1
|
Yang X, Guo T, Du Z, Qin X, Wang K, Kebreab E, Wang D, Lyu L. Protective effects of MNQ against Lipopolysaccharide-induced inflammatory damage in bovine ovarian follicular granulosa cells in Vitro. J Steroid Biochem Mol Biol 2023; 230:106274. [PMID: 36813140 DOI: 10.1016/j.jsbmb.2023.106274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/18/2023] [Accepted: 02/19/2023] [Indexed: 02/23/2023]
Abstract
Inflammation of the reproductive tract in dairy cows lead to functional disorders of follicular granulosa cells (GCs) in mammalian ovaries resulting in infertility and serious losses to the livestock industry. Lipopolysaccharide (LPS) can induce an inflammatory response in follicular granulosa cells in vitro. The aim of this study was to investigate the cellular regulatory mechanism of MNQ (2-methoxy-1,4-naphthoquinone) on eliminating the inflammatory response and restoring normal functions for bovine ovarian follicular GCs cultured in vitro exposed to LPS. The cytotoxicity of MNQ and LPS on GCs were detected by MTT method to determine the safe concentration. The relative expression of inflammatory factors and steroid synthesis-related genes were detected by qRT-PCR. The concentration of steroid hormones in the culture broth were detected by ELISA. Differential gene expressions were analyzed by RNA-seq. There were no toxic effects on GCs at MNQ and LPS concentrations of less than 3 µM and 10 µg/mL, respectively and treated in 12 h. The relative expressions of IL-6, IL-1β and TNF-α were significantly higher in the LPS group compared with the CK group when GCs cultured in vitro were treated with the above concentrations and times (P < 0.05), but significantly lower in the MNQ+LPS group compared with the LPS group (P < 0.05). The levels of E2 and P4 in the culture solution were significantly reduced in the LPS group compared to the CK group (P < 0.05), and restored in the MNQ+LPS group. The relative expressions of CYP19A1, CYP11A1, 3β-HSD, and STAR were significantly decreased in the LPS group compared with the CK group (P < 0.05), while the MNQ+LPS group also recovered to some extent. There were 407 differential genes shared by LPS vs CK and MNQ+LPS vs LPS by RNA-seq analysis, which were mainly enriched in steroid biosynthesis and TNF signaling pathway. We screened 10 genes for analysis and found consistent results for RNA-seq and qRT-PCR. In this study, we confirmed the protective effect of MNQ, an extract from Impatiens balsamina L, on LPS-induced inflammatory responses in bovine follicular granulosa cells in vitro as well as functional damage, and acted through steroid biosynthesis and TNF signaling pathways.
Collapse
Affiliation(s)
- Xiaofeng Yang
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi 030801, China; Department of Biology, Xinzhou Normal University, Xinzhou, Shanxi 034000, China
| | - Tong Guo
- Department of Animal Husbandry and Veterinary Medicine, Beijing Vocational College of Agriculture, Beijing 102442, China
| | - Zhangsheng Du
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Xiaowei Qin
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Kai Wang
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Ermias Kebreab
- Department of Animal Science, University of California Davis, Davis, CA 95616, USA
| | - Dong Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lihua Lyu
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| |
Collapse
|
2
|
Chen WF, Shih YH, Liu HC, Cheng CI, Chang CI, Chen CY, Lin IP, Lin MY, Lee CH. 6-methoxyflavone suppresses neuroinflammation in lipopolysaccharide- stimulated microglia through the inhibition of TLR4/MyD88/p38 MAPK/NF-κB dependent pathways and the activation of HO-1/NQO-1 signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:154025. [PMID: 35272244 DOI: 10.1016/j.phymed.2022.154025] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/19/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Microglia-related neuroinflammation is associated with a variety of neurodegenerative diseases. Flavonoids have demonstrated different pharmacological effects, such as antioxidation, neuroprotection and anti-inflammation However, the effect of flavonoid 6-methoxyflavone (6-MeOF) on microglia-mediated neuroinflammation remain unknown. PURPOSE The current study aim to study the antineuroinflammatory effects of 6-MeOF in lipopolysaccharide- (LPS-) induced microglia in vitro and in vivo. METHODS Pretreatment of BV2 microglia cells with 6-MeOF for 1 h then stimulated with LPS (100 ng/ml) for 24 h. The expression levels of pro-inflammatory factors, NO and reactive oxygen species (ROS) were performed by the enzyme-linked immunosorbent assay (ELISA), Griess assay and flow cytometry. Western blotting was used to assess MAPK, NF-κB signal transducer and antioxidant enzymes-related proteins. Analysis of ROS and microglial morphology was confirmed in the zebrafish and mice brain, respectively. RESULTS Our results demonstrated that 6-MeOF dose-dependently prevent cell death and decreased the levels of pro-inflammatory mediators in LPS-stimulated BV2 microglia cells. Phosphorylated NF-κB/IκB and TLR4/MyD88/p38 MAPK/JNK proteins after exposure to 6-MeOF was suppressed in LPS-activated BV-2 microglial cells. 6-MeOF also presented antioxidant activity by reduction of NO, ROS, iNOS and COX-2 and the induction of the level of HO-1 and NQO1 expressions in LPS-activated BV2 microglial cells. Furthermore, we demonstrated that 6-MeOF inhibited LPS-induced NO generation in an experimental zebrafish model and prevent the LPS-induced microgliosis in the prefrontal cortex and substantia nigra of mice. CONCLUSION These results explored that 6-MeOF possesses potential as anti-inflammatory and anti-oxidant agents against microglia-associated neuroinflammatory disorders.
Collapse
Affiliation(s)
- Wu-Fu Chen
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123 Dapi Road, Niaosong District, Kaohsiung, 83300, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-sen University, No. 70 Lianhai Road, Gushan District, Kaohsiung City, 80424, Taiwan
| | - Yao-Hsiang Shih
- Department of Anatomy, School of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Sanmin District, Kaohsiung, 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, 100, Tzyou 1st Road, Sanmin District, Kaohsiung, 80756, Taiwan
| | - Hsuan-Chih Liu
- Department of Orthopedics, Chi Mei medical center, Liouying, Tainan, 73659, Taiwan
| | - Cheng-I Cheng
- Department of Medical Imaging, Sin-Lau Medical Foundation the Presbyterian Church, Tainan, 70142, Taiwan
| | - Chi-I Chang
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan; Research Center for Active Natural Products Development, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Chung-Yi Chen
- Department of Nutrition and Health Science, School of Medical and Health Sciences, Fooyin University, Kaohsiung, 83102, Taiwan
| | - In-Pin Lin
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Mei-Ying Lin
- Community Health Promotion Center, Kaohsiung Municipal Ci-Jin Hospital, Kaohsiung, 80708, Taiwan
| | - Chien-Hsing Lee
- Department of Pharmacology, School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan; Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
3
|
Gao Y, Qin H, Wu D, Liu C, Fang L, Wang J, Liu X, Min W. Walnut peptide WEKPPVSH in alleviating oxidative stress and inflammation in lipopolysaccharide-activated BV-2 microglia via the Nrf2/HO-1 and NF-κB/p38 MAPK pathways. J Biosci Bioeng 2021; 132:496-504. [PMID: 34509368 DOI: 10.1016/j.jbiosc.2021.07.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 02/07/2023]
Abstract
The peptide WEKPPVSH from walnut protein hydrolyzate was used to evaluate the antioxidant and anti-inflammatory protective effect on lipopolysaccharide (LPS)-activated BV-2 microglia and its possible mechanism. The results indicated that WEKPPVSH significantly decreased nitric oxide (NO) and reactive oxygen species (ROS) generation in a dose-dependent manner, and significantly up-regulated superoxide dismutase and catalase activities (P < 0.01). Results of enzyme-linked immunosorbent assay (ELISA) showed that WEKPPVSH significantly mitigated the secretion of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) (P < 0.01). Immunofluorescence analysis exhibited that WEKPPVSH down-regulated p65 translocation to the cell nucleus. Western blotting showed that WEKPPVSH up-regulated the expression of nuclear factor erythroid 2-related factor (Nrf2) and heme oxygenase-1 (HO-1), and down-regulated the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), p-IκB/IκB, p-p65/p65 and p-p38/p38. In summary, WEKPPVSH might protect against oxidative stress and inflammation in LPS-stimulated BV-2 microglia by enhancing the Nrf2/HO-1 signaling pathway and blocking the nuclear factor-κB/p38 mitogen - activated protein kinase (NF-κB/p38 MAPK) signaling pathway. The results provided an experimental basis for the research and development of walnut peptide products.
Collapse
Affiliation(s)
- Yawen Gao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Hanxiong Qin
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Dan Wu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Chunlei Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Li Fang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Ji Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Xiaoting Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Weihong Min
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China.
| |
Collapse
|
4
|
Shen GN, Li J, Jin YH, Sun HN, Hao YY, Jin MH, Liu R, Li WL, Zhang YQ, Yu JB, Yu NN, Wang WD, Yu LY, Kim JS, Kwon T, Han YH. The compound 2-benzylthio-5,8-dimethoxynaphthalene-1,4-dione leads to apoptotic cell death by increasing the cellular reactive oxygen species levels in Ras-mutated liver cancer cells. Exp Ther Med 2020; 20:82. [PMID: 32968439 PMCID: PMC7500053 DOI: 10.3892/etm.2020.9209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 07/07/2020] [Indexed: 12/11/2022] Open
Abstract
The aim of the present study was to verify the pro-apoptotic anticancer potential of several 5,8-dimethoxy-1,4-phthoquinone (DMNQ) derivatives in Ras-mediated tumorigenesis. MTT assays were used to detect cellular viability and flow cytometry was performed to assess intracellular reactive oxygen species (ROS) levels and apoptosis. The expression levels of proteins were detected via western blotting. Among the 12 newly synthesized DMNQ derivatives, 2-benzylthio-5,8-dimethoxynaphthalene-1,4-dione (BZNQ; component #1) significantly reduced cell viability both in mouse NIH3T3 embryonic fibroblasts cells (NC) and H-RasG12V transfected mouse NIH3T3 embryonic fibroblasts cells (NR). Moreover, BZNQ resulted in increased cytotoxic sensitivity in Ras-mutant transfected cells. Furthermore, the reactive oxygen species (ROS) levels in H-RasG12V transfected HepG2 liver cancer cells (HR) were significantly higher compared with the levels in HepG2 liver cancer cells (HC) following BZNQ treatment, which further resulted in increased cellular apoptosis. Eliminating cellular ROS using an ROS scavenger N-acetyl-L-cysteine markedly reversed BZNQ-induced cellular ROS accumulation and cell apoptosis in HC and HR cells. Western blotting results revealed that BZNQ significantly downregulated H-Ras protein expression and inhibited the Ras-mediated downstream signaling pathways such as protein kinase B, extracellular signal-related kinase and glycogen synthase kinase phosphorylation and β-catenin protein expression. These results indicated that the novel DMNQ derivative BZNQ may be a therapeutic drug for Ras-mediated liver tumorigenesis. The results of the current study suggest that BZNQ exerts its effect by downregulating H-Ras protein expression and Ras-mediated signaling pathways.
Collapse
Affiliation(s)
- Gui-Nan Shen
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Jing Li
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Ying-Hua Jin
- Library and Information Center, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Hu-Nan Sun
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Ying-Ying Hao
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Mei-Hua Jin
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Ren Liu
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Wei-Long Li
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Yong-Qing Zhang
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Jia-Bin Yu
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Nan-Nan Yu
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Wei-Dong Wang
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Li-Yun Yu
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Ji-Su Kim
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeonbuk 56216, Republic of Korea
| | - Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeonbuk 56216, Republic of Korea
| | - Ying-Hao Han
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| |
Collapse
|
5
|
Škandík M, Mrvová N, Bezek Š, Račková L. Semisynthetic quercetin-quinone mitigates BV-2 microglia activation through modulation of Nrf2 pathway. Free Radic Biol Med 2020; 152:18-32. [PMID: 32142880 DOI: 10.1016/j.freeradbiomed.2020.02.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 12/12/2022]
Abstract
During brain ageing, microglia, the resident immune cells of the CNS, are immunologically activated and contribute to neuroinflammation, a vicious cycle that supports development of neurological disorders. Therapeutic approaches focus mainly on downregulation of their pro-inflammatory activated state that is associated with health benefits. Electrophilic compounds, such as natural quinones and their reduced pro-electrophilic precursors, flavonoids, represent a wide group of diverse substances with important biological effects. They can cause considerable cytotoxicity when used at higher dosages, but on the other hand, they have versatile health benefits at lower dosages. In this study, we investigated the cytotoxicity and prooxidant profile of synthetic conjugate of two electrophilic compounds, quercetin and 1,4-naphthoquinone, 4'-O-(2-chloro-1,4-naphthoquinone-3-yloxy) quercetin (CHNQ), and its attenuation of inflammatory responses and modulation of Nrf2 pathway in BV-2 microglial cells. CHNQ showed higher cytotoxicity than its precursors, accompanied by promotion of production of reactive oxygen species along with G2/M cell cycle arrest at higher concentrations tested. Nevertheless, at a lower non-toxic concentration, CHNQ, more significantly than did its precursors, downregulated LPS-stimulated microglia cells as documented by decreased iNOS, COX-2 and TNFα protein levels. Moreover, CHNQ most effectively upregulated expression of phase II antioxidant enzyme HO-1 and β5 subunit of constitutive proteasome. The enhanced anti-inflammatory effect of CHNQ was accompanied by prominent increase in cytosolic expression of Nrf2 and c-Jun, however, induction effect on nuclear Nrf2 translocation was comparable to QUER. Moreover, a conditioned medium from activated BV-2 cells co-treated with quercetin and CHNQ maintained viability of neuron-like PC12 cells. The compounds tested did not show any disturbance of phagocytosis of live or dead PC12 cells. The present experimental data predict a preventive and therapeutic potential of semisynthetic derivative CHNQ in ageing and related pathologies, mediated by activation of proteins of the antioxidant response.
Collapse
Affiliation(s)
- Martin Škandík
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dubravská cesta 9, 841 04, Bratislava, Slovak Republic
| | - Nataša Mrvová
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dubravská cesta 9, 841 04, Bratislava, Slovak Republic
| | - Štefan Bezek
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dubravská cesta 9, 841 04, Bratislava, Slovak Republic
| | - Lucia Račková
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dubravská cesta 9, 841 04, Bratislava, Slovak Republic.
| |
Collapse
|
6
|
Fan H, Li D, Guan X, Yang Y, Yan J, Shi J, Ma R, Shu Q. MsrA Suppresses Inflammatory Activation of Microglia and Oxidative Stress to Prevent Demyelination via Inhibition of the NOX2-MAPKs/NF-κB Signaling Pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:1377-1389. [PMID: 32308370 PMCID: PMC7147623 DOI: 10.2147/dddt.s223218] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 02/20/2020] [Indexed: 12/17/2022]
Abstract
Introduction Demyelination causes neurological deficits involving visual, motor, sensory symptoms. Deregulation of several enzymes has been identified in demyelination, which holds potential for the development of treatment strategies for demyelination. However, the specific effect of methionine sulfoxide reductase A (MsrA) on demyelination remains unclear. Hence, this study aims to explore the effect of MsrA on oxidative stress and inflammatory response of microglia in demyelination. Methods Initially, we established a mouse model with demyelination induced by cuprizone and a cell model provoked by lipopolysaccharide (LPS). The expression of MsrA in wild-type (WT) and MsrA-knockout (MsrA-/-) mice were determined by RT-qPCR and Western blot analysis. In order to further explore the function of MsrA on inflammatory response, and oxidative stress in demyelination, we detected the expression of microglia marker Iba1, inflammatory factors TNF-α and IL-1β and intracellular reactive oxygen species (ROS), superoxide dismutase (SOD) activity, as well as expression of the NOX2-MAPKs/NF-κB signaling pathway-related genes in MsrA-/- mice and LPS-induced microglia following different treatments. Results MsrA expression was downregulated in MsrA-/- mice. MsrA silencing was shown to produce severely injured motor coordination, increased expressions of Iba1, TNF-α, IL-1β, ROS and NOX2, and extent of ERK, p38, IκBα, and p65 phosphorylation, but reduced SOD activity. Conjointly, our study suggests that Tat-MsrA fusion protein can prevent the cellular inflammatory response and subsequent demyelination through negative regulation of the NOX2-MAPKs/NF-κB signaling pathway. Conclusion Our data provide a profound insight on the role of endogenous antioxidative defense systems such as MsrA in controlling microglial function.
Collapse
Affiliation(s)
- Hua Fan
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471000, People's Republic of China
| | - Damiao Li
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471000, People's Republic of China
| | - Xinlei Guan
- Department of Pharmacy, Wuhan Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yanhui Yang
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471000, People's Republic of China
| | - Junqiang Yan
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471000, People's Republic of China
| | - Jian Shi
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471000, People's Republic of China
| | - Ranran Ma
- Department of Pharmacy, Ninth Hospital of Xi'an, Affiliated to Medical College of Xi'an Jiaotong University, Xi'an 710054, People's Republic of China
| | - Qing Shu
- Department of Pharmacy, Ninth Hospital of Xi'an, Affiliated to Medical College of Xi'an Jiaotong University, Xi'an 710054, People's Republic of China
| |
Collapse
|
7
|
Wang JR, Shen GN, Luo YH, Piao XJ, Zhang Y, Wang H, Li JQ, Xu WT, Zhang Y, Wang SN, Zhang T, Xue H, Cao LK, Jin CH. 2-(4-methoxyphenylthio)-5,8-dimethoxy-1,4-naphthoquinone induces apoptosis via ROS-mediated MAPK and STAT3 signaling pathway in human gastric cancer cells. J Chemother 2019; 31:214-226. [PMID: 31074342 DOI: 10.1080/1120009x.2019.1610832] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The 1,4-naphthoquinones and their derivatives have garnered great interest due to their antitumor pharmacological properties in various cancers; however, their clinical application is limited by side effects. In this study, to reduce side effects and improve therapeutic efficacy, a novel 1,4-naphthoquinone derivative-2-(4-methoxyphenylthio)-5,8-dimethoxy-1,4-naphthoquinone (MPTDMNQ) was synthesized. We investigated the effects and underlying mechanisms of MPTDMNQ on cell viability, apoptosis, and reactive oxygen species (ROS) generation in human gastric cancer cells. Our results showed that MPTDMNQ decreased cell viability in nine human gastric cancer cell lines. MPTDMNQ significantly induced apoptosis accompanied by the accumulation of ROS in GC cells. However, pre-treatment with the ROS scavenger N-acetyl-L-cysteine (NAC) attenuated the MPTDMNQ-induced apoptosis. Moreover, MPTDMNQ decreased the phosphorylation levels of extracellular signal-regulated kinase (ERK) and signal transducer and activator of transcription 3 (STAT3); and increased the phosphorylation levels of c-Jun N-terminal kinase (JNK) and p38 kinase. However, phosphorylation was inhibited by NAC and a mitogen-activated protein kinase (MAPK) inhibitor. These findings showed that MPTDMNQ induced AGS cell apoptosis via ROS-mediated MAPK and STAT3 signaling pathways. Thus, MPTDMNQ may be a promising candidate for treating gastric cancer.
Collapse
Affiliation(s)
- Jia-Ru Wang
- a Department of Biochemistry and Molecular Biology , College of Life Science & Technology, Heilongjiang Bayi Agricultural University , Daqing , China
| | - Gui-Nan Shen
- a Department of Biochemistry and Molecular Biology , College of Life Science & Technology, Heilongjiang Bayi Agricultural University , Daqing , China
| | - Ying-Hua Luo
- b College of Animal Science & Veterinary Medicine, Heilongjiang Bayi Agricultural University , Daqing , China
| | - Xian-Ji Piao
- c Department of Gynaecology and Obstetrics , The Fifth Affiliated Hospital of Harbin Medical University , Daqing , China
| | - Yi Zhang
- a Department of Biochemistry and Molecular Biology , College of Life Science & Technology, Heilongjiang Bayi Agricultural University , Daqing , China
| | - Hao Wang
- a Department of Biochemistry and Molecular Biology , College of Life Science & Technology, Heilongjiang Bayi Agricultural University , Daqing , China
| | - Jin-Qian Li
- a Department of Biochemistry and Molecular Biology , College of Life Science & Technology, Heilongjiang Bayi Agricultural University , Daqing , China
| | - Wan-Ting Xu
- a Department of Biochemistry and Molecular Biology , College of Life Science & Technology, Heilongjiang Bayi Agricultural University , Daqing , China
| | - Yu Zhang
- a Department of Biochemistry and Molecular Biology , College of Life Science & Technology, Heilongjiang Bayi Agricultural University , Daqing , China
| | - Shi-Nong Wang
- a Department of Biochemistry and Molecular Biology , College of Life Science & Technology, Heilongjiang Bayi Agricultural University , Daqing , China
| | - Tong Zhang
- a Department of Biochemistry and Molecular Biology , College of Life Science & Technology, Heilongjiang Bayi Agricultural University , Daqing , China
| | - Hui Xue
- a Department of Biochemistry and Molecular Biology , College of Life Science & Technology, Heilongjiang Bayi Agricultural University , Daqing , China
| | - Long-Kui Cao
- d College of Food Science & Technology, Heilongjiang Bayi Agricultural University , Daqing , China
| | - Cheng-Hao Jin
- a Department of Biochemistry and Molecular Biology , College of Life Science & Technology, Heilongjiang Bayi Agricultural University , Daqing , China.,d College of Food Science & Technology, Heilongjiang Bayi Agricultural University , Daqing , China
| |
Collapse
|
8
|
Li LN, Liu XQ, Zhu DR, Chen C, Lin YL, Wang WL, Zhu L, Luo JG, Kong LY. Officinalins A and B, a pair of C23 terpenoid epimers with a tetracyclic 6/7/5/5 system from Salvia officinalis. Org Chem Front 2019. [DOI: 10.1039/c9qo00861f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Officinalins A (1) and B (2), a pair of 6/7/5/5 tetracyclic C23 terpenoid epimers with a unique tetracycline-[9.6.0.03,8.012,16]-heptadecane core and a peroxide bridge, were isolated from the leaves of Salvia officinalis.
Collapse
Affiliation(s)
- Ling-Nan Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Xiao-Qin Liu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Dong-Rong Zhu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Chen Chen
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Yao-Lan Lin
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Wen-Li Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Li Zhu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Jian-Guang Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| |
Collapse
|
9
|
Wang JR, Shen GN, Luo YH, Piao XJ, Shen M, Liu C, Wang Y, Meng LQ, Zhang Y, Wang H, Li JQ, Xu WT, Liu Y, Sun HN, Han YH, Jin MH, Cao LK, Jin CH. The compound 2-(naphthalene-2-thio)-5,8-dimethoxy-1,4-naphthoquinone induces apoptosis via reactive oxygen species-regulated mitogen-activated protein kinase, protein kinase B, and signal transducer and activator of transcription 3 signaling in human gastric cancer cells. Drug Dev Res 2018; 79:295-306. [PMID: 30222185 DOI: 10.1002/ddr.21442] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/12/2018] [Accepted: 06/18/2018] [Indexed: 12/18/2022]
Abstract
Hit, Lead & Candidate Discovery It is reported that 1,4-naphthoquinones and their derivatives have potent antitumor activity in various cancers, although their clinical application is limited by observed side effects. To improve the therapeutic efficacy of naphthoquinones in the treatment of cancer and to reduce side effects, we synthesized a novel naphthoquinone derivative, 2-(naphthalene-2-thio)-5,8-dimethoxy-1,4-naphthoquinone (NTDMNQ). In this study, we explored the effects of NTDMNQ on apoptosis in gastric cancer cells with a focus on reactive oxygen species (ROS) production. Our results demonstrated that NTDMNQ exhibited the cytotoxic effects on gastric cancer cells in a dose-dependent manner. NTDMNQ significantly induced mitochondrial-related apoptosis in AGS cells and increased the accumulation of ROS. However, pre-treatment with N-acetyl-L-cysteine (NAC), an ROS scavenger, inhibited the NTDMNQ-induced apoptosis. In addition, NTDMNQ increased the phosphorylation of p38 kinase and c-Jun N-terminal kinase (JNK) and decreased the phosphorylation of extracellular signal-regulated kinase (ERK), protein kinase B (Akt), and Signal Transducer and Activator of Transcription 3 (STAT3); these effects were blocked by mitogen-activated protein kinase (MAPK) inhibitor and NAC. Taken together, the present findings indicate that NTDMNQ-induced gastric cancer cell apoptosis via ROS-mediated regulation of the MAPK, Akt, and STAT3 signaling pathways. Therefore, NTDMNQ may be a potential treatment for gastric cancer as well as other tumor types.
Collapse
Affiliation(s)
- Jia-Ru Wang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Gui-Nan Shen
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Ying-Hua Luo
- College of Animal Science & Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xian-Ji Piao
- Department of Gynaecology and Obstetrics, The Fifth Affiliated Hospital of Harbin Medical University, Daqing, China
| | - Meng Shen
- College of Food Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Chang Liu
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yue Wang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Ling-Qi Meng
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yi Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Hao Wang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jin-Qian Li
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Wan-Ting Xu
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yang Liu
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Hu-Nan Sun
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Ying-Hao Han
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Mei-Hua Jin
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Long-Kui Cao
- College of Food Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Cheng-Hao Jin
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China.,College of Food Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
10
|
Syzygium cumini seed attenuates LPS induced inflammatory response in murine macrophage cell line RAW264.7 through NF-κB translocation. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.01.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
11
|
Fang D, Kitamura H. Cancer stem cells and epithelial-mesenchymal transition in urothelial carcinoma: Possible pathways and potential therapeutic approaches. Int J Urol 2017; 25:7-17. [PMID: 28697535 DOI: 10.1111/iju.13404] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/22/2017] [Indexed: 12/12/2022]
Abstract
There is growing evidence of the presence of cancer stem cells in urothelial carcinoma. Cancer stem cells have the ability to self-renew and to differentiate into all cell types of the original heterogeneous tumor. A panel of diverse cancer stem cell markers might be suitable for simulation studies of urothelial cancer stem cells and for the development of optimized treatment protocols. The present review focuses on the advances in recognizing the markers of urothelial cancer stem cells and possible therapeutic targets. The commonly reported markers and pathways that were evaluated include CD44, CD133, ALDH1, SOX2 & SOX4, BMI1, EZH1, PD-L1, MAGE-A3, COX2/PGE2/STAT3, AR, and autophagy. Studies on the epithelial-mesenchymal transition-related pathways (Shh, Wnt/β-catenin, Notch, PI3K/Akt, TGF-β, miRNA) are also reviewed. Most of these markers were recognized through the expression patterns of cancer stem cell-rich side populations. Their regulative role in the development and differentiation of urothelial cancer stem cells was confirmed in vitro by functional analyses (e.g. cell migration, colony formation, sphere formation), and in vivo in xenograft experiments. Although a small number of these pathways are targeted by currently available drugs or drugs that are the currently being tested in clinical trials, a clear treatment approach has not been developed for most pathways. A greater understanding of the mechanisms that control the proliferation and differentiation of cancer stem cells is expected to lead to improvements in targeted therapy.
Collapse
Affiliation(s)
- Dong Fang
- Department of Urology, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, Toyama, Japan.,Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing, China
| | - Hiroshi Kitamura
- Department of Urology, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, Toyama, Japan
| |
Collapse
|