1
|
Zhang L, Wu C, Wang Q. Toxicity of Engineered Nanoparticles in Food: Sources, Mechanisms, Contributing Factors, and Assessment Techniques. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40418745 DOI: 10.1021/acs.jafc.5c01550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
The increasing prevalence of engineered nanoparticles (ENPs) in food systems has raised concerns about their toxicity and potential health risks. To provide a comprehensive evaluation, a structured literature search was conducted using databases such as Web of Science and PubMed, focusing on studies published in the past ten years that examine ENP exposure pathways, toxicity mechanisms, contributing factors, and risk assessment strategies. This review first explores the diverse sources of ENPs, including food additives, nanocarriers, packaging, agricultural practices, and environmental contamination. Upon ingestion, ENPs undergo complex transformations within the human gastrointestinal tract (GIT), causing oxidative stress, cellular dysfunction, inflammation, and gut microbiota dysbiosis, potentially leading to systemic toxicity in vital organs. The toxicity of ENPs is influenced by their physicochemical properties, food matrix effects, GIT conditions, and host-specific factors. This review further discusses current toxicity assessment methodologies, including in silico, in vitro, in vivo, and emerging technologies. Finally, we identify critical research gaps, such as the lack of long-term exposure studies and limited evaluations of organic ENPs. By providing a comprehensive analysis of ingested ENP toxicity, this review aims to guide safer ENP applications and mitigate potential health risks.
Collapse
Affiliation(s)
- Liping Zhang
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, Maryland 20742, United States
| | - Changqing Wu
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware 19716, United States
| | - Qin Wang
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
2
|
Yadav S, Srivastava R, Singh N, Kanda T, Verma E, Choudhary P, Yadav S, Atri N. Cyanobacteria-Pesticide Interactions and Their Implications for Sustainable Rice Agroecosystems. Int J Microbiol 2025; 2025:7265036. [PMID: 40201931 PMCID: PMC11978480 DOI: 10.1155/ijm/7265036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 02/19/2025] [Indexed: 04/10/2025] Open
Abstract
Modern agricultural practices rely heavily on fertilizers and pesticides to boost crop yields, essential for feeding the growing global population. However, their extensive use poses significant environmental risks. Chemical-based fertilizers and pesticides persist in ecosystems, potentially harming ecological stability. Wetland rice farming utilizing nitrogen-fixing cyanobacteria has emerged as an ecofriendly alternative, drawing attention due to its capacity to mitigate pesticide-related issues. Cyanobacteria, capable of fixing atmospheric nitrogen, thrive in low-nitrogen conditions and can aid plant growth. Some species can also biodegrade pesticides, offering a means to clean up contaminated environments. Researchers are exploring ways to leverage cyanobacteria's nitrogen fixation and biodegradation abilities for ecofriendly biofertilizers and environmental cleanup. This approach presents promise for sustainable agriculture and environmental preservation. The current study delves into multiple studies to investigate global pesticide usage levels, primary categorization, and persistence patterns. It also investigates cyanobacterial distribution and their interactions with pesticides in wetland rice ecosystems, aiming to enable their use in sustainable agriculture. Additionally, the review provides a thorough summary of the literature's findings about the potential of cyanobacteria in pesticide degradation.
Collapse
Affiliation(s)
- Sadhana Yadav
- Department of Botany, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Rupanshee Srivastava
- Department of Botany, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Nidhi Singh
- Department of Botany, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Tripti Kanda
- Department of Botany, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ekta Verma
- Department of Botany, Magadh University, Bodhgaya, Bihar, India
| | - Piyush Choudhary
- Oil and Natural Gas Corporation Ltd., Ministry of Petroleum & Natural Gas, New Delhi, India
| | - Shivam Yadav
- Department of Botany, University of Allahabad, Prayagraj, Uttar Pradesh, India
| | - Neelam Atri
- Department of Botany, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
3
|
Ortega Díaz Y, Gómez Luna L, Fung Boix Y, Silveira Font Y, Prinsen E, Huybrechts M, Vandamme D, Cuypers A. Biopriming of Cucumis sativus L. Seeds with a Consortium of Nitrofixing Cyanobacteria Treated with Static Magnetic Field. PLANTS (BASEL, SWITZERLAND) 2025; 14:628. [PMID: 40006887 PMCID: PMC11859910 DOI: 10.3390/plants14040628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/12/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
The growing demand for sustainable agriculture necessitates innovative strategies to enhance crop productivity while minimizing environmental impact. This study explores the biopriming potential of Cucumis sativus L. seeds using extracts derived from a consortium of nitrofixing cyanobacteria Nostoc commune, Calothrix sp., and Aphanothece minutissima subjected to static magnetic field (SMF) treatments. The cyanobacterial consortia were exposed to SMF at varying magnetic inductions (40-50 mT and 100-200 mT), followed by extract preparation and application as biopriming agents. Results demonstrated significant improvements in key seedling growth parameters, including root and stem length, vigor index I, and fresh biomass. The consortium treated with 40-50 mT SMF showed the most pronounced growth-stimulating activity, suggesting enhanced bioactive compound production under this treatment that might be related to auxin biosynthesis. Biopriming with cyanobacterial extracts maintained a balanced nutritional uptake and plant health, as indicated by stable fresh weight dry weight ratios. These findings highlight the potential of SMF-enhanced cyanobacterial consortia as biopriming agents for horticultural crops. Future research should elucidate the underlying modes of action and optimize conditions for broader crop applications.
Collapse
Affiliation(s)
- Yadenis Ortega Díaz
- National Center for Applied Electromagnetism, Santiago de Cuba 90600, Cuba; (Y.O.D.); (L.G.L.); (Y.F.B.); (Y.S.F.)
| | - Liliana Gómez Luna
- National Center for Applied Electromagnetism, Santiago de Cuba 90600, Cuba; (Y.O.D.); (L.G.L.); (Y.F.B.); (Y.S.F.)
| | - Yilan Fung Boix
- National Center for Applied Electromagnetism, Santiago de Cuba 90600, Cuba; (Y.O.D.); (L.G.L.); (Y.F.B.); (Y.S.F.)
| | - Yadira Silveira Font
- National Center for Applied Electromagnetism, Santiago de Cuba 90600, Cuba; (Y.O.D.); (L.G.L.); (Y.F.B.); (Y.S.F.)
| | - Els Prinsen
- Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium;
| | - Michiel Huybrechts
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium;
| | - Dries Vandamme
- Analytical and Circular Chemistry, Center for Enveriomental Sciences (CMK), Institute for Materials Research (IMO), Hasselt University, 3590 Diepenbeek, Belgium
| | - Ann Cuypers
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium;
| |
Collapse
|
4
|
Lorenzi AS, Chia MA. Cyanobacteria's power trio: auxin, siderophores, and nitrogen fixation to foster thriving agriculture. World J Microbiol Biotechnol 2024; 40:381. [PMID: 39532755 DOI: 10.1007/s11274-024-04191-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Cyanobacteria, often overlooked in traditional agriculture, are gaining recognition for their roles in enhancing plant growth and soil health through diverse mechanisms. This review examines their multifaceted contributions to agricultural systems, highlighting their proficiency in auxin production, which promotes plant growth and development. Additionally, we examined cyanobacteria's ability to produce siderophores that enhance iron absorption and address micronutrient deficiencies, as well as their capacity for nitrogen fixation, which converts atmospheric nitrogen into a form that plants can utilize, all with the goal of reducing reliance on synthetic fertilizers. A meta-analysis of existing studies indicates significant positive effects of cyanobacteria on crop yield, although variability exists. While some research shows considerable yield increases, other studies report non-significant changes, suggesting benefits may depend on specific conditions and crop types. The overall random-effects model estimate indicates a significant aggregate effect, with a few exceptions, emphasizing the need for further research to optimize the use of cyanobacteria as biofertilizers. Although cyanobacteria-based products are limited in comparison to seaweed-derived alternatives, for instance, ongoing challenges include regulatory issues and production costs. Integrating cultivation with wastewater treatment could enhance competitiveness and viability in the agricultural market.
Collapse
Affiliation(s)
- Adriana Sturion Lorenzi
- Graduate Program in Microbial Biology, Institute of Biological Sciences, University of Brasília, UnB, Brasília, DF, Brazil.
- GenomaA Biotech, Piracicaba, SP, Brazil.
| | - Mathias Ahii Chia
- Department of Botany, Ahmadu Bello University, Zaria, Nigeria.
- Department of Ecology, Institute of Biosciences, University of Sao Paulo, Sao Paulo, SP, Brazil.
| |
Collapse
|
5
|
Singh P, Mohanty SS, Mohanty K. Comprehensive assessment of microalgal-based treatment processes for dairy wastewater. Front Bioeng Biotechnol 2024; 12:1425933. [PMID: 39165401 PMCID: PMC11333367 DOI: 10.3389/fbioe.2024.1425933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/11/2024] [Indexed: 08/22/2024] Open
Abstract
The dairy industry is becoming one of the biggest sectors within the global food industry, and these industries use almost 34% of the water. The amount of water used is governed by the production process and the technologies employed in the plants. Consequently, the dairy industries generate almost 0.2-10 L of wastewater per liter of processed milk, which must be treated before being discharged into water bodies. The cultivation of microalgae in a mixotrophic regime using dairy wastewater enhances biomass growth, productivity, and the accumulation of value-added product. The generated biomass can be converted into biofuels, thus limiting the dependence on petroleum-based crude oil. To fulfill the algal biorefinery model, it is important to utilize every waste stream in a cascade loop. Additionally, the harvested water generated from algal biomass production can be recycled for further microalgal growth. Economic and sustainable wastewater management, along with proper reclamation of nutrients from dairy wastewater, is a promising approach to mitigate the problem of water scarcity. A bibliometric study revealing limited work on dairy wastewater treatment using microalgae for biofuel production. And, limited work is reported on the pretreatment of dairy wastewater via physicochemical methods before microalgal-based treatment. There are still significant gaps remains in large-scale cultivation processes. It is also crucial to discover robust strains that are highly compatible with the specific concentration of contaminants, as this will lead to increased yields and productivity for the targeted bio-product. Finally, research on reutilization of culture media in photobioreactor is necessary to augument the productivity of the entire process. Therefore, the incorporation of the microalgal biorefinery with the wastewater treatment concept has great potential for promoting ecological sustainability.
Collapse
Affiliation(s)
- Pooja Singh
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Satya Sundar Mohanty
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Kaustubha Mohanty
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, India
| |
Collapse
|
6
|
Parmar P, Kumar R, Neha Y, Srivatsan V. Microalgae as next generation plant growth additives: Functions, applications, challenges and circular bioeconomy based solutions. FRONTIERS IN PLANT SCIENCE 2023; 14:1073546. [PMID: 37063190 PMCID: PMC10101342 DOI: 10.3389/fpls.2023.1073546] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/05/2023] [Indexed: 06/19/2023]
Abstract
Sustainable agriculture practices involve the application of environment-friendly plant growth promoters and additives that do not negatively impact the health of the ecosystem. Stringent regulatory frameworks restricting the use of synthetic agrochemicals and the increase in demand for organically grown crops have paved the way for the development of novel bio-based plant growth promoters. In this context, microalgae biomass and derived agrochemicals offer novel sources of plant growth promotors that enhance crop productivity and impart disease resistance. These beneficial effects could be attributed to the presence of wide range of biomolecules such as soluble amino acid (AA), micronutrients, polysaccharides, phytohormones and other signaling molecules in microalgae biomass. In addition, their phototrophic nature, high photosynthetic efficiency, and wide environmental adaptability make them an attractive source of biostimulants, biofertilizers and biopesticides. The present review aims to describe the various plant growth promoting metabolites produced by microalgae and their effects on plant growth and productivity. Further, the effects elicited by microalgae biostimulants with respect to different modes of applications such as seed treatments, foliar spray and soil/root drenching is reviewed in detail. In addition, the ability of microalgae metabolites to impart tolerance against various abiotic and biotic stressors along with the mechanism of action is discussed in this paper. Although the use of microalgae based biofertilizers and biostimulants is gaining popularity, the high nutrient and water requirements and energy intensive downstream processes makes microalgae based technology commercially unsustainable. Addressing this challenge, we propose a circular economy model of microalgae mediated bioremediation coupled with biorefinery approaches of generating high value metabolites along with biofertilizer applications. We discuss and review new trends in enhancing the sustainability of microalgae biomass production by co-cultivation of algae with hydroponics and utilization of agriculture effluents.
Collapse
Affiliation(s)
- Priyanka Parmar
- Applied Phycology and Food Technology Laboratory, Council of Scientific and Industrial Research (CSIR)- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research -Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh, India
| | - Raman Kumar
- Applied Phycology and Food Technology Laboratory, Council of Scientific and Industrial Research (CSIR)- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research -Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh, India
| | - Yograj Neha
- Applied Phycology and Food Technology Laboratory, Council of Scientific and Industrial Research (CSIR)- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Vidyashankar Srivatsan
- Applied Phycology and Food Technology Laboratory, Council of Scientific and Industrial Research (CSIR)- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research -Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
7
|
Manjunath M, Khokhar A, Chary GR, Singh M, Yadav SK, Gopinath KA, Jyothilakshmi N, Srinivas K, Prabhakar M, Singh VK. Microbial consortia enhance the yield of maize under sub-humid rainfed production system of India. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2023. [DOI: 10.3389/fsufs.2023.1108492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
Plant beneficial microorganisms are being used to improve soil health and crop yield in different cropping systems. Maize is an important crop grown around the world for food, feed and raw material for various industries. The aim of the present study was to evaluate two microbial consortia viz., microbial consortia 1 (Pseudomonas putida P7 + Paenibacillus favisporus B30) and microbial consortia 2 (Pseudomonas putida P45 + Bacillus amyloliquefaciens B17) under field conditions for their suitability in improving maize yield under rainfed situations at Ballowal Saunkhri (Punjab) having sub-humid (Hot Dry) climatic conditions. Pooled analysis of three years field experiments data showed that, seed + soil application of microbial consortia 1 and 2 led to enhancement in grain yield of kharif maize by 27.78 and 23.21% respectively over uninoculated control. Likewise, significant increase in Benefit:Cost ratio as well as straw yield was also observed. The present investigation suggests that, microbial consortia would help in significantly improving the yield and economics of maize grown on inceptisols under rainfed conditions.
Collapse
|
8
|
Zhou L, Liu W, Duan H, Dong H, Li J, Zhang S, Zhang J, Ding S, Xu T, Guo B. Improved effects of combined application of nitrogen-fixing bacteria Azotobacter beijerinckii and microalgae Chlorella pyrenoidosa on wheat growth and saline-alkali soil quality. CHEMOSPHERE 2023; 313:137409. [PMID: 36457265 DOI: 10.1016/j.chemosphere.2022.137409] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/05/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Soil salinization seriously affects crop yield and soil productivity. The application of bacteria and microalgae has been considered as a promising strategy to alleviate soil salinization. However, the effect of bacteria-microalgae symbiosis on saline-alkali land is still unclear. This study evaluated the effects of Azotobacter beijerinckii, Chlorella pyrenoidosa, and their combined application on the wheat growth and saline-alkali soil improvement. The results showed that, among all the treatments, A. beijerinckii + live C. pyrenoidosa combined inoculation group (BA) had the best effect on increasing wheat plant biomass, improving salt tolerance, and improving soil fertility. The dry weight of wheat plant in the BA group increased by 66.7%, 17.4%, and 35.0%, respectively, compared with the control group (CK), A. beijerinckii inoculation group (B), and live C. pyrenoidosa inoculation group (A). The total nitrogen content of wheat plant in the BA group increased by 69.5%, 76.7%, and 71.1%, compared with the CK, B, and A group. The proline content of wheat plant in the BA group was 100% higher than that in the CK group. The N/P ratio and K/Na ratio of wheat plant increased by 157% and 12.9% in the BA group compared with the CK group, respectively, which was more conducive to alleviating nitrogen limitation and salt stress. The A. beijerinckii + live C. pyrenoidosa inoculation treatment better reduced soil pH and improved the availability of phosphorus in soil. This study illustrated the comprehensive application prospects of bacteria-microalgae interactions on wheat growth promotion and soil improvement in saline-alkali land, and provided a new effective strategy for improving saline-alkali soil quality and increasing crop productivity.
Collapse
Affiliation(s)
- Lixiu Zhou
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan 250014, China; Faculty of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Wei Liu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan 250014, China; Faculty of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Huijie Duan
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan 250014, China; Faculty of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Haiwen Dong
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan 250014, China; Faculty of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jingchao Li
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan 250014, China; Faculty of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Shuxi Zhang
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan 250014, China; Faculty of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jing Zhang
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan 250014, China
| | - Shigang Ding
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan 250014, China
| | - Tongtong Xu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan 250014, China; Faculty of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Beibei Guo
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan 250014, China
| |
Collapse
|
9
|
Microbial-Mediated Emissions of Greenhouse Gas from Farmland Soils: A Review. Processes (Basel) 2022. [DOI: 10.3390/pr10112361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The greenhouse effect is one of the concerning environmental problems. Farmland soil is an important source of greenhouse gases (GHG), which is characterized by the wide range of ways to produce GHG, multiple influencing factors and complex regulatory measures. Therefore, reducing GHG emissions from farmland soil is a hot topic for relevant researchers. This review systematically expounds on the main pathways of soil CO2, CH4 and N2O; analyzes the effects of soil temperature, moisture, organic matter and pH on various GHG emissions from soil; and focuses on the microbial mechanisms of soil GHG emissions under soil remediation modes, such as biochar addition, organic fertilizer addition, straw return and microalgal biofertilizer application. Finally, the problems and environmental benefits of various soil remediation modes are discussed. This paper points out the important role of microalgae biofertilizer in the GHG emissions reduction in farmland soil, which provides theoretical support for realizing the goal of “carbon peaking and carbon neutrality” in agriculture.
Collapse
|
10
|
Light-Driven Synthetic Biology: Progress in Research and Industrialization of Cyanobacterial Cell Factory. LIFE (BASEL, SWITZERLAND) 2022; 12:life12101537. [PMID: 36294972 PMCID: PMC9605453 DOI: 10.3390/life12101537] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/21/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022]
Abstract
Light-driven synthetic biology refers to an autotrophic microorganisms-based research platform that remodels microbial metabolism through synthetic biology and directly converts light energy into bio-based chemicals. This technology can help achieve the goal of carbon neutrality while promoting green production. Cyanobacteria are photosynthetic microorganisms that use light and CO2 for growth and production. They thus possess unique advantages as "autotrophic cell factories". Various fuels and chemicals have been synthesized by cyanobacteria, indicating their important roles in research and industrial application. This review summarized the progresses and remaining challenges in light-driven cyanobacterial cell factory. The choice of chassis cells, strategies used in metabolic engineering, and the methods for high-value CO2 utilization will be discussed.
Collapse
|
11
|
From manure to high-value fertilizer: The employment of microalgae as a nutrient carrier for sustainable agriculture. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Martínez-Ruiz M, Molina-Vázquez A, Santiesteban-Romero B, Reyes-Pardo H, Villaseñor-Zepeda KR, Meléndez-Sánchez ER, Araújo RG, Sosa-Hernández JE, Bilal M, Iqbal HMN, Parra-Saldivar R. Micro-algae assisted green bioremediation of water pollutants rich leachate and source products recovery. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119422. [PMID: 35533958 DOI: 10.1016/j.envpol.2022.119422] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 02/05/2023]
Abstract
Water management and treatment are high concern fields with several challenges due to increasing pollutants produced by human activity. It is imperative to find integral solutions and strategic measures with robust remediation. Landfill leachate production is a high concern emerging problem. Especially in low middle-income countries due to no proper local waste disposition regulation and non-engineered implemented methods to dispose of urban waste. These landfills can accumulate electronic waste and release heavy metals during the degradation process. Similar phenomena include expired pharmaceuticals like antibiotics. All these pollutants accumulated in leachate made it hard to dispose of or treat. Leachate produced in non-engineered landfills can permeate soils and reach groundwater, dragging different contaminants, including antibiotics and heavy metals, which eventually can affect the environment, changing soil properties and affecting wildlife. The presence of antibiotics in the environment is a problem with particular interest to solve, mainly to avoid the development of antibiotic-resistant microorganisms, which represent a future risk for human health with possible epidemic implications. It has been reported that the use of contaminated water with heavy metals to produce and grow vegetables is a risk for consumers, heavy metals effects in humans can include carcinogenic induction. This work explores the opportunities to use leachate as a source of nutrients to grow microalgae. Microalgae stand out as an alternative to bioremediate leachate, at the same time, microalgae produce high-value compounds that can be used in bioplastic, biofuels, and other industrial applications.
Collapse
Affiliation(s)
- Manuel Martínez-Ruiz
- Tecnologico de Monterrey, School of Engineering and Science, Monterrey, 64849, Mexico
| | | | | | - Humberto Reyes-Pardo
- Tecnologico de Monterrey, School of Engineering and Science, Monterrey, 64849, Mexico
| | | | | | - Rafael G Araújo
- Tecnologico de Monterrey, School of Engineering and Science, Monterrey, 64849, Mexico
| | | | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Science, Monterrey, 64849, Mexico.
| | | |
Collapse
|
13
|
Insights into the technology utilized to cultivate microalgae in dairy effluents. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Isolation and screening of potassium solubilizing bacteria from saxicolous habitat and their impact on tomato growth in different soil types. Arch Microbiol 2021; 203:3147-3161. [PMID: 33818654 DOI: 10.1007/s00203-021-02284-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 03/13/2021] [Accepted: 03/16/2021] [Indexed: 10/21/2022]
Abstract
Bacteria that solubilize nutrients in the soil are commonly used as bio-inoculants for promoting the growth of different crop species. However, the influence of potassium (K) solubilizing bacteria (KSB) originating from saxicolous habitat (rock-dwelling) on plant growth has not been frequently examined. In this study, we isolated KSB from saxicolous habitats and estimated their ability to produce plant growth hormone, organic acids, and siderophore that may facilitate plant growth. Fifteen culturable saxicolous bacterial isolates with varied K solubilizing ability were isolated from two sites. Of these, four potential K solubilizers were selected and identified by 16S rRNA gene sequencing. The four bacterial isolates resembled Bacillus subtilis, Bacillus cereus, Bacillus licheniformis, and Burkholderia cenocepacia and produced different organic acids, indole acetic acid, and siderophore under in vitro conditions. Potassium solubilization differed among the bacterial isolates and was significantly influenced by K sources. Inoculation of KSB improved the tomato plant growth parameters like plant height, leaf area, total root length, root/shoot ratio, and tissue K content in sterilized and unsterilized Alfisol, and Vertisol soils under greenhouse conditions. We also observed higher residual K content in the KSB inoculated post-harvest soils. Among the four KSB isolates screened, B. licheniformis and B. cenocepacia presents an excellent prospect as bio-inoculants for improving tomato growth in different soil types. Besides these, the enriched K content in the post-harvest soils may help the growth of subsequent crops in sustainable agriculture.
Collapse
|
15
|
Microalgae, soil and plants: A critical review of microalgae as renewable resources for agriculture. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102200] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Plant Biostimulants from Cyanobacteria: An Emerging Strategy to Improve Yields and Sustainability in Agriculture. PLANTS 2021; 10:plants10040643. [PMID: 33805266 PMCID: PMC8065465 DOI: 10.3390/plants10040643] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/20/2022]
Abstract
Cyanobacteria can be considered a promising source for the development of new biostimulants as they are known to produce a variety of biologically active molecules that can positively affect plant growth, nutrient use efficiency, qualitative traits of the final product, and increase plant tolerance to abiotic stresses. Moreover, the cultivation of cyanobacteria in controlled and confined systems, along with their metabolic plasticity, provides the possibility to improve and standardize composition and effects on plants of derived biostimulant extracts or hydrolysates, which is one of the most critical aspects in the production of commercial biostimulants. Faced with these opportunities, research on biostimulant properties of cyanobacteria has undergone a significant growth in recent years. However, research in this field is still scarce, especially as regards the number of investigated cyanobacterial species. Future research should focus on reducing the costs of cyanobacterial biomass production and plant treatment and on identifying the molecules that mediate the biostimulant effects in order to optimize their content and stability in the final product. Furthermore, the extension of agronomic trials to a wider number of plant species, different application doses, and environmental conditions would allow the development of tailored microbial biostimulants, thus facilitating the diffusion of these products among farmers.
Collapse
|
17
|
Cyanobacterial inoculation as resource conserving options for improving the soil nutrient availability and growth of maize genotypes. Arch Microbiol 2021; 203:2393-2409. [PMID: 33661314 DOI: 10.1007/s00203-021-02223-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/29/2020] [Accepted: 02/11/2021] [Indexed: 10/22/2022]
Abstract
Harnessing the benefits of plant-microbe interactions towards better nutrient mobilization and plant growth is an important challenge for agriculturists globally. In our investigation, the focus was towards analyzing the soil-plant-environment interactions of cyanobacteria-based formulations (Anabaena-Nostoc consortium, BF1-4 and Anabaena-Trichoderma biofilm, An-Tr) as inoculants for ten maize genotypes (V1-V10). Field experimentation using seeds treated with the formulations illustrated a significant increase of 1.3- to 3.8-fold in C-N mobilizing enzyme activities in plants, along with more than five- to six-fold higher values of nitrogen fixation in rhizosphere soil samples. An increase of 22-30% in soil available nitrogen was also observed at flag leaf stage, and 13-16% higher values were also recorded in terms of cob yield of V6 with An-Tr biofilm inoculation. Savings of 30 kg N ha-1 season-1 was indicative of the reduced environmental pollution, due to the use of microbial options. The use of cyanobacterial formulations also enhanced the economic, environmental and energy use efficiency. This was reflected as 37-41% reduced costs lowered GHG emission by 58-68 CO2 equivalents and input energy requirement by 3651-4296 MJ, over the uninoculated control, on hectare basis. This investigation highlights the superior performance of these formulations, not only in terms of efficient C-N mobilization in maize, but also making maize cultivation a more profitable enterprise. Such interactions can be explored as resource-conserving options, for future evaluation across ecologies and locations, particularly in the global climate change scenario.
Collapse
|
18
|
Haruna A, Yahaya SM. Recent Advances in the Chemistry of Bioactive Compounds from Plants and Soil Microbes: a Review. CHEMISTRY AFRICA 2021. [PMCID: PMC7869076 DOI: 10.1007/s42250-020-00213-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Bioactive compounds derived from plants and microbial sources are required for the survival of the human race and groundbreaking research must continue in this line. Plants and microbes are the major sources of naturally occurring bioactive compounds for numerous biotechnological applications. Recent progress in the fields of bioactive compounds and soil chemistry in agriculture has since given man a lead to the discovery of potent drugs that combat both human and plant diseases. The soil provides the medium for the growth of medicinal plants, but its contamination greatly affects the quality of drugs, food crops, and other essential elements present in the plants which give strength to the body. This area has attracted the attention of scientists and the drug industry toward developing more potent drugs from medicinal plants grown in different soil. The studies of the effect of various parameters and the properties of soil such as; effect of heavy metals, pH, soil organic matter, and phytoremediation process have given a measure of some quality dependence of the soil producing secondary metabolites and soil containing microbes. The information provided will be useful in determine the action of microbes and their interaction with the soil and all true plants producing drugs. Some active compounds in plants and microbes, their properties, and applications have been described in this review. The soil microbes, activities and their interactions, effects of soil particle size, dispersibility and stability of microbes in the soil, and the future outlook for the development of novel active compounds have been reported.
Collapse
|
19
|
The Use of Microalgae and Cyanobacteria in the Improvement of Agricultural Practices: A Review on Their Biofertilising, Biostimulating and Biopesticide Roles. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11020871] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The increase in worldwide population observed in the last decades has contributed to an increased demand for food supplies, which can only be attained through an improvement in agricultural productivities. Moreover, agricultural practices should become more sustainable, as the use of chemically-based fertilisers, pesticides and growth stimulants can pose serious environmental problems and lead to the scarcity of finite resources, such as phosphorus and potassium, thus increasing the fertilisers’ costs. One possible alternative for the development of a more sustainable and highly effective agriculture is the use of biologically-based compounds with known activity in crops’ nutrition, protection and growth stimulation. Among these products, microalgal and cyanobacterial biomass (or their extracts) are gaining particular attention, due to their undeniable potential as a source of essential nutrients and metabolites with different bioactivities, which can significantly improve crops’ yields. This manuscript highlights the potential of microalgae and cyanobacteria in the improvement of agricultural practices, presenting: (i) how these photosynthetic microorganisms interact with higher plants; (ii) the main bioactive compounds that can be isolated from microalgae and cyanobacteria; and (iii) how microalgae and cyanobacteria can influence plants’ growth at different levels (nutrition, protection and growth stimulation).
Collapse
|
20
|
Liu Z, Wang H, Xu W, Wang Z. Isolation and evaluation of the plant growth promoting rhizobacterium Bacillus methylotrophicus (DD-1) for growth enhancement of rice seedling. Arch Microbiol 2020; 202:2169-2179. [PMID: 32519022 DOI: 10.1007/s00203-020-01934-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 11/29/2022]
Abstract
Bacillus methylotrophicus has been demonstrated to promote growth of various plants, whereas the promoting effect of B. methylotrophicus on rice growth has been rarely reported. In this study, B. methylotrophicus DD-1, capable of efficiently promoting the growth of rice, was isolated from the root soil of rice plants. The isolate exhibited potassium-solubilizing (1.18 mg/L), Indole-3-acetic acid (IAA) (87.26 mg/L), Gibberellic acid (GA) (25.91 mg/L) and Siderophore production activity (52.32%). As indicated from the result, plant growth parameters (e.g., dry weight, tiller number, root and shoot length) of rice seedlings treated with the isolate DD-1 were more effective than those of the control group in pot and soilless culture experiments. Moreover, the adsorption capacity of rice roots which were soaked in the bacterial suspension of isolate increased with the increase in concentration and absorption time. In sterilized and unsterilized soil, conformation of root colonization activity by bacterial isolate established by its nearer existence to the rice root. Thus, the B. methylotrophicus DD-1 enhances plant growth promotion by multifarious growth promoting and root colonization traits, thereby augmenting potassium level in soil. Henceforth, the potential bacterium could be exploited for the development of biological fertilizer, leading towards sustainable agronomy.
Collapse
Affiliation(s)
- Zeping Liu
- School of Life Science and Agriculture and Forestry, Qiqihar University, Qiqihar, 161006, Heilongjiang, China.,Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar, 161006, Heilongjiang, China
| | - Hengxu Wang
- School of Life Science and Agriculture and Forestry, Qiqihar University, Qiqihar, 161006, Heilongjiang, China.,Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar, 161006, Heilongjiang, China
| | - Weihui Xu
- School of Life Science and Agriculture and Forestry, Qiqihar University, Qiqihar, 161006, Heilongjiang, China.,Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar, 161006, Heilongjiang, China
| | - Zhigang Wang
- School of Life Science and Agriculture and Forestry, Qiqihar University, Qiqihar, 161006, Heilongjiang, China. .,Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar, 161006, Heilongjiang, China.
| |
Collapse
|
21
|
Toribio A, Suárez-Estrella F, Jurado M, López M, López-González J, Moreno J. Prospection of cyanobacteria producing bioactive substances and their application as potential phytostimulating agents. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2020; 26:e00449. [PMID: 32368511 PMCID: PMC7184136 DOI: 10.1016/j.btre.2020.e00449] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/20/2020] [Accepted: 03/28/2020] [Indexed: 11/15/2022]
Abstract
This work clarifies some of the substances involved with the biostimulant effect shown by 28 cyanobacteria isolated from different aquatic environments. The production of salicylic acid, cytokinins, siderophores and phosphate solubilization were analyzed in vitro, as well as the phytostimulant/phytotoxic effect on watercress seeds at two different extract concentrations (0.5 and 0.2 mg mL-1). The most prominent plant growth promoting cyanobacteria were verified in vivo at two different doses (0.5 and 0.1 mg mL-1). 21.4 % and 7.1 % of the tested strains produced siderophores or phosphate solubilization, respectively. The production of salicylic acid was stood out for the strains Calothrix SAB-B797, Nostoc SAB-B1300 and Nostoc SAB-M612, while Nostoc SAB-M251 and Trichormus SAB-M304 were noticeable regard to cytokinin production. The highest values of germination occurred when the extracts were applied in low dose (0.5 mg mL-1). Nostoc SAB-M612 provoked the stimulation of aerial and radicular growth in cucumber seedlings.
Collapse
Affiliation(s)
- A.J. Toribio
- Department of Biology and Geology, CITE II-B, University of Almería, ceiA3, CIAIMBITAL, 04120, Almeria, Spain
| | - F. Suárez-Estrella
- Department of Biology and Geology, CITE II-B, University of Almería, ceiA3, CIAIMBITAL, 04120, Almeria, Spain
| | - M.M. Jurado
- Department of Biology and Geology, CITE II-B, University of Almería, ceiA3, CIAIMBITAL, 04120, Almeria, Spain
| | - M.J. López
- Department of Biology and Geology, CITE II-B, University of Almería, ceiA3, CIAIMBITAL, 04120, Almeria, Spain
| | - J.A. López-González
- Department of Biology and Geology, CITE II-B, University of Almería, ceiA3, CIAIMBITAL, 04120, Almeria, Spain
| | - J. Moreno
- Department of Biology and Geology, CITE II-B, University of Almería, ceiA3, CIAIMBITAL, 04120, Almeria, Spain
| |
Collapse
|
22
|
Sharma V, Prasanna R, Hossain F, Muthusamy V, Nain L, Das S, Shivay YS, Kumar A. Priming maize seeds with cyanobacteria enhances seed vigour and plant growth in elite maize inbreds. 3 Biotech 2020; 10:154. [PMID: 32181116 PMCID: PMC7054569 DOI: 10.1007/s13205-020-2141-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/15/2020] [Indexed: 01/10/2023] Open
Abstract
Biofilm formation of a nitrogen-fixing cyanobacterium Anabaena torulosa with a beneficial fungus Trichoderma viride (An-Tr) was examined under laboratory conditions. A gradual enhancement in growth over A. torulosa alone was recorded in the biofilm, with 15-20% higher values in nitrogen fixation, IAA and exopolysaccharide production illustrating the synergism among the partners in the biofilm. To investigate the role of such biofilms in priming seed attributes, mesocosm studies using primed seeds of two maize inbred lines (V6, V7) were undertaken. Beneficial effects of biofilm (An-Tr) were recorded, as compared to uninoculated treatment and cyanobacterial consortium (Anabaena-Nostoc; BF 1-4) at both stages (7 and 21 DAS, days after sowing) with a significant increase of more than 20% in seedling attributes, along with 5-15% increment in seed enzyme activities. More than three- to fivefold higher values in nitrogen fixation and C-N mobilizing enzyme activities, and significant increases in leaf chlorophyll, proteins and PEP carboxylase activity were observed with V7-An-Tr biofilm. Cyanobacterial inoculation brought about distinct changes in the soil phospholipid fatty acid profiles (PLFA); particularly, significant changes in those representing eukaryotes and anaerobic bacteria. Principal component analyses illustrated the significant role of dehydrogenase activity and microbial biomass carbon and distinct elicited effects on soil microbial communities, as evidenced by the PLFA. This investigation highlighted the promise of cyanobacteria as valuable priming options to improve mobilization of nutrients at seed stage, modulating the abundance and activities of various soil microbial communities, thereby, enhanced plant growth and vigour of maize plants.
Collapse
Affiliation(s)
- Vikas Sharma
- Division of Microbiology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, 110012 India
| | - Radha Prasanna
- Division of Microbiology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, 110012 India
| | - Firoz Hossain
- Maize Genetics Section, Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Vignesh Muthusamy
- Maize Genetics Section, Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Lata Nain
- Division of Microbiology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, 110012 India
| | - Shrila Das
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Yashbir Singh Shivay
- Division of Agronomy, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Arun Kumar
- National Phytotron Facility, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| |
Collapse
|
23
|
Mahawar H, Prasanna R, Gogoi R, Singh SB, Chawla G, Kumar A. Synergistic effects of silver nanoparticles augmented Calothrix elenkinii for enhanced biocontrol efficacy against Alternaria blight challenged tomato plants. 3 Biotech 2020; 10:102. [PMID: 32099743 DOI: 10.1007/s13205-020-2074-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/18/2020] [Indexed: 12/16/2022] Open
Abstract
The biocontrol efficacy of a cyanobacterium Calothrix elenkinii (Ce), silver nanoparticles (AgNPs) and their augmented complex (AgNPs-Ce) was evaluated. Foliar application of AgNPs-Ce reduced the disease severity by 47-58%, along with significant increases of 44-45%, 40-46% and 23-33% in leaf chlorophyll, carotenoid content, and polyphenol oxidase activity in the A. alternata infected tomato plants. A significant reduction in the pathogen load was recorded, both by plate counts and microscopic observations in the AgNPs, Ce and AgNPs-Ce treatments, while AgNPs-Ce also effectively reduced ergosterol content by 63-79%. Amplification using PCR-ITS primers revealed very faint bands or none in the AgNPs-Ce treated leaves, illustrating the inhibition of fungal growth. Significantly higher yield was recorded in the pathogen challenged plants receiving AgNPs-Ce, AgNPs, and Ce treatments. Higher expression of elicited antioxidant enzymes, along with enhanced plant growth attributes and lowered fungal load highlight the biocontrol potential of AgNPs-Ce treatment in A. alternata infected plants. This synergistic association can be explored as a promising biocontrol option against A. alternata challenged tomato plants under various agroclimatic conditions.
Collapse
|
24
|
López-Lozano NE, Echeverría Molinar A, Ortiz Durán EA, Hernández Rosales M, Souza V. Bacterial Diversity and Interaction Networks of Agave lechuguilla Rhizosphere Differ Significantly From Bulk Soil in the Oligotrophic Basin of Cuatro Cienegas. FRONTIERS IN PLANT SCIENCE 2020; 11:1028. [PMID: 32765547 PMCID: PMC7378863 DOI: 10.3389/fpls.2020.01028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 06/23/2020] [Indexed: 05/05/2023]
Abstract
Due to the environmental conditions presented in arid zones, it is expected to have a high influence of deterministic processes over the community assemblages. Symbiotic interactions with microorganisms could increase colonization and survival of plants in difficult conditions, independent of the plants physiological and morphological characteristics. In this context, the microbial communities associated to plants that inhabit these types of areas can be a good model to understand the community assembly processes. We investigated the influence of stochastic and deterministic processes in the assemblage of rhizosphere microbial communities of Agave lechuguilla and bulk soil on the Cuatro Cienegas Basin, a site known for its oligotrophic conditions. We hypothesize that rhizospheric microbial communities of A. lechuguilla differ from those of bulk soil as they differ in physicochemical properties of soil and biotic interactions, including not only the plant, but also their microbial co-occurrence networks, it is expected that microbial species usually critical for plant growth and health are more common in the rhizosphere, whereas in the bulk soil microbial species related to the resistance to abiotic stress are more abundant. In order to confirm this hypothesis, 16S rRNA gene was sequenced by Illumina from rhizospheric and bulk soil samples in two seasons, also the physicochemical properties of the soil were determined. Our results showed differences in bacterial diversity, community composition, potential functions, and interaction networks between the rhizosphere samples and the ones from bulk soil. Although community structure arises from a complex interplay between deterministic and stochastic forces, our results suggest that A. lechuguilla recruits specific rhizospheric microbes with functional traits that benefits the plant through growth promotion and nutrition. This selection follows principally a deterministic process that shapes the rhizospheric microbial communities, directed by the plant modifications around the roots but also subjected to the influence of other environmental variables, such as seasonality and soil properties. Interestingly, keystone taxa in the interactions networks, not necessarily belong to the most abundant taxonomic groups, but they have an important role by their functional traits and keeping the connections on the community network.
Collapse
Affiliation(s)
- Nguyen E. López-Lozano
- CONACyT-División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), San Luis Potosí, Mexico
- *Correspondence: Nguyen E. López-Lozano,
| | - Andrea Echeverría Molinar
- CONACyT-División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), San Luis Potosí, Mexico
| | | | | | - Valeria Souza
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
25
|
Abinandan S, Subashchandrabose SR, Venkateswarlu K, Megharaj M. Soil microalgae and cyanobacteria: the biotechnological potential in the maintenance of soil fertility and health. Crit Rev Biotechnol 2019; 39:981-998. [PMID: 31455102 DOI: 10.1080/07388551.2019.1654972] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The soil microbiota plays a major role in maintaining the nutrient balance, carbon sink, and soil health. Numerous studies reported on the function of microbiota such as plant growth-promoting bacteria and fungi in soil. Although microalgae and cyanobacteria are ubiquitous in soil, very less attention has been paid on the potential of these microorganisms. The indiscriminate use of various chemicals to enhance agricultural productivity led to serious consequences like structure instability, accumulation of toxic contaminants, etc., leading to an ecological imbalance between soil, plant, and microbiota. However, the significant role of microalgae and cyanobacteria in crop productivity and other potential options has been so far undermined. The intent of the present critical review is to highlight the significance of this unique group of microorganisms in terms of maintaining soil fertility and soil health. Beneficial soil ecological applications of these two groups in enhancing plant growth, establishing interrelationships among other microbes, and detoxifying chemical agents such as insecticides, herbicides, etc. through mutualistic cooperation by synthesizing enzymes and phytohormones are presented. Since recombinant technology involving genomic integration favors the development of useful traits in microalgae and cyanobacteria for their potential application in improvement of soil fertility and health, the merits and demerits of various such advanced methodologies associated in harnessing the biotechnological potential of these photosynthetic microorganisms for sustainable agriculture were also discussed.
Collapse
Affiliation(s)
- Sudharsanam Abinandan
- Global Centre for Environmental Remediation (GCER), Faculty of Science, University of Newcastle , Callaghan , Australia
| | - Suresh R Subashchandrabose
- Global Centre for Environmental Remediation (GCER), Faculty of Science, University of Newcastle , Callaghan , Australia.,Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), University of Newcastle , Callaghan , Australia
| | | | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), Faculty of Science, University of Newcastle , Callaghan , Australia.,Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), University of Newcastle , Callaghan , Australia
| |
Collapse
|
26
|
Dey SK, Chakrabarti B, Purakayastha TJ, Prasanna R, Mittal R, Singh SD, Pathak H. Interplay of phosphorus doses, cyanobacterial inoculation, and elevated carbon dioxide on yield and phosphorus dynamics in cowpea. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:223. [PMID: 30879142 DOI: 10.1007/s10661-019-7378-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
Phosphorus (P) demand is likely to increase especially in legumes to harness greater benefits of nitrogen fixation under elevated CO2 condition. In the following study, seed yield and seed P uptake in cowpea increased by 26.8% and 20.9%, respectively, under elevated CO2 level. With an increase in phosphorus dose up to 12 mg kg-1, seed yield enhanced from 2.6 to 5.4 g plant-1. P application and cyanobacterial inoculation increased the microbial activity of soil, leading to increased availability of P. Under elevated CO2 condition, microbial activity, measured as dehydrogenase, acid phosphatase, and alkaline phosphatase activities showed stimulation. Soil available P also increased under elevated CO2 condition and was stimulated by both P application and cyanobacterial inoculation. Higher P uptake in elevated CO2 condition led to lower values of inorganic P in soil. Stepwise regression analysis showed that aboveground P uptake, soil available P, and alkaline phosphatase activity of soil influenced the yield while available P, and organic and inorganic P influenced the aboveground P uptake of the crop. This study revealed that under elevated CO2 condition, P application and cyanobacterial inoculation facilitated P uptake and yield, mediated through enhanced availability of nutrients, in cowpea crop.
Collapse
Affiliation(s)
- Sumit Kumar Dey
- ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - B Chakrabarti
- ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India.
| | - T J Purakayastha
- ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Radha Prasanna
- ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - R Mittal
- ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - S D Singh
- ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - H Pathak
- ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| |
Collapse
|
27
|
Simranjit K, Kanchan A, Prasanna R, Ranjan K, Ramakrishnan B, Singh AK, Shivay YS. Microbial inoculants as plant growth stimulating and soil nutrient availability enhancing options for cucumber under protected cultivation. World J Microbiol Biotechnol 2019; 35:51. [PMID: 30852691 DOI: 10.1007/s11274-019-2623-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 02/28/2019] [Indexed: 12/01/2022]
Abstract
Protected cultivation of vegetables is often hampered by declining nutrient availability in soil due to year-around farming, which in turn, leads to poor quality and yields, causing serious concern. Our study aimed towards evaluating the potential of novel biofilm formulations-Anabaena or Trichoderma as matrices with Azotobacter sp. as Anabaena-Azotobacter (An-Az) and Trichoderma-Azotobacter (Tr-Az) or together as Anabaena-Trichoderma (An-Tr), on the growth, physiological activities, yield, and changes in the profiles of soil microbial communities in two cultivars (cv. DAPC-6 and cv. Kian) of cucumber (Cucumis sativus). Photosynthetic pigments, evaluated as an index of growth showed two-threefold increase, while elicited activity of defense and antioxidant enzymes was stimulated; this facilitated significant improvement in the plants belonging to the inoculated treatments. Microbial biomass carbon and polysaccharides in soil enhanced by two-threefolds in treatments receiving microbial formulations. Available N in soil increased by 50-90% in An-Az and An-Tr biofilm inoculated treatments, while the availability of P and organic C content of soil improved by 40-60%, over control. PCR-DGGE profiles generated revealed signification modulation of cyanobacterial communities and cultivar-specific differences. Significant enhancement in leaf chlorophyll pigments, soil microbiological parameters and nutrient bio-availabilities along with positive correlation among the analysed parameters, and distinct profiles generated by PCR-DGGE analyses illustrated the promise of these novel inoculants for cucumber.
Collapse
Affiliation(s)
- Kaur Simranjit
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Amrita Kanchan
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Radha Prasanna
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Kunal Ranjan
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | | | - Awani Kumar Singh
- Centre for Protected Cultivation Technology (CPCT), ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Yashbir Singh Shivay
- Division of Agronomy, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| |
Collapse
|
28
|
Costa JAV, Freitas BCB, Cruz CG, Silveira J, Morais MG. Potential of microalgae as biopesticides to contribute to sustainable agriculture and environmental development. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2019; 54:366-375. [PMID: 30729858 DOI: 10.1080/03601234.2019.1571366] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The loss of yields from agricultural production due to the presence of pests has been treated over the years with synthetic pesticides, but the use of these substances negatively affects the environment and presents health risks for consumers and animals. The development of agroecological systems using biopesticides represents a safe alternative that contributes to the reduction of agrochemical use and sustainable agriculture. Microalgae are able to biosynthesize a number of metabolites with potential biopesticidal action and can be considered potential biological agents for the control of harmful organisms to soils and plants. The present work aims to provide a critical perspective on the consequences of using synthetic pesticides, offering as an alternative the biopesticides obtained from microalgal biomass, which can be used together with the implementation of environmentally friendly agricultural systems.
Collapse
Affiliation(s)
- Jorge Alberto Vieira Costa
- a College of Chemistry and Food Engineering, Laboratory of Biochemical Engineering , Federal University of Rio Grande , Rio Grande , Rio Grande do Sul , Brazil
| | - Bárbara Catarina Bastos Freitas
- a College of Chemistry and Food Engineering, Laboratory of Biochemical Engineering , Federal University of Rio Grande , Rio Grande , Rio Grande do Sul , Brazil
| | - Camila Gonzales Cruz
- a College of Chemistry and Food Engineering, Laboratory of Biochemical Engineering , Federal University of Rio Grande , Rio Grande , Rio Grande do Sul , Brazil
| | - Jéssica Silveira
- a College of Chemistry and Food Engineering, Laboratory of Biochemical Engineering , Federal University of Rio Grande , Rio Grande , Rio Grande do Sul , Brazil
| | - Michele Greque Morais
- b College of Chemistry and Food Engineering, Laboratory of Microbiology and Biochemistry , Federal University of Rio Grande , Rio Grande , Rio Grande do Sul , Brazil
| |
Collapse
|
29
|
Renuka N, Guldhe A, Prasanna R, Singh P, Bux F. Microalgae as multi-functional options in modern agriculture: current trends, prospects and challenges. Biotechnol Adv 2018; 36:1255-1273. [DOI: 10.1016/j.biotechadv.2018.04.004] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 02/09/2018] [Accepted: 04/13/2018] [Indexed: 10/17/2022]
|
30
|
Chiaiese P, Corrado G, Colla G, Kyriacou MC, Rouphael Y. Renewable Sources of Plant Biostimulation: Microalgae as a Sustainable Means to Improve Crop Performance. FRONTIERS IN PLANT SCIENCE 2018; 9:1782. [PMID: 30581447 PMCID: PMC6292864 DOI: 10.3389/fpls.2018.01782] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 11/16/2018] [Indexed: 05/21/2023]
Abstract
Plant biostimulants (PBs) attract interest in modern agriculture as a tool to enhance crop performance, resilience to environmental stress, and nutrient use efficiency. PBs encompass diverse organic and inorganic substances (humic acids and protein hydrolysates) as well as prokaryotes (e.g., plant growth promoting bacteria) and eukaryotes such as mycorrhiza and macroalgae (seaweed). Microalgae, which comprise eukaryotic and prokaryotic cyanobacteria (blue-green algae), are attracting growing interest from scientists, extension specialists, private industry and plant growers because of their versatile nature: simple unicellular structure, high photosynthetic efficiency, ability for heterotrophic growth, adaptability to domestic and industrial wastewater, amenability to metabolic engineering, and possibility to yield valuable co-products. On the other hand, large-scale biomass production and harvesting still represent a bottleneck for some applications. Although it is long known that microalgae produce several complex macromolecules that are active on higher plants, their targeted applications in crop science is still in its infancy. This paper presents an overview of the main extraction methods from microalgae, their bioactive compounds, and application methods in agriculture. Mechanisms of biostimulation that influence plant performance, physiology, resilience to abiotic stress as well as the plant microbiome are also outlined. Considering current state-of-the-art, perspectives for future research on microalgae-based biostimulants are discussed, ranging from the development of crop-tailored, highly effective products to their application for increasing sustainability in agriculture.
Collapse
Affiliation(s)
- Pasquale Chiaiese
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
- *Correspondence: Pasquale Chiaiese,
| | - Giandomenico Corrado
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Giuseppe Colla
- Department of Agriculture and Forest Sciences, University of Tuscia, Viterbo, Italy
| | - Marios C. Kyriacou
- Department of Vegetable Crops, Agricultural Research Institute, Nicosia, Cyprus
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| |
Collapse
|