putative links between categorization and real-world speech-in-noise skills. We first show that listeners can only monitor up to ~3 talkers despite up to 5 in the soundscape and streaming is not related to extended high-frequency hearing thresholds (though QuickSIN scores are). We then confirm speech streaming accuracy and speed decline with additional competing talkers and amidst forward compared to reverse maskers with added IM. Dividing listeners into "discrete" vs. "continuous" categorizers based on their VAS labeling (i.e., whether responses were binary or continuous judgments), we then show the degree of IM experienced at the cocktail party is predicted by their degree of categoricity in phoneme labeling; more discrete listeners are less susceptible to IM than their gradient responding peers. Our results establish a link between speech categorization skills and cocktail party processing, with a categorical (rather than gradient) listening strategy benefiting degraded speech perception. These findings imply figure-ground deficits common in many disorders might arise through a surprisingly simple mechanism: a failure to properly bin sounds into categories.
Collapse
Affiliation(s)
- Gavin M. Bidelman
- Department of Speech, Language and Hearing Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
- Cognitive Science Program, Indiana University, Bloomington, IN, USA
| | - Fallon Bernard
- School of Communication Sciences & Disorders, University of Memphis, Memphis TN, USA
| | - Kimberly Skubic
- School of Communication Sciences & Disorders, University of Memphis, Memphis TN, USA
| |
Collapse
|
8
|
MacLean J, Stirn J, Sisson A, Bidelman GM. Short- and long-term neuroplasticity interact during the perceptual learning of concurrent speech. Cereb Cortex 2024; 34:bhad543. [PMID: 38212291 PMCID: PMC10839853 DOI: 10.1093/cercor/bhad543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/13/2024] Open
Abstract
Plasticity from auditory experience shapes the brain's encoding and perception of sound. However, whether such long-term plasticity alters the trajectory of short-term plasticity during speech processing has yet to be investigated. Here, we explored the neural mechanisms and interplay between short- and long-term neuroplasticity for rapid auditory perceptual learning of concurrent speech sounds in young, normal-hearing musicians and nonmusicians. Participants learned to identify double-vowel mixtures during ~ 45 min training sessions recorded simultaneously with high-density electroencephalography (EEG). We analyzed frequency-following responses (FFRs) and event-related potentials (ERPs) to investigate neural correlates of learning at subcortical and cortical levels, respectively. Although both groups showed rapid perceptual learning, musicians showed faster behavioral decisions than nonmusicians overall. Learning-related changes were not apparent in brainstem FFRs. However, plasticity was highly evident in cortex, where ERPs revealed unique hemispheric asymmetries between groups suggestive of different neural strategies (musicians: right hemisphere bias; nonmusicians: left hemisphere). Source reconstruction and the early (150-200 ms) time course of these effects localized learning-induced cortical plasticity to auditory-sensory brain areas. Our findings reinforce the domain-general benefits of musicianship but reveal that successful speech sound learning is driven by a critical interplay between long- and short-term mechanisms of auditory plasticity, which first emerge at a cortical level.
Collapse
Affiliation(s)
- Jessica MacLean
- Department of Speech, Language and Hearing Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
| | - Jack Stirn
- Department of Speech, Language and Hearing Sciences, Indiana University, Bloomington, IN, USA
| | - Alexandria Sisson
- Department of Speech, Language and Hearing Sciences, Indiana University, Bloomington, IN, USA
| | - Gavin M Bidelman
- Department of Speech, Language and Hearing Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
- Cognitive Science Program, Indiana University, Bloomington, IN, USA
| |
Collapse
|
9
|
MacLean J, Stirn J, Sisson A, Bidelman GM. Short- and long-term experience-dependent neuroplasticity interact during the perceptual learning of concurrent speech. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.26.559640. [PMID: 37808665 PMCID: PMC10557636 DOI: 10.1101/2023.09.26.559640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Plasticity from auditory experiences shapes brain encoding and perception of sound. However, whether such long-term plasticity alters the trajectory of short-term plasticity during speech processing has yet to be investigated. Here, we explored the neural mechanisms and interplay between short- and long-term neuroplasticity for rapid auditory perceptual learning of concurrent speech sounds in young, normal-hearing musicians and nonmusicians. Participants learned to identify double-vowel mixtures during ∼45 minute training sessions recorded simultaneously with high-density EEG. We analyzed frequency-following responses (FFRs) and event-related potentials (ERPs) to investigate neural correlates of learning at subcortical and cortical levels, respectively. While both groups showed rapid perceptual learning, musicians showed faster behavioral decisions than nonmusicians overall. Learning-related changes were not apparent in brainstem FFRs. However, plasticity was highly evident in cortex, where ERPs revealed unique hemispheric asymmetries between groups suggestive of different neural strategies (musicians: right hemisphere bias; nonmusicians: left hemisphere). Source reconstruction and the early (150-200 ms) time course of these effects localized learning-induced cortical plasticity to auditory-sensory brain areas. Our findings confirm domain-general benefits for musicianship but reveal successful speech sound learning is driven by a critical interplay between long- and short-term mechanisms of auditory plasticity that first emerge at a cortical level.
Collapse
|
10
|
Herrera C, Whittle N, Leek MR, Brodbeck C, Lee G, Barcenas C, Barnes S, Holshouser B, Yi A, Venezia JH. Cortical networks for recognition of speech with simultaneous talkers. Hear Res 2023; 437:108856. [PMID: 37531847 DOI: 10.1016/j.heares.2023.108856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 07/05/2023] [Accepted: 07/21/2023] [Indexed: 08/04/2023]
Abstract
The relative contributions of superior temporal vs. inferior frontal and parietal networks to recognition of speech in a background of competing speech remain unclear, although the contributions themselves are well established. Here, we use fMRI with spectrotemporal modulation transfer function (ST-MTF) modeling to examine the speech information represented in temporal vs. frontoparietal networks for two speech recognition tasks with and without a competing talker. Specifically, 31 listeners completed two versions of a three-alternative forced choice competing speech task: "Unison" and "Competing", in which a female (target) and a male (competing) talker uttered identical or different phrases, respectively. Spectrotemporal modulation filtering (i.e., acoustic distortion) was applied to the two-talker mixtures and ST-MTF models were generated to predict brain activation from differences in spectrotemporal-modulation distortion on each trial. Three cortical networks were identified based on differential patterns of ST-MTF predictions and the resultant ST-MTF weights across conditions (Unison, Competing): a bilateral superior temporal (S-T) network, a frontoparietal (F-P) network, and a network distributed across cortical midline regions and the angular gyrus (M-AG). The S-T network and the M-AG network responded primarily to spectrotemporal cues associated with speech intelligibility, regardless of condition, but the S-T network responded to a greater range of temporal modulations suggesting a more acoustically driven response. The F-P network responded to the absence of intelligibility-related cues in both conditions, but also to the absence (presence) of target-talker (competing-talker) vocal pitch in the Competing condition, suggesting a generalized response to signal degradation. Task performance was best predicted by activation in the S-T and F-P networks, but in opposite directions (S-T: more activation = better performance; F-P: vice versa). Moreover, S-T network predictions were entirely ST-MTF mediated while F-P network predictions were ST-MTF mediated only in the Unison condition, suggesting an influence from non-acoustic sources (e.g., informational masking) in the Competing condition. Activation in the M-AG network was weakly positively correlated with performance and this relation was entirely superseded by those in the S-T and F-P networks. Regarding contributions to speech recognition, we conclude: (a) superior temporal regions play a bottom-up, perceptual role that is not qualitatively dependent on the presence of competing speech; (b) frontoparietal regions play a top-down role that is modulated by competing speech and scales with listening effort; and (c) performance ultimately relies on dynamic interactions between these networks, with ancillary contributions from networks not involved in speech processing per se (e.g., the M-AG network).
Collapse
Affiliation(s)
| | - Nicole Whittle
- VA Loma Linda Healthcare System, Loma Linda, CA, United States
| | - Marjorie R Leek
- VA Loma Linda Healthcare System, Loma Linda, CA, United States; Loma Linda University, Loma Linda, CA, United States
| | | | - Grace Lee
- Loma Linda University, Loma Linda, CA, United States
| | | | - Samuel Barnes
- Loma Linda University, Loma Linda, CA, United States
| | | | - Alex Yi
- VA Loma Linda Healthcare System, Loma Linda, CA, United States; Loma Linda University, Loma Linda, CA, United States
| | - Jonathan H Venezia
- VA Loma Linda Healthcare System, Loma Linda, CA, United States; Loma Linda University, Loma Linda, CA, United States.
| |
Collapse
|
11
|
McAlpine D, de Hoz L. Listening loops and the adapting auditory brain. Front Neurosci 2023; 17:1081295. [PMID: 37008228 PMCID: PMC10060829 DOI: 10.3389/fnins.2023.1081295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/17/2023] [Indexed: 03/18/2023] Open
Abstract
Analysing complex auditory scenes depends in part on learning the long-term statistical structure of sounds comprising those scenes. One way in which the listening brain achieves this is by analysing the statistical structure of acoustic environments over multiple time courses and separating background from foreground sounds. A critical component of this statistical learning in the auditory brain is the interplay between feedforward and feedback pathways—“listening loops”—connecting the inner ear to higher cortical regions and back. These loops are likely important in setting and adjusting the different cadences over which learned listening occurs through adaptive processes that tailor neural responses to sound environments that unfold over seconds, days, development, and the life-course. Here, we posit that exploring listening loops at different scales of investigation—from in vivo recording to human assessment—their role in detecting different timescales of regularity, and the consequences this has for background detection, will reveal the fundamental processes that transform hearing into the essential task of listening.
Collapse
Affiliation(s)
- David McAlpine
- Department of Linguistics, Macquarie University, Sydney, NSW, Australia
- *Correspondence: David McAlpine,
| | - Livia de Hoz
- Neuroscience Research Center, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
| |
Collapse
|
12
|
Bidelman GM, Carter JA. Continuous dynamics in behavior reveal interactions between perceptual warping in categorization and speech-in-noise perception. Front Neurosci 2023; 17:1032369. [PMID: 36937676 PMCID: PMC10014819 DOI: 10.3389/fnins.2023.1032369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 02/14/2023] [Indexed: 03/05/2023] Open
Abstract
Introduction Spoken language comprehension requires listeners map continuous features of the speech signal to discrete category labels. Categories are however malleable to surrounding context and stimulus precedence; listeners' percept can dynamically shift depending on the sequencing of adjacent stimuli resulting in a warping of the heard phonetic category. Here, we investigated whether such perceptual warping-which amplify categorical hearing-might alter speech processing in noise-degraded listening scenarios. Methods We measured continuous dynamics in perception and category judgments of an acoustic-phonetic vowel gradient via mouse tracking. Tokens were presented in serial vs. random orders to induce more/less perceptual warping while listeners categorized continua in clean and noise conditions. Results Listeners' responses were faster and their mouse trajectories closer to the ultimate behavioral selection (marked visually on the screen) in serial vs. random order, suggesting increased perceptual attraction to category exemplars. Interestingly, order effects emerged earlier and persisted later in the trial time course when categorizing speech in noise. Discussion These data describe interactions between perceptual warping in categorization and speech-in-noise perception: warping strengthens the behavioral attraction to relevant speech categories, making listeners more decisive (though not necessarily more accurate) in their decisions of both clean and noise-degraded speech.
Collapse
Affiliation(s)
- Gavin M. Bidelman
- Department of Speech, Language and Hearing Sciences, Indiana University, Bloomington, IN, United States
- Program in Neuroscience, Indiana University, Bloomington, IN, United States
| | - Jared A. Carter
- School of Communication Sciences and Disorders, University of Memphis, Memphis, TN, United States
- Hearing Sciences – Scottish Section, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Glasgow, United Kingdom
| |
Collapse
|
13
|
Shahsavari Baboukani P, Graversen C, Alickovic E, Østergaard J. Speech to noise ratio improvement induces nonlinear parietal phase synchrony in hearing aid users. Front Neurosci 2022; 16:932959. [PMID: 36017182 PMCID: PMC9396236 DOI: 10.3389/fnins.2022.932959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectivesComprehension of speech in adverse listening conditions is challenging for hearing-impaired (HI) individuals. Noise reduction (NR) schemes in hearing aids (HAs) have demonstrated the capability to help HI to overcome these challenges. The objective of this study was to investigate the effect of NR processing (inactive, where the NR feature was switched off, vs. active, where the NR feature was switched on) on correlates of listening effort across two different background noise levels [+3 dB signal-to-noise ratio (SNR) and +8 dB SNR] by using a phase synchrony analysis of electroencephalogram (EEG) signals.DesignThe EEG was recorded while 22 HI participants fitted with HAs performed a continuous speech in noise (SiN) task in the presence of background noise and a competing talker. The phase synchrony within eight regions of interest (ROIs) and four conventional EEG bands was computed by using a multivariate phase synchrony measure.ResultsThe results demonstrated that the activation of NR in HAs affects the EEG phase synchrony in the parietal ROI at low SNR differently than that at high SNR. The relationship between conditions of the listening task and phase synchrony in the parietal ROI was nonlinear.ConclusionWe showed that the activation of NR schemes in HAs can non-linearly reduce correlates of listening effort as estimated by EEG-based phase synchrony. We contend that investigation of the phase synchrony within ROIs can reflect the effects of HAs in HI individuals in ecological listening conditions.
Collapse
Affiliation(s)
- Payam Shahsavari Baboukani
- Department of Electronic Systems, Aalborg University, Aalborg, Denmark
- *Correspondence: Payam Shahsavari Baboukani
| | - Carina Graversen
- Integrative Neuroscience, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
- Department of Health Science and Technology, Center for Neuroplasticity and Pain (CNAP), Aalborg University, Aalborg, Denmark
| | - Emina Alickovic
- Eriksholm Research Centre, Snekkersten, Denmark
- Department of Electrical Engineering, Linköping University, Linköping, Sweden
| | - Jan Østergaard
- Department of Electronic Systems, Aalborg University, Aalborg, Denmark
| |
Collapse
|
14
|
Bsharat-Maalouf D, Karawani H. Bilinguals' speech perception in noise: Perceptual and neural associations. PLoS One 2022; 17:e0264282. [PMID: 35196339 PMCID: PMC8865662 DOI: 10.1371/journal.pone.0264282] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 02/07/2022] [Indexed: 01/26/2023] Open
Abstract
The current study characterized subcortical speech sound processing among monolinguals and bilinguals in quiet and challenging listening conditions and examined the relation between subcortical neural processing and perceptual performance. A total of 59 normal-hearing adults, ages 19–35 years, participated in the study: 29 native Hebrew-speaking monolinguals and 30 Arabic-Hebrew-speaking bilinguals. Auditory brainstem responses to speech sounds were collected in a quiet condition and with background noise. The perception of words and sentences in quiet and background noise conditions was also examined to assess perceptual performance and to evaluate the perceptual-physiological relationship. Perceptual performance was tested among bilinguals in both languages (first language (L1-Arabic) and second language (L2-Hebrew)). The outcomes were similar between monolingual and bilingual groups in quiet. Noise, as expected, resulted in deterioration in perceptual and neural responses, which was reflected in lower accuracy in perceptual tasks compared to quiet, and in more prolonged latencies and diminished neural responses. However, a mixed picture was observed among bilinguals in perceptual and physiological outcomes in noise. In the perceptual measures, bilinguals were significantly less accurate than their monolingual counterparts. However, in neural responses, bilinguals demonstrated earlier peak latencies compared to monolinguals. Our results also showed that perceptual performance in noise was related to subcortical resilience to the disruption caused by background noise. Specifically, in noise, increased brainstem resistance (i.e., fewer changes in the fundamental frequency (F0) representations or fewer shifts in the neural timing) was related to better speech perception among bilinguals. Better perception in L1 in noise was correlated with fewer changes in F0 representations, and more accurate perception in L2 was related to minor shifts in auditory neural timing. This study delves into the importance of using neural brainstem responses to speech sounds to differentiate individuals with different language histories and to explain inter-subject variability in bilinguals’ perceptual abilities in daily life situations.
Collapse
Affiliation(s)
- Dana Bsharat-Maalouf
- Department of Communication Sciences and Disorders, University of Haifa, Haifa, Israel
| | - Hanin Karawani
- Department of Communication Sciences and Disorders, University of Haifa, Haifa, Israel
- * E-mail:
| |
Collapse
|
15
|
Novitskiy N, Maggu AR, Lai CM, Chan PHY, Wong KHY, Lam HS, Leung TY, Leung TF, Wong PCM. Early Development of Neural Speech Encoding Depends on Age but Not Native Language Status: Evidence From Lexical Tone. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2022; 3:67-86. [PMID: 37215329 PMCID: PMC10178623 DOI: 10.1162/nol_a_00049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 06/22/2021] [Indexed: 05/24/2023]
Abstract
We investigated the development of early-latency and long-latency brain responses to native and non-native speech to shed light on the neurophysiological underpinnings of perceptual narrowing and early language development. Specifically, we postulated a two-level process to explain the decrease in sensitivity to non-native phonemes toward the end of infancy. Neurons at the earlier stages of the ascending auditory pathway mature rapidly during infancy facilitating the encoding of both native and non-native sounds. This growth enables neurons at the later stages of the auditory pathway to assign phonological status to speech according to the infant's native language environment. To test this hypothesis, we collected early-latency and long-latency neural responses to native and non-native lexical tones from 85 Cantonese-learning children aged between 23 days and 24 months, 16 days. As expected, a broad range of presumably subcortical early-latency neural encoding measures grew rapidly and substantially during the first two years for both native and non-native tones. By contrast, long-latency cortical electrophysiological changes occurred on a much slower scale and showed sensitivity to nativeness at around six months. Our study provided a comprehensive understanding of early language development by revealing the complementary roles of earlier and later stages of speech processing in the developing brain.
Collapse
Affiliation(s)
- Nikolay Novitskiy
- Department of Linguistics and Modern Languages, Brain and Mind Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Akshay R. Maggu
- Department of Linguistics and Modern Languages, Brain and Mind Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
- O-lab, Duke Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Ching Man Lai
- Department of Linguistics and Modern Languages, Brain and Mind Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Peggy H. Y. Chan
- Department of Linguistics and Modern Languages, Brain and Mind Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kay H. Y. Wong
- Department of Linguistics and Modern Languages, Brain and Mind Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hugh Simon Lam
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tak Yeung Leung
- Department of Obsterics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ting Fan Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Patrick C. M. Wong
- Department of Linguistics and Modern Languages, Brain and Mind Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
16
|
Cheng FY, Xu C, Gold L, Smith S. Rapid Enhancement of Subcortical Neural Responses to Sine-Wave Speech. Front Neurosci 2022; 15:747303. [PMID: 34987356 PMCID: PMC8721138 DOI: 10.3389/fnins.2021.747303] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/02/2021] [Indexed: 01/15/2023] Open
Abstract
The efferent auditory nervous system may be a potent force in shaping how the brain responds to behaviorally significant sounds. Previous human experiments using the frequency following response (FFR) have shown efferent-induced modulation of subcortical auditory function online and over short- and long-term time scales; however, a contemporary understanding of FFR generation presents new questions about whether previous effects were constrained solely to the auditory subcortex. The present experiment used sine-wave speech (SWS), an acoustically-sparse stimulus in which dynamic pure tones represent speech formant contours, to evoke FFRSWS. Due to the higher stimulus frequencies used in SWS, this approach biased neural responses toward brainstem generators and allowed for three stimuli (/bɔ/, /bu/, and /bo/) to be used to evoke FFRSWSbefore and after listeners in a training group were made aware that they were hearing a degraded speech stimulus. All SWS stimuli were rapidly perceived as speech when presented with a SWS carrier phrase, and average token identification reached ceiling performance during a perceptual training phase. Compared to a control group which remained naïve throughout the experiment, training group FFRSWS amplitudes were enhanced post-training for each stimulus. Further, linear support vector machine classification of training group FFRSWS significantly improved post-training compared to the control group, indicating that training-induced neural enhancements were sufficient to bolster machine learning classification accuracy. These results suggest that the efferent auditory system may rapidly modulate auditory brainstem representation of sounds depending on their context and perception as non-speech or speech.
Collapse
Affiliation(s)
- Fan-Yin Cheng
- Department of Speech, Language, and Hearing Sciences, University of Texas at Austin, Austin, TX, United States
| | - Can Xu
- Department of Speech, Language, and Hearing Sciences, University of Texas at Austin, Austin, TX, United States
| | - Lisa Gold
- Department of Speech, Language, and Hearing Sciences, University of Texas at Austin, Austin, TX, United States
| | - Spencer Smith
- Department of Speech, Language, and Hearing Sciences, University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
17
|
Shukla B, Bidelman GM. Enhanced brainstem phase-locking in low-level noise reveals stochastic resonance in the frequency-following response (FFR). Brain Res 2021; 1771:147643. [PMID: 34473999 PMCID: PMC8490316 DOI: 10.1016/j.brainres.2021.147643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/23/2021] [Accepted: 08/28/2021] [Indexed: 11/29/2022]
Abstract
In nonlinear systems, the inclusion of low-level noise can paradoxically improve signal detection, a phenomenon known as stochastic resonance (SR). SR has been observed in human hearing whereby sensory thresholds (e.g., signal detection and discrimination) are enhanced in the presence of noise. Here, we asked whether subcortical auditory processing (neural phase locking) shows evidence of SR. We recorded brainstem frequency-following-responses (FFRs) in young, normal-hearing listeners to near-electrophysiological-threshold (40 dB SPL) complex tones composed of 10 iso-amplitude harmonics of 150 Hz fundamental frequency (F0) presented concurrent with low-level noise (+20 to -20 dB SNRs). Though variable and weak across ears, some listeners showed improvement in auditory detection thresholds with subthreshold noise confirming SR psychophysically. At the neural level, low-level FFRs were initially eradicated by noise (expected masking effect) but were surprisingly reinvigorated at select masker levels (local maximum near ∼ 35 dB SPL). These data suggest brainstem phase-locking to near threshold periodic stimuli is enhanced in optimal levels of noise, the hallmark of SR. Our findings provide novel evidence for stochastic resonance in the human auditory brainstem and suggest that under some circumstances, noise can actually benefit both the behavioral and neural encoding of complex sounds.
Collapse
Affiliation(s)
- Bhanu Shukla
- School of Communication Sciences & Disorders, University of Memphis, Memphis, TN, USA; Institute for Intelligent Systems, University of Memphis, Memphis, TN, USA
| | - Gavin M Bidelman
- School of Communication Sciences & Disorders, University of Memphis, Memphis, TN, USA; Institute for Intelligent Systems, University of Memphis, Memphis, TN, USA; University of Tennessee Health Sciences Center, Department of Anatomy and Neurobiology, Memphis, TN, USA.
| |
Collapse
|
18
|
Souffi S, Nodal FR, Bajo VM, Edeline JM. When and How Does the Auditory Cortex Influence Subcortical Auditory Structures? New Insights About the Roles of Descending Cortical Projections. Front Neurosci 2021; 15:690223. [PMID: 34413722 PMCID: PMC8369261 DOI: 10.3389/fnins.2021.690223] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/14/2021] [Indexed: 12/28/2022] Open
Abstract
For decades, the corticofugal descending projections have been anatomically well described but their functional role remains a puzzling question. In this review, we will first describe the contributions of neuronal networks in representing communication sounds in various types of degraded acoustic conditions from the cochlear nucleus to the primary and secondary auditory cortex. In such situations, the discrimination abilities of collicular and thalamic neurons are clearly better than those of cortical neurons although the latter remain very little affected by degraded acoustic conditions. Second, we will report the functional effects resulting from activating or inactivating corticofugal projections on functional properties of subcortical neurons. In general, modest effects have been observed in anesthetized and in awake, passively listening, animals. In contrast, in behavioral tasks including challenging conditions, behavioral performance was severely reduced by removing or transiently silencing the corticofugal descending projections. This suggests that the discriminative abilities of subcortical neurons may be sufficient in many acoustic situations. It is only in particularly challenging situations, either due to the task difficulties and/or to the degraded acoustic conditions that the corticofugal descending connections bring additional abilities. Here, we propose that it is both the top-down influences from the prefrontal cortex, and those from the neuromodulatory systems, which allow the cortical descending projections to impact behavioral performance in reshaping the functional circuitry of subcortical structures. We aim at proposing potential scenarios to explain how, and under which circumstances, these projections impact on subcortical processing and on behavioral responses.
Collapse
Affiliation(s)
- Samira Souffi
- Department of Integrative and Computational Neurosciences, Paris-Saclay Institute of Neuroscience (NeuroPSI), UMR CNRS 9197, Paris-Saclay University, Orsay, France
| | - Fernando R. Nodal
- Department of Physiology, Anatomy and Genetics, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Victoria M. Bajo
- Department of Physiology, Anatomy and Genetics, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Jean-Marc Edeline
- Department of Integrative and Computational Neurosciences, Paris-Saclay Institute of Neuroscience (NeuroPSI), UMR CNRS 9197, Paris-Saclay University, Orsay, France
| |
Collapse
|
19
|
Momtaz S, Moncrieff D, Bidelman GM. Dichotic listening deficits in amblyaudia are characterized by aberrant neural oscillations in auditory cortex. Clin Neurophysiol 2021; 132:2152-2162. [PMID: 34284251 DOI: 10.1016/j.clinph.2021.04.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 04/16/2021] [Accepted: 04/29/2021] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Children diagnosed with auditory processing disorder (APD) show deficits in processing complex sounds that are associated with difficulties in higher-order language, learning, cognitive, and communicative functions. Amblyaudia (AMB) is a subcategory of APD characterized by abnormally large ear asymmetries in dichotic listening tasks. METHODS Here, we examined frequency-specific neural oscillations and functional connectivity via high-density electroencephalography (EEG) in children with and without AMB during passive listening of nonspeech stimuli. RESULTS Time-frequency maps of these "brain rhythms" revealed stronger phase-locked beta-gamma (~35 Hz) oscillations in AMB participants within bilateral auditory cortex for sounds presented to the right ear, suggesting a hypersynchronization and imbalance of auditory neural activity. Brain-behavior correlations revealed neural asymmetries in cortical responses predicted the larger than normal right-ear advantage seen in participants with AMB. Additionally, we found weaker functional connectivity in the AMB group from right to left auditory cortex, despite their stronger neural responses overall. CONCLUSION Our results reveal abnormally large auditory sensory encoding and an imbalance in communication between cerebral hemispheres (ipsi- to -contralateral signaling) in AMB. SIGNIFICANCE These neurophysiological changes might lead to the functionally poorer behavioral capacity to integrate information between the two ears in children with AMB.
Collapse
Affiliation(s)
- Sara Momtaz
- School of Communication Sciences & Disorders, University of Memphis, Memphis, TN, USA.
| | - Deborah Moncrieff
- School of Communication Sciences & Disorders, University of Memphis, Memphis, TN, USA
| | - Gavin M Bidelman
- School of Communication Sciences & Disorders, University of Memphis, Memphis, TN, USA; Institute for Intelligent Systems, University of Memphis, Memphis, TN, USA; University of Tennessee Health Sciences Center, Department of Anatomy and Neurobiology, Memphis, TN, USA
| |
Collapse
|
20
|
Price CN, Bidelman GM. Attention reinforces human corticofugal system to aid speech perception in noise. Neuroimage 2021; 235:118014. [PMID: 33794356 PMCID: PMC8274701 DOI: 10.1016/j.neuroimage.2021.118014] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/09/2021] [Accepted: 03/25/2021] [Indexed: 12/13/2022] Open
Abstract
Perceiving speech-in-noise (SIN) demands precise neural coding between brainstem and cortical levels of the hearing system. Attentional processes can then select and prioritize task-relevant cues over competing background noise for successful speech perception. In animal models, brainstem-cortical interplay is achieved via descending corticofugal projections from cortex that shape midbrain responses to behaviorally-relevant sounds. Attentional engagement of corticofugal feedback may assist SIN understanding but has never been confirmed and remains highly controversial in humans. To resolve these issues, we recorded source-level, anatomically constrained brainstem frequency-following responses (FFRs) and cortical event-related potentials (ERPs) to speech via high-density EEG while listeners performed rapid SIN identification tasks. We varied attention with active vs. passive listening scenarios whereas task difficulty was manipulated with additive noise interference. Active listening (but not arousal-control tasks) exaggerated both ERPs and FFRs, confirming attentional gain extends to lower subcortical levels of speech processing. We used functional connectivity to measure the directed strength of coupling between levels and characterize "bottom-up" vs. "top-down" (corticofugal) signaling within the auditory brainstem-cortical pathway. While attention strengthened connectivity bidirectionally, corticofugal transmission disengaged under passive (but not active) SIN listening. Our findings (i) show attention enhances the brain's transcription of speech even prior to cortex and (ii) establish a direct role of the human corticofugal feedback system as an aid to cocktail party speech perception.
Collapse
Affiliation(s)
- Caitlin N Price
- Institute for Intelligent Systems, University of Memphis, Memphis, TN, USA; School of Communication Sciences and Disorders, University of Memphis, 4055 North Park Loop, Memphis, TN 38152, USA.
| | - Gavin M Bidelman
- Institute for Intelligent Systems, University of Memphis, Memphis, TN, USA; School of Communication Sciences and Disorders, University of Memphis, 4055 North Park Loop, Memphis, TN 38152, USA; Department of Anatomy and Neurobiology, University of Tennessee Health Sciences Center, Memphis, TN, USA.
| |
Collapse
|
21
|
Defining the Role of Attention in Hierarchical Auditory Processing. Audiol Res 2021; 11:112-128. [PMID: 33805600 PMCID: PMC8006147 DOI: 10.3390/audiolres11010012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/07/2021] [Accepted: 03/10/2021] [Indexed: 01/09/2023] Open
Abstract
Communication in noise is a complex process requiring efficient neural encoding throughout the entire auditory pathway as well as contributions from higher-order cognitive processes (i.e., attention) to extract speech cues for perception. Thus, identifying effective clinical interventions for individuals with speech-in-noise deficits relies on the disentanglement of bottom-up (sensory) and top-down (cognitive) factors to appropriately determine the area of deficit; yet, how attention may interact with early encoding of sensory inputs remains unclear. For decades, attentional theorists have attempted to address this question with cleverly designed behavioral studies, but the neural processes and interactions underlying attention's role in speech perception remain unresolved. While anatomical and electrophysiological studies have investigated the neurological structures contributing to attentional processes and revealed relevant brain-behavior relationships, recent electrophysiological techniques (i.e., simultaneous recording of brainstem and cortical responses) may provide novel insight regarding the relationship between early sensory processing and top-down attentional influences. In this article, we review relevant theories that guide our present understanding of attentional processes, discuss current electrophysiological evidence of attentional involvement in auditory processing across subcortical and cortical levels, and propose areas for future study that will inform the development of more targeted and effective clinical interventions for individuals with speech-in-noise deficits.
Collapse
|
22
|
Carter JA, Bidelman GM. Auditory cortex is susceptible to lexical influence as revealed by informational vs. energetic masking of speech categorization. Brain Res 2021; 1759:147385. [PMID: 33631210 DOI: 10.1016/j.brainres.2021.147385] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 02/02/2023]
Abstract
Speech perception requires the grouping of acoustic information into meaningful phonetic units via the process of categorical perception (CP). Environmental masking influences speech perception and CP. However, it remains unclear at which stage of processing (encoding, decision, or both) masking affects listeners' categorization of speech signals. The purpose of this study was to determine whether linguistic interference influences the early acoustic-phonetic conversion process inherent to CP. To this end, we measured source level, event related brain potentials (ERPs) from auditory cortex (AC) and inferior frontal gyrus (IFG) as listeners rapidly categorized speech sounds along a /da/ to /ga/ continuum presented in three listening conditions: quiet, and in the presence of forward (informational masker) and time-reversed (energetic masker) 2-talker babble noise. Maskers were matched in overall SNR and spectral content and thus varied only in their degree of linguistic interference (i.e., informational masking). We hypothesized a differential effect of informational versus energetic masking on behavioral and neural categorization responses, where we predicted increased activation of frontal regions when disambiguating speech from noise, especially during lexical-informational maskers. We found (1) informational masking weakens behavioral speech phoneme identification above and beyond energetic masking; (2) low-level AC activity not only codes speech categories but is susceptible to higher-order lexical interference; (3) identifying speech amidst noise recruits a cross hemispheric circuit (ACleft → IFGright) whose engagement varies according to task difficulty. These findings provide corroborating evidence for top-down influences on the early acoustic-phonetic analysis of speech through a coordinated interplay between frontotemporal brain areas.
Collapse
Affiliation(s)
- Jared A Carter
- Institute for Intelligent Systems, University of Memphis, Memphis, TN, USA; School of Communication Sciences & Disorders, University of Memphis, Memphis, TN, USA.
| | - Gavin M Bidelman
- Institute for Intelligent Systems, University of Memphis, Memphis, TN, USA; School of Communication Sciences & Disorders, University of Memphis, Memphis, TN, USA; University of Tennessee Health Sciences Center, Department of Anatomy and Neurobiology, Memphis, TN, USA.
| |
Collapse
|
23
|
Qian M, Wang Q, Yang L, Wang Z, Hu D, Li B, Li Y, Wu H, Huang Z. The effects of aging on peripheral and central auditory function in adults with normal hearing. Am J Transl Res 2021; 13:549-564. [PMID: 33594309 PMCID: PMC7868840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
This study was designed to investigate the effects of the aging process on peripheral and central auditory functions in adults with normal hearing. In this study, 149 participants with normal hearing were divided into four groups: aged 20-29, 30-39, 40-49 and 50-59 years for statistical purposes. Electrocochleography (EcochG), transient evoked otoacoustic emissions (TEOAE), Mandarin Hearing in Noise Test (MHINT) and the Gap Detection Test (GDT) were used. Our study found: (1) MHINT is significantly associated with aging (left ear R2=0.29, right ear R2=0.35). (2) TEOAE amplitude, TEOAE contralateral acoustic stimulation (CS) amplitude, EcochG action potential (AP), EcochG AP latency, EcochG summating potential (SP) and GDT progressively declined with age. (3) The EcochG SP/AP has no statistically significant difference among different age groups. (4) The peripheral auditory function of the right ear declines more slowly than that of the left ear. (5) Hypofunction of the central auditory system accelerates after age 40. The results demonstrate: (1) The age-related decline in the ability of speech recognition in a noisy environment may be the most sensitive indicator that reflects auditory function. (2) The decline of central auditory function is independent of peripheral auditory function, according to the auditory characteristics of the right ear. (3) Auditory function needs to be assessed individually to allow early prevention before age 40.
Collapse
Affiliation(s)
- Minfei Qian
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghai 200011, China
- Hearing and Speech Center of Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghai 200011, China
- Ear Institute, Shanghai Jiao Tong University School of MedicineShanghai 200125, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghai 200125, China
| | - Qixuan Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghai 200011, China
- Hearing and Speech Center of Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghai 200011, China
- Ear Institute, Shanghai Jiao Tong University School of MedicineShanghai 200125, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghai 200125, China
| | - Lu Yang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghai 200011, China
- Hearing and Speech Center of Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghai 200011, China
- Ear Institute, Shanghai Jiao Tong University School of MedicineShanghai 200125, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghai 200125, China
| | - Zhongying Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghai 200011, China
- Hearing and Speech Center of Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghai 200011, China
- Ear Institute, Shanghai Jiao Tong University School of MedicineShanghai 200125, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghai 200125, China
| | - Difei Hu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghai 200011, China
- Hearing and Speech Center of Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghai 200011, China
- Ear Institute, Shanghai Jiao Tong University School of MedicineShanghai 200125, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghai 200125, China
| | - Bei Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghai 200011, China
- Hearing and Speech Center of Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghai 200011, China
- Ear Institute, Shanghai Jiao Tong University School of MedicineShanghai 200125, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghai 200125, China
| | - Yun Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghai 200011, China
- Hearing and Speech Center of Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghai 200011, China
- Ear Institute, Shanghai Jiao Tong University School of MedicineShanghai 200125, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghai 200125, China
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghai 200011, China
- Hearing and Speech Center of Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghai 200011, China
- Ear Institute, Shanghai Jiao Tong University School of MedicineShanghai 200125, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghai 200125, China
| | - Zhiwu Huang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghai 200011, China
- Hearing and Speech Center of Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghai 200011, China
- Ear Institute, Shanghai Jiao Tong University School of MedicineShanghai 200125, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghai 200125, China
| |
Collapse
|
24
|
Subcortical rather than cortical sources of the frequency-following response (FFR) relate to speech-in-noise perception in normal-hearing listeners. Neurosci Lett 2021; 746:135664. [PMID: 33497718 DOI: 10.1016/j.neulet.2021.135664] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 12/22/2020] [Accepted: 01/13/2021] [Indexed: 12/27/2022]
Abstract
Scalp-recorded frequency-following responses (FFRs) reflect a mixture of phase-locked activity across the auditory pathway. FFRs have been widely used as a neural barometer of complex listening skills, especially speech-in noise (SIN) perception. Applying individually optimized source reconstruction to speech-FFRs recorded via EEG (FFREEG), we assessed the relative contributions of subcortical [auditory nerve (AN), brainstem/midbrain (BS)] and cortical [bilateral primary auditory cortex, PAC] source generators with the aim of identifying which source(s) drive the brain-behavior relation between FFRs and SIN listening skills. We found FFR strength declined precipitously from AN to PAC, consistent with diminishing phase-locking along the ascending auditory neuroaxis. FFRs to the speech fundamental (F0) were robust to noise across sources, but were largest in subcortical sources (BS > AN > PAC). PAC FFRs were only weakly observed above the noise floor and only at the low pitch of speech (F0≈100 Hz). Brain-behavior regressions revealed (i) AN and BS FFRs were sufficient to describe listeners' QuickSIN scores and (ii) contrary to neuromagnetic (MEG) FFRs, neither left nor right PAC FFREEG related to SIN performance. Our findings suggest subcortical sources not only dominate the electrical FFR but also the link between speech-FFRs and SIN processing in normal-hearing adults as observed in previous EEG studies.
Collapse
|
25
|
Bidelman GM, Pearson C, Harrison A. Lexical Influences on Categorical Speech Perception Are Driven by a Temporoparietal Circuit. J Cogn Neurosci 2021; 33:840-852. [PMID: 33464162 DOI: 10.1162/jocn_a_01678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Categorical judgments of otherwise identical phonemes are biased toward hearing words (i.e., "Ganong effect") suggesting lexical context influences perception of even basic speech primitives. Lexical biasing could manifest via late stage postperceptual mechanisms related to decision or, alternatively, top-down linguistic inference that acts on early perceptual coding. Here, we exploited the temporal sensitivity of EEG to resolve the spatiotemporal dynamics of these context-related influences on speech categorization. Listeners rapidly classified sounds from a /gɪ/-/kɪ/ gradient presented in opposing word-nonword contexts (GIFT-kift vs. giss-KISS), designed to bias perception toward lexical items. Phonetic perception shifted toward the direction of words, establishing a robust Ganong effect behaviorally. ERPs revealed a neural analog of lexical biasing emerging within ~200 msec. Source analyses uncovered a distributed neural network supporting the Ganong including middle temporal gyrus, inferior parietal lobe, and middle frontal cortex. Yet, among Ganong-sensitive regions, only left middle temporal gyrus and inferior parietal lobe predicted behavioral susceptibility to lexical influence. Our findings confirm lexical status rapidly constrains sublexical categorical representations for speech within several hundred milliseconds but likely does so outside the purview of canonical auditory-sensory brain areas.
Collapse
Affiliation(s)
- Gavin M Bidelman
- University of Memphis, TN.,University of Tennessee Health Sciences Center, Memphis, TN
| | | | | |
Collapse
|
26
|
Lee J, Han JH, Lee HJ. Long-Term Musical Training Alters Auditory Cortical Activity to the Frequency Change. Front Hum Neurosci 2020; 14:329. [PMID: 32973478 PMCID: PMC7471721 DOI: 10.3389/fnhum.2020.00329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/24/2020] [Indexed: 11/13/2022] Open
Abstract
Objective: The ability to detect frequency variation is a fundamental skill necessary for speech perception. It is known that musical expertise is associated with a range of auditory perceptual skills, including discriminating frequency change, which suggests the neural encoding of spectral features can be enhanced by musical training. In this study, we measured auditory cortical responses to frequency change in musicians to examine the relationships between N1/P2 responses and behavioral performance/musical training. Methods: Behavioral and electrophysiological data were obtained from professional musicians and age-matched non-musician participants. Behavioral data included frequency discrimination detection thresholds for no threshold-equalizing noise (TEN), +5, 0, and -5 signal-to-noise ratio settings. Auditory-evoked responses were measured using a 64-channel electroencephalogram (EEG) system in response to frequency changes in ongoing pure tones consisting of 250 and 4,000 Hz, and the magnitudes of frequency change were 10%, 25% or 50% from the base frequencies. N1 and P2 amplitudes and latencies as well as dipole source activation in the left and right hemispheres were measured for each condition. Results: Compared to the non-musician group, behavioral thresholds in the musician group were lower for frequency discrimination in quiet conditions only. The scalp-recorded N1 amplitudes were modulated as a function of frequency change. P2 amplitudes in the musician group were larger than in the non-musician group. Dipole source analysis showed that P2 dipole activity to frequency changes was lateralized to the right hemisphere, with greater activity in the musician group regardless of the hemisphere side. Additionally, N1 amplitudes to frequency changes were positively related to behavioral thresholds for frequency discrimination while enhanced P2 amplitudes were associated with a longer duration of musical training. Conclusions: Our results demonstrate that auditory cortical potentials evoked by frequency change are related to behavioral thresholds for frequency discrimination in musicians. Larger P2 amplitudes in musicians compared to non-musicians reflects musical training-induced neural plasticity.
Collapse
Affiliation(s)
- Jihyun Lee
- Laboratory of Brain & Cognitive Sciences for Convergence Medicine, Hallym University College of Medicine, Anyang, South Korea
| | - Ji-Hye Han
- Laboratory of Brain & Cognitive Sciences for Convergence Medicine, Hallym University College of Medicine, Anyang, South Korea
| | - Hyo-Jeong Lee
- Laboratory of Brain & Cognitive Sciences for Convergence Medicine, Hallym University College of Medicine, Anyang, South Korea.,Department of Otorhinolaryngology, College of Medicine, Hallym University, Anyang, South Korea
| |
Collapse
|
27
|
Bidelman GM, Bush LC, Boudreaux AM. Effects of Noise on the Behavioral and Neural Categorization of Speech. Front Neurosci 2020; 14:153. [PMID: 32180700 PMCID: PMC7057933 DOI: 10.3389/fnins.2020.00153] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 02/10/2020] [Indexed: 02/02/2023] Open
Abstract
We investigated whether the categorical perception (CP) of speech might also provide a mechanism that aids its perception in noise. We varied signal-to-noise ratio (SNR) [clear, 0 dB, -5 dB] while listeners classified an acoustic-phonetic continuum (/u/ to /a/). Noise-related changes in behavioral categorization were only observed at the lowest SNR. Event-related brain potentials (ERPs) differentiated category vs. category-ambiguous speech by the P2 wave (~180-320 ms). Paralleling behavior, neural responses to speech with clear phonetic status (i.e., continuum endpoints) were robust to noise down to -5 dB SNR, whereas responses to ambiguous tokens declined with decreasing SNR. Results demonstrate that phonetic speech representations are more resistant to degradation than corresponding acoustic representations. Findings suggest the mere process of binning speech sounds into categories provides a robust mechanism to aid figure-ground speech perception by fortifying abstract categories from the acoustic signal and making the speech code more resistant to external interferences.
Collapse
Affiliation(s)
- Gavin M Bidelman
- Institute for Intelligent Systems, University of Memphis, Memphis, TN, United States.,School of Communication Sciences and Disorders, University of Memphis, Memphis, TN, United States.,Department of Anatomy and Neurobiology, University of Tennessee Health Sciences Center, Memphis, TN, United States
| | - Lauren C Bush
- School of Communication Sciences and Disorders, University of Memphis, Memphis, TN, United States
| | - Alex M Boudreaux
- School of Communication Sciences and Disorders, University of Memphis, Memphis, TN, United States
| |
Collapse
|
28
|
Auditory-frontal Channeling in α and β Bands is Altered by Age-related Hearing Loss and Relates to Speech Perception in Noise. Neuroscience 2019; 423:18-28. [PMID: 31705894 DOI: 10.1016/j.neuroscience.2019.10.044] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/19/2019] [Accepted: 10/27/2019] [Indexed: 01/16/2023]
Abstract
Difficulty understanding speech-in-noise (SIN) is a pervasive problem faced by older adults particularly those with hearing loss. Previous studies have identified structural and functional changes in the brain that contribute to older adults' speech perception difficulties. Yet, many of these studies use neuroimaging techniques that evaluate only gross activation in isolated brain regions. Neural oscillations may provide further insight into the processes underlying SIN perception as well as the interaction between auditory cortex and prefrontal linguistic brain regions that mediate complex behaviors. We examined frequency-specific neural oscillations and functional connectivity of the EEG in older adults with and without hearing loss during an active SIN perception task. Brain-behavior correlations revealed listeners who were more resistant to the detrimental effects of noise also demonstrated greater modulation of α phase coherence between clean and noise-degraded speech, suggesting α desynchronization reflects release from inhibition and more flexible allocation of neural resources. Additionally, we found top-down β connectivity between prefrontal and auditory cortices strengthened with poorer hearing thresholds despite minimal behavioral differences. This is consistent with the proposal that linguistic brain areas may be recruited to compensate for impoverished auditory inputs through increased top-down predictions to assist SIN perception. Overall, these results emphasize the importance of top-down signaling in low-frequency brain rhythms that help compensate for hearing-related declines and facilitate efficient SIN processing.
Collapse
|
29
|
Coffey EBJ, Nicol T, White-Schwoch T, Chandrasekaran B, Krizman J, Skoe E, Zatorre RJ, Kraus N. Evolving perspectives on the sources of the frequency-following response. Nat Commun 2019; 10:5036. [PMID: 31695046 PMCID: PMC6834633 DOI: 10.1038/s41467-019-13003-w] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 10/14/2019] [Indexed: 11/09/2022] Open
Abstract
The auditory frequency-following response (FFR) is a non-invasive index of the fidelity of sound encoding in the brain, and is used to study the integrity, plasticity, and behavioral relevance of the neural encoding of sound. In this Perspective, we review recent evidence suggesting that, in humans, the FFR arises from multiple cortical and subcortical sources, not just subcortically as previously believed, and we illustrate how the FFR to complex sounds can enhance the wider field of auditory neuroscience. Far from being of use only to study basic auditory processes, the FFR is an uncommonly multifaceted response yielding a wealth of information, with much yet to be tapped.
Collapse
Affiliation(s)
- Emily B J Coffey
- Department of Psychology, Concordia University, 1455 Boulevard de Maisonneuve Ouest, Montréal, QC, H3G 1M8, Canada.
- International Laboratory for Brain, Music, and Sound Research (BRAMS), Montréal, QC, Canada.
- Centre for Research on Brain, Language and Music (CRBLM), McGill University, 3640 de la Montagne, Montréal, QC, H3G 2A8, Canada.
| | - Trent Nicol
- Auditory Neuroscience Laboratory, Department of Communication Sciences, Northwestern University, 2240 Campus Dr., Evanston, IL, 60208, USA
| | - Travis White-Schwoch
- Auditory Neuroscience Laboratory, Department of Communication Sciences, Northwestern University, 2240 Campus Dr., Evanston, IL, 60208, USA
| | - Bharath Chandrasekaran
- Communication Sciences and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, Forbes Tower, 3600 Atwood St, Pittsburgh, PA, 15260, USA
| | - Jennifer Krizman
- Auditory Neuroscience Laboratory, Department of Communication Sciences, Northwestern University, 2240 Campus Dr., Evanston, IL, 60208, USA
| | - Erika Skoe
- Department of Speech, Language, and Hearing Sciences, The Connecticut Institute for the Brain and Cognitive Sciences, University of Connecticut, 2 Alethia Drive, Unit 1085, Storrs, CT, 06269, USA
| | - Robert J Zatorre
- International Laboratory for Brain, Music, and Sound Research (BRAMS), Montréal, QC, Canada
- Centre for Research on Brain, Language and Music (CRBLM), McGill University, 3640 de la Montagne, Montréal, QC, H3G 2A8, Canada
- Montreal Neurological Institute, McGill University, 3801 rue Université, Montréal, QC, H3A 2B4, Canada
| | - Nina Kraus
- Auditory Neuroscience Laboratory, Department of Communication Sciences, Northwestern University, 2240 Campus Dr., Evanston, IL, 60208, USA
- Department of Neurobiology, Northwestern University, 2205 Tech Dr., Evanston, IL, 60208, USA
- Department of Otolaryngology, Northwestern University, 420 E Superior St., Chicago, IL, 6011, USA
| |
Collapse
|
30
|
Bidelman GM, Mahmud MS, Yeasin M, Shen D, Arnott SR, Alain C. Age-related hearing loss increases full-brain connectivity while reversing directed signaling within the dorsal-ventral pathway for speech. Brain Struct Funct 2019; 224:2661-2676. [PMID: 31346715 PMCID: PMC6778722 DOI: 10.1007/s00429-019-01922-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/13/2019] [Indexed: 01/08/2023]
Abstract
Speech comprehension difficulties are ubiquitous to aging and hearing loss, particularly in noisy environments. Older adults' poorer speech-in-noise (SIN) comprehension has been related to abnormal neural representations within various nodes (regions) of the speech network, but how senescent changes in hearing alter the transmission of brain signals remains unspecified. We measured electroencephalograms in older adults with and without mild hearing loss during a SIN identification task. Using functional connectivity and graph-theoretic analyses, we show that hearing-impaired (HI) listeners have more extended (less integrated) communication pathways and less efficient information exchange among widespread brain regions (larger network eccentricity) than their normal-hearing (NH) peers. Parameter optimized support vector machine classifiers applied to EEG connectivity data showed hearing status could be decoded (> 85% accuracy) solely using network-level descriptions of brain activity, but classification was particularly robust using left hemisphere connections. Notably, we found a reversal in directed neural signaling in left hemisphere dependent on hearing status among specific connections within the dorsal-ventral speech pathways. NH listeners showed an overall net "bottom-up" signaling directed from auditory cortex (A1) to inferior frontal gyrus (IFG; Broca's area), whereas the HI group showed the reverse signal (i.e., "top-down" Broca's → A1). A similar flow reversal was noted between left IFG and motor cortex. Our full-brain connectivity results demonstrate that even mild forms of hearing loss alter how the brain routes information within the auditory-linguistic-motor loop.
Collapse
Affiliation(s)
- Gavin M Bidelman
- Institute for Intelligent Systems, University of Memphis, Memphis, TN, USA.
- School of Communication Sciences and Disorders, University of Memphis, 4055 North Park Loop, Memphis, TN, 38152, USA.
- Department of Anatomy and Neurobiology, University of Tennessee Health Sciences Center, Memphis, TN, USA.
| | - Md Sultan Mahmud
- Department of Electrical and Computer Engineering, University of Memphis, Memphis, TN, USA
| | - Mohammed Yeasin
- Department of Electrical and Computer Engineering, University of Memphis, Memphis, TN, USA
| | - Dawei Shen
- Rotman Research Institute-Baycrest Centre for Geriatric Care, Toronto, ON, Canada
| | - Stephen R Arnott
- Rotman Research Institute-Baycrest Centre for Geriatric Care, Toronto, ON, Canada
| | - Claude Alain
- Rotman Research Institute-Baycrest Centre for Geriatric Care, Toronto, ON, Canada
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
31
|
Bidelman GM, Myers MH. Frontal cortex selectively overrides auditory processing to bias perception for looming sonic motion. Brain Res 2019; 1726:146507. [PMID: 31606413 DOI: 10.1016/j.brainres.2019.146507] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 10/02/2019] [Accepted: 10/09/2019] [Indexed: 12/18/2022]
Abstract
Rising intensity sounds signal approaching objects traveling toward an observer. A variety of species preferentially respond to looming over receding auditory motion, reflecting an evolutionary perceptual bias for recognizing approaching threats. We probed the neural origins of this stark perceptual anisotropy to reveal how the brain creates privilege for auditory looming events. While recording neural activity via electroencephalography (EEG), human listeners rapidly judged whether dynamic (intensity varying) tones were looming or receding in percept. Behaviorally, listeners responded faster to auditory looms confirming a perceptual bias for approaching signals. EEG source analysis revealed sensory activation localized to primary auditory cortex (PAC) and decision-related activity in prefrontal cortex (PFC) within 200 ms after sound onset followed by additional expansive PFC activation by 500 ms. Notably, early PFC (but not PAC) activity rapidly differentiated looming and receding stimuli and this effect roughly co-occurred with sound arrival in auditory cortex. Brain-behavior correlations revealed an association between PFC neural latencies and listeners' speed of sonic motion judgments. Directed functional connectivity revealed stronger information flow from PFC → PAC during looming vs. receding sounds. Our electrophysiological data reveal a critical, previously undocumented role of prefrontal cortex in judging dynamic sonic motion. Both faster neural bias and a functional override of obligatory sensory processing via selective, directional PFC signaling toward auditory system establish the perceptual privilege for approaching looming sounds.
Collapse
Affiliation(s)
- Gavin M Bidelman
- Institute for Intelligent Systems, University of Memphis, Memphis, TN, USA; School of Communication Sciences & Disorders, University of Memphis, Memphis, TN, USA; University of Tennessee Health Sciences Center, Department of Anatomy and Neurobiology, Memphis, TN, USA.
| | - Mark H Myers
- University of Tennessee Health Sciences Center, Department of Anatomy and Neurobiology, Memphis, TN, USA
| |
Collapse
|
32
|
Bidelman GM, Price CN, Shen D, Arnott SR, Alain C. Afferent-efferent connectivity between auditory brainstem and cortex accounts for poorer speech-in-noise comprehension in older adults. Hear Res 2019; 382:107795. [PMID: 31479953 DOI: 10.1016/j.heares.2019.107795] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/14/2019] [Accepted: 08/22/2019] [Indexed: 12/19/2022]
Abstract
Speech-in-noise (SIN) comprehension deficits in older adults have been linked to changes in both subcortical and cortical auditory evoked responses. However, older adults' difficulty understanding SIN may also be related to an imbalance in signal transmission (i.e., functional connectivity) between brainstem and auditory cortices. By modeling high-density scalp recordings of speech-evoked responses with sources in brainstem (BS) and bilateral primary auditory cortices (PAC), we show that beyond attenuating neural activity, hearing loss in older adults compromises the transmission of speech information between subcortical and early cortical hubs of the speech network. We found that the strength of afferent BS→PAC neural signaling (but not the reverse efferent flow; PAC→BS) varied with mild declines in hearing acuity and this "bottom-up" functional connectivity robustly predicted older adults' performance in a SIN identification task. Connectivity was also a better predictor of SIN processing than unitary subcortical or cortical responses alone. Our neuroimaging findings suggest that in older adults (i) mild hearing loss differentially reduces neural output at several stages of auditory processing (PAC > BS), (ii) subcortical-cortical connectivity is more sensitive to peripheral hearing loss than top-down (cortical-subcortical) control, and (iii) reduced functional connectivity in afferent auditory pathways plays a significant role in SIN comprehension problems.
Collapse
Affiliation(s)
- Gavin M Bidelman
- School of Communication Sciences & Disorders, University of Memphis, Memphis, TN, USA; Institute for Intelligent Systems, University of Memphis, Memphis, TN, USA; University of Tennessee Health Sciences Center, Department of Anatomy and Neurobiology, Memphis, TN, USA.
| | - Caitlin N Price
- School of Communication Sciences & Disorders, University of Memphis, Memphis, TN, USA
| | - Dawei Shen
- Rotman Research Institute-Baycrest Centre for Geriatric Care, Toronto, Ontario, Canada
| | - Stephen R Arnott
- Rotman Research Institute-Baycrest Centre for Geriatric Care, Toronto, Ontario, Canada
| | - Claude Alain
- Rotman Research Institute-Baycrest Centre for Geriatric Care, Toronto, Ontario, Canada; University of Toronto, Department of Psychology, Toronto, Ontario, Canada; University of Toronto, Institute of Medical Sciences, Toronto, Ontario, Canada
| |
Collapse
|
33
|
Dimitrijevic A, Smith ML, Kadis DS, Moore DR. Neural indices of listening effort in noisy environments. Sci Rep 2019; 9:11278. [PMID: 31375712 PMCID: PMC6677804 DOI: 10.1038/s41598-019-47643-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/15/2019] [Indexed: 11/09/2022] Open
|
34
|
Bidelman GM, Walker B. Plasticity in auditory categorization is supported by differential engagement of the auditory-linguistic network. Neuroimage 2019; 201:116022. [PMID: 31310863 DOI: 10.1016/j.neuroimage.2019.116022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/30/2019] [Accepted: 07/12/2019] [Indexed: 12/21/2022] Open
Abstract
To construct our perceptual world, the brain categorizes variable sensory cues into behaviorally-relevant groupings. Categorical representations are apparent within a distributed fronto-temporo-parietal brain network but how this neural circuitry is shaped by experience remains undefined. Here, we asked whether speech and music categories might be formed within different auditory-linguistic brain regions depending on listeners' auditory expertise. We recorded EEG in highly skilled (musicians) vs. less experienced (nonmusicians) perceivers as they rapidly categorized speech and musical sounds. Musicians showed perceptual enhancements across domains, yet source EEG data revealed a double dissociation in the neurobiological mechanisms supporting categorization between groups. Whereas musicians coded categories in primary auditory cortex (PAC), nonmusicians recruited non-auditory regions (e.g., inferior frontal gyrus, IFG) to generate category-level information. Functional connectivity confirmed nonmusicians' increased left IFG involvement reflects stronger routing of signal from PAC directed to IFG, presumably because sensory coding is insufficient to construct categories in less experienced listeners. Our findings establish auditory experience modulates specific engagement and inter-regional communication in the auditory-linguistic network supporting categorical perception. Whereas early canonical PAC representations are sufficient to generate categories in highly trained ears, less experienced perceivers broadcast information downstream to higher-order linguistic brain areas (IFG) to construct abstract sound labels.
Collapse
Affiliation(s)
- Gavin M Bidelman
- Institute for Intelligent Systems, University of Memphis, Memphis, TN, USA; School of Communication Sciences & Disorders, University of Memphis, Memphis, TN, USA; University of Tennessee Health Sciences Center, Department of Anatomy and Neurobiology, Memphis, TN, USA.
| | - Breya Walker
- Institute for Intelligent Systems, University of Memphis, Memphis, TN, USA; Department of Psychology, University of Memphis, Memphis, TN, USA; Department of Mathematical Sciences, University of Memphis, Memphis, TN, USA
| |
Collapse
|
35
|
Bidelman GM, Sigley L, Lewis GA. Acoustic noise and vision differentially warp the auditory categorization of speech. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:60. [PMID: 31370660 PMCID: PMC6786888 DOI: 10.1121/1.5114822] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/05/2019] [Accepted: 06/07/2019] [Indexed: 06/10/2023]
Abstract
Speech perception requires grouping acoustic information into meaningful linguistic-phonetic units via categorical perception (CP). Beyond shrinking observers' perceptual space, CP might aid degraded speech perception if categories are more resistant to noise than surface acoustic features. Combining audiovisual (AV) cues also enhances speech recognition, particularly in noisy environments. This study investigated the degree to which visual cues from a talker (i.e., mouth movements) aid speech categorization amidst noise interference by measuring participants' identification of clear and noisy speech (0 dB signal-to-noise ratio) presented in auditory-only or combined AV modalities (i.e., A, A+noise, AV, AV+noise conditions). Auditory noise expectedly weakened (i.e., shallower identification slopes) and slowed speech categorization. Interestingly, additional viseme cues largely counteracted noise-related decrements in performance and stabilized classification speeds in both clear and noise conditions suggesting more precise acoustic-phonetic representations with multisensory information. Results are parsimoniously described under a signal detection theory framework and by a reduction (visual cues) and increase (noise) in the precision of perceptual object representation, which were not due to lapses of attention or guessing. Collectively, findings show that (i) mapping sounds to categories aids speech perception in "cocktail party" environments; (ii) visual cues help lattice formation of auditory-phonetic categories to enhance and refine speech identification.
Collapse
Affiliation(s)
- Gavin M Bidelman
- School of Communication Sciences & Disorders, University of Memphis, 4055 North Park Loop, Memphis, Tennessee 38152, USA
| | - Lauren Sigley
- School of Communication Sciences & Disorders, University of Memphis, 4055 North Park Loop, Memphis, Tennessee 38152, USA
| | - Gwyneth A Lewis
- School of Communication Sciences & Disorders, University of Memphis, 4055 North Park Loop, Memphis, Tennessee 38152, USA
| |
Collapse
|
36
|
Krishnan A, Suresh CH, Gandour JT. Tone language experience-dependent advantage in pitch representation in brainstem and auditory cortex is maintained under reverberation. Hear Res 2019; 377:61-71. [PMID: 30921642 DOI: 10.1016/j.heares.2019.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 02/10/2019] [Accepted: 03/13/2019] [Indexed: 10/27/2022]
Abstract
Long-term language and music experience enhances neural representation of temporal attributes of pitch in the brainstem and auditory cortex in favorable listening conditions. Herein we examine whether brainstem and cortical pitch mechanisms-shaped by long-term language experience-maintain this advantage in the presence of reverberation-induced degradation in pitch representation. Brainstem frequency following responses (FFR) and cortical pitch responses (CPR) were recorded concurrently from Chinese and English-speaking natives, using a Mandarin word exhibiting a high rising pitch (/yi2/). Stimuli were presented diotically in quiet (Dry), and in the presence of Slight, Mild, and Moderate reverberation conditions. Regardless of language group, the amplitude of both brainstem FFR (F0) and cortical CPR (NaPb) responses decreased with increases in reverberation. Response amplitude for Chinese, however, was larger than English in all reverberant conditions. The Chinese group also exhibited a robust rightward asymmetry at temporal electrode sites (T8 > T7) across stimulus conditions. Regardless of language group, direct comparison of brainstem and cortical responses revealed similar magnitude of change in response amplitude with increasing reverberation. These findings suggest that experience-dependent brainstem and cortical pitch mechanisms provide an enhanced and stable neural representation of pitch-relevant information that is maintained even in the presence of reverberation. Relatively greater degradative effects of reverberation on brainstem (FFR) compared to cortical (NaPb) responses suggest relatively stronger top-down influences on CPRs.
Collapse
Affiliation(s)
- Ananthanarayan Krishnan
- Purdue University, Department of Speech Language Hearing Sciences, Lyles-Porter Hall, 715 Clinic Drive, West Lafayette, IN 47907-2122, USA.
| | - Chandan H Suresh
- Purdue University, Department of Speech Language Hearing Sciences, Lyles-Porter Hall, 715 Clinic Drive, West Lafayette, IN 47907-2122, USA.
| | - Jackson T Gandour
- Purdue University, Department of Speech Language Hearing Sciences, Lyles-Porter Hall, 715 Clinic Drive, West Lafayette, IN 47907-2122, USA.
| |
Collapse
|
37
|
Bidelman GM, Heath ST. Neural Correlates of Enhanced Audiovisual Processing in the Bilingual Brain. Neuroscience 2019; 401:11-20. [PMID: 30639306 PMCID: PMC6379141 DOI: 10.1016/j.neuroscience.2019.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/22/2018] [Accepted: 01/04/2019] [Indexed: 10/27/2022]
Abstract
Bilingualism is associated with enhancements in perceptual and cognitive processing necessary for juggling multiple languages. Recent psychophysical studies demonstrate bilinguals also show enhanced multisensory processing and more restricted temporal binding windows for integrating audiovisual information. Here, we probed the neural mechanisms of bilinguals' audiovisual benefits. We recorded neuroelectric responses in mono- and bi-lingual listeners to the double-flash paradigm in which auditory beeps concurrent with a single visual flash induces the perceptual illusion of multiple flashes. Relative to monolinguals, bilinguals showed less susceptibility to the illusion (fewer false perceptual reports) coupled with stronger and faster event-related potentials to audiovisual information. Source analyses of EEG data revealed monolinguals' increased propensity for erroneously perceiving audiovisual stimuli was attributed to increased activity in primary visual (V1) and auditory cortex (PAC), increases in multisensory association areas (BA 37), but reduced frontal activity (BA 10). Regional activations were associated with an opposite pattern of behaviors: whereas stronger V1 and PAC activity predicted slower behavioral responses, stronger frontal BA10 responses elicited faster judgments. Our results suggest bilinguals' higher precision in audiovisual perception reflects more veridical sensory coding of physical cues coupled with superior top-down gating of sensory information to suppress the generation of false percepts. Findings underscore that the plasticity afforded by speaking multiple languages shapes extra-linguistic brain regions and can enhance audiovisual brain processing in a domain-general manner.
Collapse
Affiliation(s)
- Gavin M Bidelman
- School of Communication Sciences & Disorders, University of Memphis, Memphis, TN, USA; Institute for Intelligent Systems, University of Memphis, Memphis, TN, USA; University of Tennessee Health Sciences Center, Department of Anatomy and Neurobiology, Memphis, TN, USA.
| | - Shelley T Heath
- School of Communication Sciences & Disorders, University of Memphis, Memphis, TN, USA
| |
Collapse
|
38
|
Yellamsetty A, Bidelman GM. Brainstem correlates of concurrent speech identification in adverse listening conditions. Brain Res 2019; 1714:182-192. [PMID: 30796895 DOI: 10.1016/j.brainres.2019.02.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/07/2019] [Accepted: 02/19/2019] [Indexed: 01/20/2023]
Abstract
When two voices compete, listeners can segregate and identify concurrent speech sounds using pitch (fundamental frequency, F0) and timbre (harmonic) cues. Speech perception is also hindered by the signal-to-noise ratio (SNR). How clear and degraded concurrent speech sounds are represented at early, pre-attentive stages of the auditory system is not well understood. To this end, we measured scalp-recorded frequency-following responses (FFR) from the EEG while human listeners heard two concurrently presented, steady-state (time-invariant) vowels whose F0 differed by zero or four semitones (ST) presented diotically in either clean (no noise) or noise-degraded (+5dB SNR) conditions. Listeners also performed a speeded double vowel identification task in which they were required to identify both vowels correctly. Behavioral results showed that speech identification accuracy increased with F0 differences between vowels, and this perceptual F0 benefit was larger for clean compared to noise degraded (+5dB SNR) stimuli. Neurophysiological data demonstrated more robust FFR F0 amplitudes for single compared to double vowels and considerably weaker responses in noise. F0 amplitudes showed speech-on-speech masking effects, along with a non-linear constructive interference at 0ST, and suppression effects at 4ST. Correlations showed that FFR F0 amplitudes failed to predict listeners' identification accuracy. In contrast, FFR F1 amplitudes were associated with faster reaction times, although this correlation was limited to noise conditions. The limited number of brain-behavior associations suggests subcortical activity mainly reflects exogenous processing rather than perceptual correlates of concurrent speech perception. Collectively, our results demonstrate that FFRs reflect pre-attentive coding of concurrent auditory stimuli that only weakly predict the success of identifying concurrent speech.
Collapse
Affiliation(s)
- Anusha Yellamsetty
- School of Communication Sciences & Disorders, University of Memphis, Memphis, TN, USA; Department of Communication Sciences & Disorders, University of South Florida, USA.
| | - Gavin M Bidelman
- School of Communication Sciences & Disorders, University of Memphis, Memphis, TN, USA; Institute for Intelligent Systems, University of Memphis, Memphis, TN, USA; University of Tennessee Health Sciences Center, Department of Anatomy and Neurobiology, Memphis, TN, USA.
| |
Collapse
|
39
|
Inherent auditory skills rather than formal music training shape the neural encoding of speech. Proc Natl Acad Sci U S A 2018; 115:13129-13134. [PMID: 30509989 DOI: 10.1073/pnas.1811793115] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Musical training is associated with a myriad of neuroplastic changes in the brain, including more robust and efficient neural processing of clean and degraded speech signals at brainstem and cortical levels. These assumptions stem largely from cross-sectional studies between musicians and nonmusicians which cannot address whether training itself is sufficient to induce physiological changes or whether preexisting superiority in auditory function before training predisposes individuals to pursue musical interests and appear to have similar neuroplastic benefits as musicians. Here, we recorded neuroelectric brain activity to clear and noise-degraded speech sounds in individuals without formal music training but who differed in their receptive musical perceptual abilities as assessed objectively via the Profile of Music Perception Skills. We found that listeners with naturally more adept listening skills ("musical sleepers") had enhanced frequency-following responses to speech that were also more resilient to the detrimental effects of noise, consistent with the increased fidelity of speech encoding and speech-in-noise benefits observed previously in highly trained musicians. Further comparisons between these musical sleepers and actual trained musicians suggested that experience provides an additional boost to the neural encoding and perception of speech. Collectively, our findings suggest that the auditory neuroplasticity of music engagement likely involves a layering of both preexisting (nature) and experience-driven (nurture) factors in complex sound processing. In the absence of formal training, individuals with intrinsically proficient auditory systems can exhibit musician-like auditory function that can be further shaped in an experience-dependent manner.
Collapse
|