1
|
Colás-Ruiz NR, Pintado-Herrera MG, Santonocito M, Salerno B, Tonini F, Lara-Martín PA, Hampel M. Bioconcentration, biotransformation, and transcriptomic impact of the UV-filter 4-MBC in the manila clam Ruditapes philippinarum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169178. [PMID: 38072265 DOI: 10.1016/j.scitotenv.2023.169178] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/24/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023]
Abstract
Ultraviolet filters (UV-filters) are compounds extensively used in personal care products. These compounds are produced at increasing rates and discharged into marine ecosystems in unknown quantities and with no regulation, making them emerging contaminants. Among those, the UV-filter 4-Methylbenzylidene camphor (4-MBC) is used in a variety of personal care products such as sunscreens, soaps, or lipsticks. This high consumption has resulted in its presence in various environmental matrices at in concentrations ranging from ng to μg L-1. Very little is known, however, about the possible adverse effects in exposed non-target organisms. Our study presents novel data on the bioconcentration, toxicokinetics, and molecular effects of 4-MBC in a marine bivalve species of commercial interest, Ruditapes philippinarum (Manila clam). Organisms were exposed at two different concentrations (1.34 and 10.79 μg L-1) of 4-MBC for 7 days, followed by a 3-day depuration period (clean sea waters). Bioconcentration factors (BCF) were 3562 and 2229 L kg-1 for the low and high exposure concentrations, respectively, making this pollutant bioaccumulative according to REACH criteria. Up to six 4-MBC biotransformation products (BTPs)were identified, 2 of them for the first time. Transcriptomic analysis revealed between 658 and 1310 differently expressed genes (DEGs) after 4-MBC exposure. Functional and enrichment analysis of the DEGs showed the activation of the detoxification pathway to metabolize and excrete the bioconcentrated 4-MBC, which also involved energy depletion and caused an impact on the metabolism of carbohydrates and lipids and in the oxidative phosphorylation pathways. Oxidative stress and immune response were also evidenced through the activation of cathepsins and the complement system. Such elucidation of the mode of action of a ubiquitous pollutant such as 4-MBC at the molecular level is valuable both from an environmental point of view and for the sustainable production of Manila clam, one of the most cultivated mollusk species worldwide.
Collapse
Affiliation(s)
- Nieves R Colás-Ruiz
- Faculty of Marine and Environmental Sciences (CASEM), University of Cadiz, 11510 Puerto Real, Cadiz, Spain.
| | - Marina G Pintado-Herrera
- Faculty of Marine and Environmental Sciences (CASEM), University of Cadiz, 11510 Puerto Real, Cadiz, Spain
| | - Melania Santonocito
- Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI•MAR), Universidad de Cadiz, Av. República Saharaui s/n, 11510 Puerto Real, Cadiz, Spain
| | - Barbara Salerno
- Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI•MAR), Universidad de Cadiz, Av. República Saharaui s/n, 11510 Puerto Real, Cadiz, Spain
| | - Federico Tonini
- Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI•MAR), Universidad de Cadiz, Av. República Saharaui s/n, 11510 Puerto Real, Cadiz, Spain
| | - Pablo A Lara-Martín
- Faculty of Marine and Environmental Sciences (CASEM), University of Cadiz, 11510 Puerto Real, Cadiz, Spain
| | - Miriam Hampel
- Faculty of Marine and Environmental Sciences (CASEM), University of Cadiz, 11510 Puerto Real, Cadiz, Spain
| |
Collapse
|
2
|
Skic K, Boguta P, Klimkowicz-Pawlas A, Ukalska-Jaruga A, Baran A. Effect of sorption properties on the content, ecotoxicity, and bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) in bottom sediments. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130073. [PMID: 36209611 DOI: 10.1016/j.jhazmat.2022.130073] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/15/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) tend to accumulate in the sediment due to their high hydrophobicity. Despite PAHs have been the subject of several reviews, PAH sorption processes in bottom sediments has not been comprehensively discucorrelation coefficients between sorption parameters and contessed. Understanding the dependencies governing PAH sorption processes will allow to predict, monitor, and mitigate the ecological effects of PAH contamination and the associated risks to humans or wildlife. The objectives of the study were to assess the relationship between the sorption properties and the content of PAHs in bottom sediments and mussels. The PAH profile was dominated by higher-molecular hydrocarbons, which accounted for 73% of the total concentration of PAHs. Potentiometric studies revealed the steric-based PAH sorption mechanism that strongly depended on the presence of negatively dissociating structures such as carboxylic or phenolic functional groups. Based on the changes in Q8 values, the size-exclusion effect was more likely for 5- and 6-ring compounds. Pores < 5 µm, which had the largest share in the specific surface area, were the preferred sites for PAH sequestration and stabilization in bottom sediments. The availability of PAHs was reduced in sediments with high organic matter content. The PAH bioaccumulation factor significantly decreased with increasing TOC content in sediments. Higher mortality and growth inhibition of H. incongruens were observed in samples with high and medium TOC contents than in those with low TOC content.
Collapse
Affiliation(s)
- Kamil Skic
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, Lublin 20-290, Poland.
| | - Patrycja Boguta
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, Lublin 20-290, Poland.
| | - Agnieszka Klimkowicz-Pawlas
- Institute of Soil Science and Plant Cultivation - State Research Institute, Department of Soil Science Erosion and Land Protection, Czartoryskich 8, Puławy 24-100, Poland.
| | - Aleksandra Ukalska-Jaruga
- Institute of Soil Science and Plant Cultivation - State Research Institute, Department of Soil Science Erosion and Land Protection, Czartoryskich 8, Puławy 24-100, Poland.
| | - Agnieszka Baran
- Department of Agricultural and Environmental Chemistry, University of Agriculture in Krakow, al. Mickiewicza 21, Krakow, Poland.
| |
Collapse
|
3
|
Dos Reis IMM, Siebert MN, Zacchi FL, Mattos JJ, Flores-Nunes F, Toledo-Silva GD, Piazza CE, Bícego MC, Taniguchi S, Melo CMRD, Bainy ACD. Differential responses in the biotransformation systems of the oyster Crassostrea gigas (Thunberg, 1789) elicited by pyrene and fluorene: Molecular, biochemical and histological approach - Part II. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 226:105565. [PMID: 32682195 DOI: 10.1016/j.aquatox.2020.105565] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/02/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
Pyrene (PYR) and fluorene (FLU) are among the sixteen priority Polycyclic Aromatic Hydrocarbons (PAH) of the United States Environmental Protection Agency and are both frequently detected in contaminated sites. Due to the importance of bivalve mollusks in biomonitoring programs and the scarce information on the biotransformation system in these organisms, the aim of this study was to investigate the effect of PYR and FLU at the transcriptional level and the enzymatic activities of some biotransformation systems in the Pacific oyster Crassostrea gigas, and to evaluate the histological effects in their soft tissues. Oysters C. gigas were exposed for 24 h and 96 h to PYR (0.25 and 0.5 μM) and FLU (0.6 and 1.2 μM). After exposure, transcript levels of cytochrome P450 coding genes (CYP1-like, CYP2-like, CYP2AU2, CYP356A1, CYP17α-like), glutathione S tranferase genes (omega GSTO-like and microsomal, MGST-like) and sulfotransferase gene (SULT-like), and the activity of ethoxyresorufin O-deethylase (EROD), Glutathione S-transferase (GST) and microssomal GST (MGST) were evaluated in gills. Histologic changes were also evaluated after the exposure period. PYR and FLU bioconcentrated in oyster soft tissues. The half-life time of PYR in water was lower than fluorene, which is in accordance to the higher lipophilicity and bioconcentration of the former. EROD activity was below the limit of detection in all oysters exposed for 96 h to PYR and FLU. The reproductive stage of the oysters exposed to PYR was post-spawn. Exposure to PYR caused tubular atrophy in digestive diverticula, but had no effect on transcript levels of biotransformation genes. However, the organisms exposed for 96 h to PYR 0.5 μM showed higher MGST activity, suggesting a protective role against oxidative stress in gills of oysters under higher levels of PYR in the tissues. Increased number of mucous cells in mantle were observed in oysters exposed to the higher FLU concentration, suggesting a defense mechanisms. Oysters exposed for 24 h to FLU 1.2 μM were in the ripe stage of gonadal development and showed higher transcript levels of CYP2AU2, GSTO-like and SULT-like genes, suggesting a role in the FLU biotransformation. In addition, after 96 h of exposure to FLU there was a significant increase of mucous cells in the mantle of oysters but no effect was observed on the EROD, total GST and MGST activities. These results suggest that PAH have different effects on transcript levels of biotransformation genes and enzyme activities, however these differences could also be related to the reproductive stage.
Collapse
Affiliation(s)
- Isis Mayna Martins Dos Reis
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Marília Nardelli Siebert
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Flávia Lucena Zacchi
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Jacó Joaquim Mattos
- Aquaculture Pathology Research Center - NEPAQ, Federal University of Santa Catarina, UFSC, Florianópolis, Brazil
| | - Fabrício Flores-Nunes
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Guilherme de Toledo-Silva
- Bioinformatics Laboratory, Cell Biology, Embryology and Genetics Department, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Clei Endrigo Piazza
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Márcia Caruso Bícego
- Laboratory of Marine Organic Chemistry - LABQOM, Oceanographic Institute, University of São Paulo, USP, São Paulo, SP, Brazil
| | - Satie Taniguchi
- Laboratory of Marine Organic Chemistry - LABQOM, Oceanographic Institute, University of São Paulo, USP, São Paulo, SP, Brazil
| | - Cláudio Manoel Rodrigues de Melo
- Laboratory of Marine Mollusks (LMM), Department of Aquaculture, Center of Agricultural Science, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Afonso Celso Dias Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil.
| |
Collapse
|
4
|
Zhao N, Ju F, Pan H, Tang Z, Ling H. Molecular dynamics simulation of the interaction of water and humic acid in the adsorption of polycyclic aromatic hydrocarbons. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:25754-25765. [PMID: 32350842 DOI: 10.1007/s11356-020-09018-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
Humic acid (HA) and water play an important role in polycyclic aromatic hydrocarbons (PAHs) adsorption and biodegradation in soil. In this work, molecular dynamics (MD) and electrostatic potential surfaces (EPSs) simulations are conducted to research the contribution of quartz surface, leonardite humic acid (LHA), and water to PAH adsorption. The adsorption energies between PAHs and LHA are much higher than that between PAHs and quartz. Simulation shows that the hydroxyl and carboxyl groups' attraction by LHA is the main adsorption force between PAHs and LHA. The π-π interaction between PAHs and LHA also contributes to the adsorption process. In addition, the mobility of water on quartz surface is much higher than that of LHA. Water should be regarded as an adsorbate in the system as well as PAHs. However, the presence of water has a remarkable negative effect on the adsorption of PAHs on LHA and quartz. The bridging effect of water could only enhance the stability of the aggregation system. The adsorption contribution of quartz and LHA to PAHs in the soil model tends to 0 if the water layer reaches 2.0 nm. Graphical abstract.
Collapse
Affiliation(s)
- Nan Zhao
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Feng Ju
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hui Pan
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhihe Tang
- Research Institute of Safety & Environment Technology, China National Petroleum Corporation, Beijing, 102206, China
| | - Hao Ling
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
5
|
Insight about methods used for polycyclic aromatic hydrocarbons reduction in smoked or grilled fishery and meat products for future re-engineering: A systematic review. Food Chem Toxicol 2020; 141:111372. [PMID: 32334111 DOI: 10.1016/j.fct.2020.111372] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/13/2020] [Accepted: 04/16/2020] [Indexed: 12/23/2022]
Abstract
This paper presents methods of reduction of polycyclic aromatic hydrocarbons (PAHs) in grilled or smoked meat and fishery products. Using keywords such as "smoking", "grilling", "processing", "roasting", "barbecue", "curing", "reduction", "decrease", "polycyclic aromatic hydrocarbon", "benzo(a)pyrene", "removal", 1191 references were collected from databases. After sorting, only 37 appeared to be relevant to the topic of the review. These 37 papers were coded with one or two keywords representing methods of PAHs reduction using R-based Qualitative Data Analysis library. The results showed that PAHs reduction strategies can be applied either before (or during) grilling or smoking (barrier methods) or after grilling or smoking (removal methods). Before grilling or smoking, use of marinade, preheating of products, appropriate fuel (poor in lignin), filter, collection system of juice and fat (to avoid them dripping into embers) are the main strategies which can be applied. After grilling or smoking, the methods consist of washing the surface of smoked or grilled products with hot water (60 °C) or storing smoked products packed into low density or high density polyethylene. A flowchart regrouping methods which can be used individually or in combination for PAHs reduction in smoked meat and fishery products is suggested.
Collapse
|
6
|
Murillo Pulgarín JA, García Bermejo LF, Sánchez García MN, Sánchez-Ferrer Robles I. Innovative design of a methodology for the simultaneous determination of compounds by kinetic-spectroscopy three-dimensional chemiluminescence. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 230:118045. [PMID: 31955117 DOI: 10.1016/j.saa.2020.118045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 12/19/2019] [Accepted: 01/06/2020] [Indexed: 06/10/2023]
Abstract
This report presents a novel methodology based in the quickly acquisition of full UV-vis range spectra combined with the joint determination of kinetic parameters and chemiluminescence signals. Then this technique allows obtaining three-dimensional chemiluminescence spectra profiles containing kinetic and spectroscopic information. That is especially useful for resolving mixtures of luminophors because of more analytical information for each analyte is available increasing the selectivity relative to conventional chemiluminescence methods. To accomplish this, a conventional Back-Thinned CCD detector is used and the three-dimensional chemiluminescence spectra is subsequently processed so that two-dimensional spectra with different trajectories can be obtained by dedicated software CLTotal. The potential of the proposed analytical methodology was assessed for the simultaneous determination of two polycyclic aromatic hydrocarbons. The chemiluminescent reaction between DNPO and hydrogen peroxide induced by their presence was used to record 3D spectra and the software CLTotal to subsequently construct linear variable-angle trajectories in the spectra, in order to obtain more selective 2D spectra facilitating the simultaneous determination of the analytes. The results of the statistical analysis testify to the usefulness of the proposed method for the intended purpose.
Collapse
Affiliation(s)
- José Antonio Murillo Pulgarín
- Department of Analytical Chemistry and Foods Technology, University of Castilla-La Mancha, 13071 Ciudad Real, Spain.
| | - Luisa F García Bermejo
- Department of Analytical Chemistry and Foods Technology, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - M Nieves Sánchez García
- Department of Analytical Chemistry and Foods Technology, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | | |
Collapse
|
7
|
Ding J, Chen S, Qu M, Wang Y, Di Y. Trophic transfer affects cytogenetic and antioxidant responses of the mussel Mytilus galloprovincialis to copper and benzo(α)pyrene. MARINE ENVIRONMENTAL RESEARCH 2020; 154:104848. [PMID: 32056703 DOI: 10.1016/j.marenvres.2019.104848] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/11/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
The impacts of environmental pollutants on marine organisms can be determined by the routes of exposure. Various routes of exposure, including dietary exposure and waterborne exposure with or without feeding, were applied to study the cytogenetic responses in marine mussels Mytilus galloprovincials to typical pollutants, BaP (53.74 ± 19.79 μg/L) and Cu (47.38 ± 3.10 μg/L). The increased DNA strand breaks and micronucleus formation were found in haemocytes of mussels via the dietary exposure, indicating the vital role of trophic transfer in toxicity induction. The deeper exploration to relate BaP induced cytogenetic alterations with key antioxidant defense factors, SOD and GST, was performed under different exposure routes. The results revealed the significantly inhibited SOD activity via the trophic transfer, suggesting more direct or prompt role of SOD in antioxidant defense. On contrary, gene expressions of both sod and gst were up-regulated upon all routes of exposures, and showed negative correlation with enzyme activities. The results suggested the asynchronous regulation of studied antioxidant factors at transcriptional and enzyme functional level in mussels upon the change of exposure routes. The study brings out the first observation of trophic transfer influenced cytogenetic and antioxidant responses to pollutants and their alterative risk to marine organisms.
Collapse
Affiliation(s)
- Jiawei Ding
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316000, PR China
| | - Siyu Chen
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316000, PR China
| | - Mengjie Qu
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316000, PR China
| | - Yi Wang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316000, PR China
| | - Yanan Di
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316000, PR China.
| |
Collapse
|
8
|
Wang H, Xia X, Liu R, Wang Z, Lin X, Muir DCG, Wang WX. Multicompartmental Toxicokinetic Modeling of Discrete Dietary and Continuous Waterborne Uptake of Two Polycyclic Aromatic Hydrocarbons by Zebrafish Danio rerio. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:1054-1065. [PMID: 31841317 DOI: 10.1021/acs.est.9b05513] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In the present study, we developed a multicompartmental toxicokinetic model for two polycyclic aromatic hydrocarbons (phenanthrene and anthracene) in their deuterated form (PAHs-d10) in zebrafish considering continuous waterborne uptake and discrete dietary uptake. We quantified the bioconcentration, bioaccumulation, and depuration of these two PAHs-d10 in zebrafish, and then estimated the kinetic parameters by fitting the model into the experimental data. The experimental and fitting results both showed that there was a peak concentration in each compartment of zebrafish after every dietary uptake, while the peak value depended on the ingestion amount of the PAH-d10 and varied among different compartments. The PAH-d10 amount in the blood reached 20-27% of the total amount bioaccumulated in zebrafish at steady-state, followed by skin (20-26%), and fillet (16-22%). The rank of PAH-d10 steady-state concentrations in each compartment showed inconsistency with its lipid contents, indicating that the distribution of the PAHs-d10 in zebrafish was not merely affected by the lipid content in each compartment, but also affected by their kinetics and biotransformation. This study suggests that discrete dietary uptake caused by intermittent food ingestion significantly affects the bioaccumulation of PAHs in fish. Further studies are needed to investigate such effect on other toxicants that are more resistant to biotransformation than PAHs in fish.
Collapse
Affiliation(s)
- Haotian Wang
- State Key Laboratory of Water Environment Simulation, School of Environment , Beijing Normal University , Beijing , 100875 , China
| | - Xinghui Xia
- State Key Laboratory of Water Environment Simulation, School of Environment , Beijing Normal University , Beijing , 100875 , China
| | - Ran Liu
- Department of Mathematics , Hong Kong Baptist University , Hong Kong SWT 802 , China
| | - Zixuan Wang
- State Key Laboratory of Water Environment Simulation, School of Environment , Beijing Normal University , Beijing , 100875 , China
| | - Xiaohan Lin
- State Key Laboratory of Water Environment Simulation, School of Environment , Beijing Normal University , Beijing , 100875 , China
| | - Derek C G Muir
- Aquatic Contaminants Research Division , Environment and Climate Change Canada , Burlington , Ontario L7S 1A1 Canada
| | - Wen-Xiong Wang
- Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) , The Hong Kong University of Science and Technology (HKUST) , Clear Water Bay , Kowloon , Hong Kong , China
| |
Collapse
|
9
|
Barranger A, Langan LM, Sharma V, Rance GA, Aminot Y, Weston NJ, Akcha F, Moore MN, Arlt VM, Khlobystov AN, Readman JW, Jha AN. Antagonistic Interactions between Benzo[a]pyrene and Fullerene (C 60) in Toxicological Response of Marine Mussels. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E987. [PMID: 31288459 PMCID: PMC6669530 DOI: 10.3390/nano9070987] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 12/12/2022]
Abstract
This study aimed to assess the ecotoxicological effects of the interaction of fullerene (C60) and benzo[a]pyrene (B[a]P) on the marine mussel, Mytilus galloprovincialis. The uptake of nC60, B[a]P and mixtures of nC60 and B[a]P into tissues was confirmed by Gas Chromatography-Mass Spectrometry (GC-MS), Liquid Chromatography-High Resolution Mass Spectrometry (LC-HRMS) and Inductively Coupled Plasma Mass Spectrometer (ICP-MS). Biomarkers of DNA damage as well as proteomics analysis were applied to unravel the interactive effect of B[a]P and C60. Antagonistic responses were observed at the genotoxic and proteomic level. Differentially expressed proteins (DEPs) were only identified in the B[a]P single exposure and the B[a]P mixture exposure groups containing 1 mg/L of C60, the majority of which were downregulated (~52%). No DEPs were identified at any of the concentrations of nC60 (p < 0.05, 1% FDR). Using DEPs identified at a threshold of (p < 0.05; B[a]P and B[a]P mixture with nC60), gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis indicated that these proteins were enriched with a broad spectrum of biological processes and pathways, including those broadly associated with protein processing, cellular processes and environmental information processing. Among those significantly enriched pathways, the ribosome was consistently the top enriched term irrespective of treatment or concentration and plays an important role as the site of biological protein synthesis and translation. Our results demonstrate the complex multi-modal response to environmental stressors in M. galloprovincialis.
Collapse
Affiliation(s)
- Audrey Barranger
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Laura M Langan
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Vikram Sharma
- School of Biomedical Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Graham A Rance
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
- Nanoscale and Microscale Research Centre, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Yann Aminot
- Centre for Chemical Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Nicola J Weston
- Nanoscale and Microscale Research Centre, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Farida Akcha
- Ifremer, Laboratory of Ecotoxicology, F-44311, CEDEX 03 Nantes, France
| | - Michael N Moore
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3HD, UK
- European Centre for Environment & Human Health (ECEHH), University of Exeter Medical School, Knowledge Spa, Royal Cornwall Hospital, Cornwall TR1 3LJ, UK
| | - Volker M Arlt
- Department of Analytical, Environmental and Forensic Sciences, King's College London, MRC-PHE Centre for Environmental & Health, London SE1 9NH, UK
- NIHR Health Protection Research Unit in Health Impact of Environmental Hazards at King's College London in partnership with Public Health England and Imperial College London, London SE1 9NH, UK
| | - Andrei N Khlobystov
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
- Nanoscale and Microscale Research Centre, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - James W Readman
- Centre for Chemical Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Awadhesh N Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK.
| |
Collapse
|
10
|
Ma X, Huang P, Dang X, Ai Y, Zheng D, Chen H. MWCNTs/MnO2 nanocomposite-based polythiophene coating for solid-phase microextraction and determination of polycyclic aromatic hydrocarbons in soil. Microchem J 2019. [DOI: 10.1016/j.microc.2019.02.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
Hąc-Wydro K, Połeć K, Broniatowski M. The impact of selected Polycyclic Aromatic Hydrocarbons (PAHs) on the morphology, stability and relaxation of ternary lipid monolayers imitating soil bacteria membrane. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.12.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|