1
|
Guo S, Cheng C, Wu Y, Shen K, Zhang D, Chen B, Wang X, Shen L, Zhang Q, Chai R, Wang G, Zhou F. Metabolomic and Cellular Mechanisms of Drug-Induced Ototoxicity and Nephrotoxicity: Therapeutic Implications of Uric Acid Modulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415041. [PMID: 40041973 PMCID: PMC12021111 DOI: 10.1002/advs.202415041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/02/2025] [Indexed: 04/26/2025]
Abstract
Certain medications, including cisplatin and neomycin, often cause both hearing loss and renal dysfunction. This study aims to uncover the common mechanisms behind drug-induced ototoxicity and nephrotoxicity to aid early diagnosis and treatment. Metabolomic analyses reveal simultaneous disruptions in endogenous metabolic networks in the kidney, inner ear, and serum after administrating cisplatin or neomycin. Notably, a marked elevation in uric acid (UA), a recognized indicator of renal tubular injury, is identified. Supplementing UA and inhibiting its renal excretion worsen hearing loss and hair cell damage. Single-cell nucleus sequencing and immunohistochemistry reveal major changes in xanthine oxidase and ABCG2, crucial for UA metabolism, primarily in cochlear stria vascularis cells rather than hair cells. Cisplatin triggers a significant release of UA from stria vascularis cells, reaching concentrations sufficient to induce autophagy-dependent ferroptosis in hair cells. In a coculture system, targeted interventions against these two proteins in stria vascularis cells, through either pharmacological inhibition or genetic manipulation, markedly decrease the elevated UA release and the subsequent ferroptosis of hair cells. These findings suggest a metabolic connection between the inner ear and the kidney, highlighting the therapeutic potential of modulating UA to mitigate drug-induced nephrotoxicity and ototoxicity.
Collapse
Affiliation(s)
- Suhan Guo
- Key Laboratory of Drug Metabolism and PharmacokineticsState Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| | - Cheng Cheng
- Department of Otolaryngology Head and Neck SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjing210096China
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantong226001China
| | - Yunhao Wu
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117China
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
| | - Kaidi Shen
- Key Laboratory of Drug Metabolism and PharmacokineticsState Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| | - Depeng Zhang
- Key Laboratory of Drug Metabolism and PharmacokineticsState Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| | - Bin Chen
- Key Laboratory of Drug Metabolism and PharmacokineticsState Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| | - Xinyu Wang
- Key Laboratory of Drug Metabolism and PharmacokineticsState Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
- Department of PharmacyGeneral Hospital of Ningxia Medical UniversityYinchuan750004China
| | - Luping Shen
- Key Laboratory of Drug Metabolism and PharmacokineticsState Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| | - Qixiang Zhang
- Key Laboratory of Drug Metabolism and PharmacokineticsState Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| | - Renjie Chai
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantong226001China
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and PharmacokineticsState Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| | - Fang Zhou
- Key Laboratory of Drug Metabolism and PharmacokineticsState Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| |
Collapse
|
2
|
Wallace G, Ji L, Cassinotti LR, Kachman M, Lyssiotis CA, Burant CF, Corfas G. Lipidomics profiling identifies β-oxidation as a key process in noise-induced hearing loss. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.25.645361. [PMID: 40196644 PMCID: PMC11974867 DOI: 10.1101/2025.03.25.645361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Noise-induced hearing loss (NIHL) is the second leading cause of hearing loss worldwide, and the most common cause in young adults. Despite this burden, the molecular mechanisms by which noise causes damage are poorly understood, and there are no pharmacologic therapies to prevent or reduce noise-induced damage to the inner ear. Here, using targeted and untargeted lipidomics, we show that noise exposure induces changes in fatty acid (FA) and acylcarnitine (CAR) species in the inner ear, a metabolic profile indicative of noise-induced increases in β- oxidation. This conclusion is validated through treatment with Etomoxir, an inhibitor of carnitine palmitoyltransferase 1A, the rate-limiting enzyme of long-chain β-oxidation. Furthermore, we demonstrate that blocking β-oxidation with Etomoxir does not affect hearing in a normal acoustic environment but reduces the extent of hearing loss induced by an intense noise exposure (2 hours, 112 dB SPL, 8-16kHz). Together, our findings provide insights into cochlear energy metabolism and suggest that its modulation could be targeted to reduce NIHL.
Collapse
|
3
|
Attanasio C, Palladino A, Giaquinto D, Scavizzi F, Raspa M, Peres C, Anastasio C, Scocco P, Lucini C, de Girolamo P, D'Angelo L, De Felice E. Morphological phenotyping of the aging cochlea in inbred C57BL/6N and outbred CD1 mouse strains. Aging Cell 2025; 24:e14362. [PMID: 39482905 PMCID: PMC11709085 DOI: 10.1111/acel.14362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 11/03/2024] Open
Abstract
Morphological mouse phenotyping plays a pivotal role in the translational setting and even more in the area of auditory research, where mouse is a central model organism due to the evolutionary genetic relationship and morpho-functional analogies with the human auditory system. However, some results obtained in murine models cannot be translated to humans due to the inadequate description of experimental conditions underlying poor reproducibility. We approach the characterization of the aging process of the mouse cochlea in animals up to 18 months of age belonging to two of the most used outbred (CD1) and inbred (C57BL/6N) strains. Striving to reduce any environmental variable we performed our study compliantly to the ARRIVE guidelines. We integrated instrumental data (auditory brainstem response test), with morphological analyses to correlate functional discrepancies to morphological changes and track the differences in the evolution of sensorineural hearing loss in the two strains. We featured the localization of Gipc3, Myosin VIIa, and TMC1 in hair cells of the Corti organ as well as NF 200 and the density of type I neuron in the spiral ganglion. We outlined age-related hearing loss (ARHL) in both strains, and a clear drop in the selected marker localization. However, in CD1 we detected a different trend allowing the identification of potential strain-specific mechanisms, namely an increase in myosin VIIa in 6 months aging mice in comparison to 2 months old animals. Our findings represent an asset to investigate the strain-dependent physiological trigger of ARHL providing new insights in the translational area.
Collapse
Affiliation(s)
- Chiara Attanasio
- Department of Veterinary Medicine and Animal ProductionUniversity of Naples Federico IINaplesItaly
| | - Antonio Palladino
- Department of Agricultural SciencesUniversity of Naples Federico IINaplesItaly
| | - Daniela Giaquinto
- Department of Veterinary Medicine and Animal ProductionUniversity of Naples Federico IINaplesItaly
| | - Ferdinando Scavizzi
- National Research Council, CNR—Institute of Cellular Biology and NeurobiologyMonterotondoItaly
- National Research Council, CNR—Institute of Biochemistry and Cell Biology ‐ International Campus EMMA‐INFRAFRONTIER‐IMPCMonterotondoItaly
| | - Marcello Raspa
- National Research Council, CNR—Institute of Cellular Biology and NeurobiologyMonterotondoItaly
- National Research Council, CNR—Institute of Biochemistry and Cell Biology ‐ International Campus EMMA‐INFRAFRONTIER‐IMPCMonterotondoItaly
| | - Chiara Peres
- National Research Council, CNR—Institute of Cellular Biology and NeurobiologyMonterotondoItaly
| | - Camilla Anastasio
- Department of Precision MedicineUniversity of Campania Luigi VanvitelliNaplesItaly
| | - Paola Scocco
- School of Biosciences and Veterinary MedicineUniversity of CamerinoCamerinoItaly
| | - Carla Lucini
- Department of Veterinary Medicine and Animal ProductionUniversity of Naples Federico IINaplesItaly
| | - Paolo de Girolamo
- Department of Veterinary Medicine and Animal ProductionUniversity of Naples Federico IINaplesItaly
| | - Livia D'Angelo
- Department of Veterinary Medicine and Animal ProductionUniversity of Naples Federico IINaplesItaly
| | - Elena De Felice
- School of Biosciences and Veterinary MedicineUniversity of CamerinoCamerinoItaly
| |
Collapse
|
4
|
Huang M, Mao S, Pan Y, Zhang Z, Gui F, Tan X, Hong Y, Chen R. Pesticide metabolite 3, 5, 6-trichloro-2-pyridinol causes massive damage to the cochlea resulting in hearing loss in adult mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124691. [PMID: 39134170 DOI: 10.1016/j.envpol.2024.124691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/08/2024] [Accepted: 08/05/2024] [Indexed: 08/25/2024]
Abstract
Pesticides are a group of extensively used man-made chemicals with high toxicity and strong residues, which are closely related to hearing health. Pesticide metabolite 3, 5, 6-Trichloro-2-pyridinol (TCP) exposure leads to neurotoxicity and auditory cell toxicity. However, whether TCP causes damage to hearing in adult mice is not clear. In this study, adult male C57BL/6 mice continuously exposed to TCP for 21 days showed a dose-dependent elevation of hearing threshold. Outer hair cells and spiral neuron cells were lost in a dose-dependent manner. Type I and V of spiral ligament were severely shrunk and stria vascularis were thinned in mice after 50 and 150 mg/kg TCP exposure. Similarly, ROS levels in the cochlea were significantly increased whereas the activities of anti-oxidation enzymes were decreased after TCP exposure. The expression level of Na+/K+ ATPase was decreased, resulting in cochlear potential disruption. Levels of inflammatory factors (TNF-α and IL-1β), γ-H2AX, and pro-apoptotic-related factors (Bax and cleaved-Caspase 3) were elevated, respectively. These results suggest that TCP can cause oxidative stress, inflammation, and imbalance of cochlear potential in the cochlea, induce cochlear DNA damage and apoptosis, and cause cochlear morphological changes, eventually leading to impaired hearing function.
Collapse
Affiliation(s)
- Mao Huang
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Shuangshuang Mao
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Yunfei Pan
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Ziying Zhang
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Fei Gui
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Xiaohua Tan
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Yu Hong
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Rong Chen
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
5
|
Wu D, Zhu B, Yang X, Sun D, Zhu J, Jiang K, Shen N, Yang X, Huang X. Histamine deficiency exacerbates cisplatin-induced ferroptosis in cochlea hair cells of HDC knockout mice. Int Immunopharmacol 2024; 138:112639. [PMID: 38972209 DOI: 10.1016/j.intimp.2024.112639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
Cisplatin (CDDP) is extensively utilized in the management of diverse types of cancers, but its ototoxicity cannot be ignored, and clinical interventions are not ideal. Histidine decarboxylase (HDC) is the exclusive enzyme for histamine synthesis. Anti-histamine receptor drugs are ubiquitously employed in the therapeutics of allergies and gastrointestinal diseases. Yet, the specific role of histamine and its signaling in the inner ear is not fully understood. This study utilized cisplatin treated mice and HEI-OC1 auditory hair cell line to establish a cisplatin-induced ototoxicity (CIO) model. Histidine decarboxylase knockout (HDC-/-) mice and histamine receptor 1 (H1R) antagonist were utilized to investigate the influence of HDC/histamine/H1R signaling on ototoxicity. The results identified HDC and H1R expression in mouse hair cells. Transcriptomics indicated that the expression levels of oxidative stress-related genes in the cochlea of HDC-/- mice increased. Furthermore, histamine deficiency or suppression of H1R signaling accelerated HC ferroptosis, a pivotal factor underlying the aggravation of CIO in vivo and in vitro, conversely, the supplementation of exogenous histamine reversed these deleterious effects. Mechanistically, this study revealed that the malfunction of HDC/histamine/H1R signaling induced upregulation of NRF2 expression, accompanied by the upregulation of ACSL4 and downregulation of GPX4 expression, which are major regulatory factors of ferroptosis. In summary, histamine deficiency may induce hair cell death by regulating the H1R pathway and exacerbate CIO. Our findings have indicated a potential therapeutic target for CIO.
Collapse
Affiliation(s)
- Daquan Wu
- Department of Otorhinolaryngology Head and Neck Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Baoling Zhu
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Shandong 266071, China
| | - Xiyang Yang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital & Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Dili Sun
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital & Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jianfu Zhu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital & Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Kanglun Jiang
- Department of Otorhinolaryngology Head and Neck Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Na Shen
- Department of Otorhinolaryngology Head and Neck Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Xiangdong Yang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital & Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Xinsheng Huang
- Department of Otorhinolaryngology Head and Neck Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
6
|
Guo X, Zhang X, Li M, Peng Y, Wang Z, Liu J. Preliminary screening of biomarkers and drug candidates in a mouse model of β-thalassemia based on quasi-targeted metabolomics. Front Physiol 2024; 15:1452558. [PMID: 39247159 PMCID: PMC11377281 DOI: 10.3389/fphys.2024.1452558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/06/2024] [Indexed: 09/10/2024] Open
Abstract
Background β-thalassemia (β-TH) is a hereditary hemolytic anemia that results in deficient hemoglobin (Hb) synthesis. It is characterized by ineffective erythropoiesis, anemia, splenomegaly, and systemic iron overload. Exploration new potential biomarkers and drug candidates is important to facilitate the prevention and treatment of β-TH. Methods We applied quasi-targeted metabolomics between wild type (Wt) and heterozygous β-TH mice (Th3/+), a model of non-transfusion-dependent β-TH intermedia, in plasma and peripheral blood (PB) cells. Futher data was deeply mined by Kyoto Encyclopedia of Genomes (KEGG) and machine algorithms methods. Results Using KEGG enrichment analysis, we found that taurine and hypotaurine metabolism disorders in plasma and alanine, aspartate and glutamate metabolism disorders in PB cells. After systematically anatomize the metabolites by machine algorithms, we confirmed that alpha-muricholic acidUP and N-acetyl-DL-phenylalanineUP in plasma and Dl-3-hydroxynorvalineUP, O-acetyl-L-serineUP, H-abu-OHUP, S-(Methyl) glutathioneUP, sepiapterinDOWN, and imidazoleacetic acidDOWN in PB cells play key roles in predicting the occurrence of β-TH. Furthermore, Sepiapterin, Imidazoleacetic acid, Methyl alpha-D-glucopyranoside and alpha-ketoglutaric acid have a good binding capacity to hemoglobin E through molecular docking and are considered to be potential drug candidates for β-TH. Conclusion Those results may help in identify useful molecular targets in the diagnosis and treatment of β-TH and lays a strong foundation for further research.
Collapse
Affiliation(s)
- Xianfeng Guo
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, China
| | - Xuchao Zhang
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, China
| | - Min Li
- Department of medical laboratory college, Changsha Medical University, Changsha, China
| | - Yuanliang Peng
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, China
| | - Zi Wang
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, China
| | - Jing Liu
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, China
| |
Collapse
|
7
|
Khorrami M, Pastras C, Haynes PA, Mirzaei M, Asadnia M. The Current State of Proteomics and Metabolomics for Inner Ear Health and Disease. Proteomes 2024; 12:17. [PMID: 38921823 PMCID: PMC11207525 DOI: 10.3390/proteomes12020017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024] Open
Abstract
Characterising inner ear disorders represents a significant challenge due to a lack of reliable experimental procedures and identified biomarkers. It is also difficult to access the complex microenvironments of the inner ear and investigate specific pathological indicators through conventional techniques. Omics technologies have the potential to play a vital role in revolutionising the diagnosis of ear disorders by providing a comprehensive understanding of biological systems at various molecular levels. These approaches reveal valuable information about biomolecular signatures within the cochlear tissue or fluids such as the perilymphatic and endolymphatic fluid. Proteomics identifies changes in protein abundance, while metabolomics explores metabolic products and pathways, aiding the characterisation and early diagnosis of diseases. Although there are different methods for identifying and quantifying biomolecules, mass spectrometry, as part of proteomics and metabolomics analysis, could be utilised as an effective instrument for understanding different inner ear disorders. This study aims to review the literature on the application of proteomic and metabolomic approaches by specifically focusing on Meniere's disease, ototoxicity, noise-induced hearing loss, and vestibular schwannoma. Determining potential protein and metabolite biomarkers may be helpful for the diagnosis and treatment of inner ear problems.
Collapse
Affiliation(s)
- Motahare Khorrami
- Faculty of Science and Engineering, School of Engineering, Macquarie University, Sydney 2109, NSW, Australia; (M.K.); (C.P.)
| | - Christopher Pastras
- Faculty of Science and Engineering, School of Engineering, Macquarie University, Sydney 2109, NSW, Australia; (M.K.); (C.P.)
| | - Paul A. Haynes
- School of Natural Sciences, Macquarie University, Macquarie Park, Sydney 2109, NSW, Australia;
| | - Mehdi Mirzaei
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney 2109, NSW, Australia;
| | - Mohsen Asadnia
- Faculty of Science and Engineering, School of Engineering, Macquarie University, Sydney 2109, NSW, Australia; (M.K.); (C.P.)
| |
Collapse
|
8
|
Liu Y, Zeng X, Zhang H. An Emerging Approach of Age-Related Hearing Loss Research: Application of Integrated Multi-Omics Analysis. Adv Biol (Weinh) 2024; 8:e2300613. [PMID: 38279573 DOI: 10.1002/adbi.202300613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/03/2024] [Indexed: 01/28/2024]
Abstract
As one of the most common otologic diseases in the elderly, age-related hearing loss (ARHL) usually characterized by hearing loss and cognitive disorders, which have a significant impact on the elderly's physical and mental health and quality of life. However, as a typical disease of aging, it is unclear why aging causes widespread hearing impairment in the elderly. As molecular biological experiments have been conducted for research recently, ARHL is gradually established at various levels with the application and development of integrated multi-omics analysis in the studies of ARHL. Here, the recent progress in the application of multi-omics analysis in the molecular mechanisms of ARHL development and therapeutic regimens, including the combined analysis of different omics, such as transcriptome, proteome, and metabolome, to screen for risk sites, risk genes, and differences in lipid metabolism, etc., is outlined and the integrated histological data further promote the profound understanding of the disease process as well as physiological mechanisms of ARHL. The advantages and disadvantages of multi-omics analysis in disease research are also discussed and the authors speculate on the future prospects and applications of this part-to-whole approach, which may provide more comprehensive guidance for ARHL and aging disease prevention and treatment.
Collapse
Affiliation(s)
- Yue Liu
- Department of Otolaryngology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, China
- Department of Otolaryngology, Longgang E.N.T. Hospital and Shenzhen Key Laboratory of E.N.T, Institute of E.N.T., Shenzhen, 518172, China
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, 519041, China
| | - Xianhai Zeng
- Department of Otolaryngology, Longgang E.N.T. Hospital and Shenzhen Key Laboratory of E.N.T, Institute of E.N.T., Shenzhen, 518172, China
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, 519041, China
| | - Huasong Zhang
- Department of Otolaryngology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, China
- Department of Otolaryngology, Longgang E.N.T. Hospital and Shenzhen Key Laboratory of E.N.T, Institute of E.N.T., Shenzhen, 518172, China
| |
Collapse
|
9
|
Zhang Y, Luo L, Gan P, Chen X, Li X, Pang Y, Yu X, Yu K. Exposure to pentachlorophenol destructs the symbiotic relationship between zooxanthellae and host and induces pathema in coral Porites lutea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167956. [PMID: 37884147 DOI: 10.1016/j.scitotenv.2023.167956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023]
Abstract
Stress from chemical pollutants is among the key issues that have adverse impacts on coral reefs. As a persistent organic pollutant, pentachlorophenol (PCP) has been detected in the seawater of Weizhou Island and was proved to have significant adverse effects on aquatic animals. However, little is known about its effects on scleractinian coral. Therefore, we investigated the response of the coral Porites lutea to PCP stress. Coral bleaching, photosynthesis parameters and antioxidant enzyme activities of P. lutea under PCP exposure were documented. After 96 h of exposure, significant tissue loss and bleaching occurred when the PCP concentration exceeded 100 μg/L. The density of symbiotic zooxanthellae decreased from 2.06 × 106 cells/cm2 to 0.93 × 106 cells/cm2 when the PCP concentration increased from 1 μg/L- 1000 μg/L. Long-term exposure of 120 days to PCP at 0.1 μg/L also led to coral bleaching, the maximum photochemical quantum yield of PSII in P. lutea nubbins significantly decreased to 0.482. The analysis of microbial community distribution indicated that the increase of the pathogenic bacterium Citrobacter may be one of the inducers of coral bleaching. Conjoint analysis of transcriptomics and proteomics showed that the metabolism of amino acids and carbohydrates in zooxanthellae was abnormal, leading to the destruction of its symbiotic relationship with the host. The immune system of the host was disrupted, which could be linked to the prevalence of coral pathema. The toxic responses of PCP on both zooxanthellae and its host were further confirmed by the upregulation of the differential metabolites including 1-naphthylamine and phosphatidylcholine, etc.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- School of Marine Sciences, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Lan Luo
- School of Marine Sciences, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| | - Pin Gan
- School of Marine Sciences, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| | - Xuan Chen
- School of Marine Sciences, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| | - Xiaoli Li
- School of Marine Sciences, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| | - Yan Pang
- School of Marine Sciences, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| | - Xiaopeng Yu
- School of Marine Sciences, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| | - Kefu Yu
- School of Marine Sciences, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China.
| |
Collapse
|
10
|
Wan H, Wang W, Liu J, Zhang Y, Yang B, Hua R, Chen H, Chen S, Hua Q. Cochlear metabolomics, highlighting novel insights of purine metabolic alterations in age-related hearing loss. Hear Res 2023; 440:108913. [PMID: 37939412 DOI: 10.1016/j.heares.2023.108913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/29/2023] [Accepted: 11/02/2023] [Indexed: 11/10/2023]
Abstract
Aging is an inevitable phase in mammals that leads to health impairments, including hearing loss. Age-related hearing loss (AHL) leads to psychosocial problems and cognitive decline in the elderly. In this study, mean thresholds of auditory brainstem responses (ABR) and distortion-product otoacoustic emissions (DPOAE) increased at multiple frequencies in aged rats (14 months old) compared to young rats (2 months old). Using untargeted ultra-high performance liquid chromatography-mass spectroscopy (LC-MS), we quantified molecular metabolic markers in the cochlea of aged rats with hearing loss. A total of 137 different metabolites were identified in two groups, highlighting several prominent metabolic pathways related to purine metabolism; glycine, serine, and threonine metabolism; arginine and proline metabolism; and pyrimidine metabolism. In addition, the beneficial effects of purine supplementation were demonstrated in a mimetic model of senescent marginal cells (MCs). Overall, altered metabolic profiling is both the cause and manifestation of pathology, and our results suggest that cellular senescence and dysfunctional cochlear metabolism may contribute to the progression of AHL. These findings are seminal in elucidating the pathophysiological mechanisms underlying AHL and serve as a basis for future clinical predictions and interventions in AHL.
Collapse
Affiliation(s)
- Huanzhi Wan
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; Research Institute of Otolaryngology-Head and Neck Surgery, Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; The First Clinical School of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Wenjing Wang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; Research Institute of Otolaryngology-Head and Neck Surgery, Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; The First Clinical School of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Jingchun Liu
- The First Clinical School of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Yunlong Zhang
- Research Institute of Otolaryngology-Head and Neck Surgery, Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; The First Clinical School of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Bingqian Yang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; Research Institute of Otolaryngology-Head and Neck Surgery, Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; The First Clinical School of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Rongkai Hua
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; Research Institute of Otolaryngology-Head and Neck Surgery, Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; The First Clinical School of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Huidong Chen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; Research Institute of Otolaryngology-Head and Neck Surgery, Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; The First Clinical School of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Shiming Chen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; Research Institute of Otolaryngology-Head and Neck Surgery, Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China.
| | - Qingquan Hua
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; Research Institute of Otolaryngology-Head and Neck Surgery, Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China.
| |
Collapse
|
11
|
Yang Z, Man J, Liu Y, Zhang H, Wu D, Shao D, Hao B, Wang S. Study on the Alleviating Effect and Potential Mechanism of Ethanolic Extract of Limonium aureum (L.) Hill. on Lipopolysaccharide-Induced Inflammatory Responses in Macrophages. Int J Mol Sci 2023; 24:16272. [PMID: 38003461 PMCID: PMC10671607 DOI: 10.3390/ijms242216272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Inflammation is the host response of immune cells during infection and traumatic tissue injury. An uncontrolled inflammatory response leads to inflammatory cascade, which in turn triggers a variety of diseases threatening human and animal health. The use of existing inflammatory therapeutic drugs is constrained by their high cost and susceptibility to systemic side effects, and therefore new therapeutic candidates for inflammatory diseases need to be urgently developed. Natural products are characterized by wide sources and rich pharmacological activities, which are valuable resources for the development of new drugs. This study aimed to uncover the alleviating effect and potential mechanism of natural product Limonium aureum (LAH) on LPS-induced inflammatory responses in macrophages. The experimental results showed that the optimized conditions for LAH ultrasound-assisted extraction via response surface methodology were an ethanol concentration of 72%, a material-to-solvent ratio of 1:37 g/mL, an extraction temperature of 73 °C, and an extraction power of 70 W, and the average extraction rate of LAH total flavonoids was 0.3776%. Then, data of 1666 components in LAH ethanol extracts were obtained through quasi-targeted metabolomics analysis. The ELISA showed that LAH significantly inhibited the production of pro-inflammatory cytokines while promoting the secretion of anti-inflammatory cytokines. Finally, combined with the results of network pharmacology analysis and protein expression validation of hub genes, it was speculated that LAH may alleviate LPS-induced inflammatory responses of macrophages through the AKT1/RELA/PTGS2 signaling pathway and the MAPK3/JUN signaling pathway. This study preliminarily revealed the anti-inflammatory activity of LAH and the molecular mechanism of its anti-inflammatory action, and provided a theoretical basis for the development of LAH as a new natural anti-inflammatory drug.
Collapse
Affiliation(s)
- Zhen Yang
- Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Z.Y.); (Y.L.); (H.Z.); (D.W.); (D.S.)
| | - Jingyuan Man
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China;
| | - Yu Liu
- Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Z.Y.); (Y.L.); (H.Z.); (D.W.); (D.S.)
| | - Hongjuan Zhang
- Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Z.Y.); (Y.L.); (H.Z.); (D.W.); (D.S.)
| | - Di Wu
- Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Z.Y.); (Y.L.); (H.Z.); (D.W.); (D.S.)
| | - Dan Shao
- Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Z.Y.); (Y.L.); (H.Z.); (D.W.); (D.S.)
| | - Baocheng Hao
- Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Z.Y.); (Y.L.); (H.Z.); (D.W.); (D.S.)
| | - Shengyi Wang
- Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Z.Y.); (Y.L.); (H.Z.); (D.W.); (D.S.)
| |
Collapse
|
12
|
Kong L, Domarecka E, Szczepek AJ. Histamine and Its Receptors in the Mammalian Inner Ear: A Scoping Review. Brain Sci 2023; 13:1101. [PMID: 37509031 PMCID: PMC10376984 DOI: 10.3390/brainsci13071101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Histamine is a widely distributed biogenic amine with multiple biological functions mediated by specific receptors that determine the local effects of histamine. This review aims to summarize the published findings on the expression and functional roles of histamine receptors in the inner ear and to identify potential research hotspots and gaps. METHODS A search of the electronic databases PubMed, Web of Science, and OVID EMBASE was performed using the keywords histamine, cochlea*, and inner ear. Of the 181 studies identified, 18 eligible publications were included in the full-text analysis. RESULTS All four types of histamine receptors were identified in the mammalian inner ear. The functional studies of histamine in the inner ear were mainly in vitro. Clinical evidence suggests that histamine and its receptors may play a role in Ménière's disease, but the exact mechanism is not fully understood. The effects of histamine on hearing development remain unclear. CONCLUSIONS Existing studies have successfully determined the expression of all four histamine receptors in the mammalian inner ear. However, further functional studies are needed to explore the potential of histamine receptors as targets for the treatment of hearing and balance disorders.
Collapse
Affiliation(s)
- Lingyi Kong
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (L.K.); (E.D.)
| | - Ewa Domarecka
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (L.K.); (E.D.)
| | - Agnieszka J. Szczepek
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (L.K.); (E.D.)
- Faculty of Medicine and Health Sciences, University of Zielona Gora, 65-046 Zielona Gora, Poland
| |
Collapse
|
13
|
Rao D, Zhao R, Hu Y, Li H, Chun Z, Zheng S. Revealing of Intracellular Antioxidants in Dendrobium nobile by High Performance Liquid Chromatography-Tandem Mass Spectrometry. Metabolites 2023; 13:702. [PMID: 37367860 DOI: 10.3390/metabo13060702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/09/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
The medicinal plant Dendrobium nobile is an important natural antioxidant resource. To reveal the antioxidants of D. nobile, high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was employed for metabolic analysis. The H2O2-induced oxidative damage was used in human embryonic kidney 293T (H293T) cells to assess intracellular antioxidant activities. Cells incubated with flower and fruit extracts showed better cell survival, lower levels of reactive oxygen species (ROS), and higher catalase and superoxide dismutase activities than those incubated with root, stem, and leaf extracts (p < 0.01). A total of 13 compounds were newly identified as intracellular antioxidants by association analysis, including coniferin, galactinol, trehalose, beta-D-lactose, trigonelline, nicotinamide-N-oxide, shikimic acid, 5'-deoxy-5'-(methylthio)adenosine, salicylic acid, isorhamnetin-3-O-neohespeidoside, methylhesperidin, 4-hydroxybenzoic acid, and cis-aconitic acid (R2 > 0.8, Log2FC > 1, distribution > 0.1%, and p < 0.01). They showed lower molecular weight and higher polarity, compared to previously identified in vitro antioxidants in D. nobile (p < 0.01). The credibility of HPLC-MS/MS relative quantification was verified by common methods. In conclusion, some saccharides and phenols with low molecular weight and high polarity helped protect H293T cells from oxidative damage by increasing the activities of intracellular antioxidant enzymes and reducing intracellular ROS levels. The results enriched the database of safe and effective intracellular antioxidants in medicinal plants.
Collapse
Affiliation(s)
- Dan Rao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration, Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100041, China
| | - Ruoxi Zhao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration, Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yadong Hu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration, Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Hongjie Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration, Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100041, China
| | - Ze Chun
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration, Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- Xiong'an Institute of Innovation, Chinese Academy of Sciences, Baoding 071000, China
| | - Shigang Zheng
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration, Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
14
|
Wang X, Liu Y, Kang N, Xu G. Wide identification of chemical constituents in fermented licorice and explore its efficacy of anti-neurodegeneration by combining quasi-targeted metabolomics and in-depth bioinformatics. Front Neurosci 2023; 17:1156037. [PMID: 37274217 PMCID: PMC10234426 DOI: 10.3389/fnins.2023.1156037] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/20/2023] [Indexed: 06/06/2023] Open
Abstract
Licorice (Gan-Cao in Chinese) is one of the most famous herbal medicines around the world. The fermentation of probiotics and herbs can change the chemical constituents and significantly improve the efficacy. However, it is still unknown whether licorice fermented with probiotics would produce beneficial therapeutic effects. This study aimed to comprehensively analyze the chemical constituents in fermented licorice via quasi-targeted metabolomics, predict the potential efficacy of fermentation products via diverse bioinformatic methods, and further verify the efficacy of fermentation products through in vitro and in vivo experiments. As a result, 1,435 compounds were identified totally. Among them, 424 natural medicinal products were classified with potentially important bioactivities, including 11 anthocyanins, 10 chalcones and dihydrochalcones, 25 flavanones, 45 flavones and flavonols, 117 flavonoids, 34 isoflavonoids, 21 phenols and its derivatives, 20 phenylpropanoids and polyketides, 96 terpenoids and 25 coumarins and derivatives. Interestingly, bioinformatic prediction showed that the targets of some important compounds were related to neurodegeneration, oxidoreductase activity and response to stress. In vitro and in vivo tests further verified that fermented licorice had excellent effects of DPPH clearance, anti-oxidation, anti-neurodegeneration, and anti-stress. Thus, this study would provide a reference method for related research and the development of fermented licorice-related products.
Collapse
|