1
|
Gong Q, Wang J, Luo D, Xu Y, Zhang R, Li X, Yin Z, Fang J, Wang H. Accumulation of branched-chain amino acids deteriorates the neuroinflammatory response of Müller cells in diabetic retinopathy via leucine/Sestrin2-mediated sensing of mTOR signaling. Acta Diabetol 2025; 62:227-240. [PMID: 39150511 PMCID: PMC11861416 DOI: 10.1007/s00592-024-02349-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/22/2024] [Indexed: 08/17/2024]
Abstract
AIMS This study aimed to investigate branched-chain amino acid (BCAA) catabolism in diabetic retinopathy (DR). METHODS Wild-type and db/db mice were fed BCAAs (5 or 10 mg/kg/day) for 12 weeks, and hyperglycemia-exposed Müller cells were treated with BCAAs (2 or 5 mmol/L) for 24 and 48 h. BCAA levels were measured using MS/MS. Western blotting was performed to detect proteins. Flow cytometry, oxygen consumption rate, and Cell Counting Kit-8 assays were used to evaluate Müller cell viability. Each experiment was conducted at least thrice. RESULTS BCAAs and branched-chain α-keto acids (BCKAs) were increased in the retina and systemic tissues of diabetic mice, and these changes were further enhanced to approximately 2-fold by extra BCAAs compared to wild-type group. In vitro, BCAAs and BCKAs were induced in hyperglycemic Müller cells, and augmented by BCAA supplementation. The aberrant BCAA catabolism was accompanied by mTORC1 activation and subsequently induced TNF-ɑ, VEGFA, GS, and GFAP in retinas and Müller cells under diabetic conditions. The cell apoptosis rate increased by approximately 50%, and mitochondrial respiration was inhibited by hyperglycemia and BCAA in Müller cells. Additionally, mTORC1 signaling was activated by leucine in Müller cells. Knockdown of Sestrin2 or LeuRS significantly abolished the leucine-induced mTORC1 phosphorylation and protected Müller cell viability under diabetic conditions. CONCLUSIONS We found that BCAA catabolism is hindered in DR through mTORC1 activation. Leucine plays a key role in inducing mTORC1 by sensing Sestrin2 in Müller cells. Targeting Sestrin2 may ameliorate the toxic effects of BCAA accumulation on Müller cells in DR.
Collapse
Affiliation(s)
- Qiaoyun Gong
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Eye Diseases, No. 100 Haining Road, Hongkou District, Shanghai, 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, China
| | - Jingyi Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Eye Diseases, No. 100 Haining Road, Hongkou District, Shanghai, 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, China
| | - Dawei Luo
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Eye Diseases, No. 100 Haining Road, Hongkou District, Shanghai, 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, China
| | - Yupeng Xu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Eye Diseases, No. 100 Haining Road, Hongkou District, Shanghai, 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, China
| | - Rulin Zhang
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai, China
| | - Xin Li
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Zihan Yin
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Eye Diseases, No. 100 Haining Road, Hongkou District, Shanghai, 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, China
| | - Junwei Fang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Eye Diseases, No. 100 Haining Road, Hongkou District, Shanghai, 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, China
| | - Haiyan Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China.
- National Clinical Research Center for Eye Diseases, No. 100 Haining Road, Hongkou District, Shanghai, 200080, China.
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, China.
| |
Collapse
|
2
|
Hanyuda A, Raita Y, Ninomiya T, Hashimoto K, Takada N, Sato K, Inoue J, Koshiba S, Tamiya G, Narita A, Akiyama M, Omodaka K, Tsuda S, Yokoyama Y, Himori N, Yamamoto Y, Taniguchi T, Negishi K, Nakazawa T. Metabolomic Profiling of Open-Angle Glaucoma Etiologic Endotypes: Tohoku Multi-Omics Glaucoma Study. Invest Ophthalmol Vis Sci 2024; 65:44. [PMID: 39565301 PMCID: PMC11583989 DOI: 10.1167/iovs.65.13.44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/31/2024] [Indexed: 11/21/2024] Open
Abstract
Purpose The purpose of this study was to investigate biologically meaningful endotypes of open-angle glaucoma (OAG) by applying unsupervised machine learning to plasma metabolites. Methods This retrospective longitudinal cohort study enrolled consecutive patients aged ≥20 years with OAG at Tohoku University Hospital from January 2017 to January 2020. OAG was confirmed based on comprehensive ophthalmic examinations. Among the 523 patients with OAG with available clinical metabolomic data, 173 patients were longitudinally followed up for ≥2 years, with available data from ≥5 reliable visual field (VF) tests without glaucoma surgery. We collected fasting blood samples and clinical data at enrollment and nuclear magnetic resonance spectroscopy to profile 45 plasma metabolites in a targeted approach. After computing a distance matrix of preprocessed metabolites with Pearson distance, gap statistics determined the optimal number of OAG endotypes. Its risk factors, clinical presentations, metabolomic profiles, and progression rate of sector-based VF loss were compared across endotypes. Results Five distinct OAG endotypes were identified. The highest-risk endotype (endotype B) showed a significant faster progression of central VF loss (P = 0.007). Compared with patients with other endotypes, those with endotype B were more likely to have a high prevalence of dyslipidemia, cold extremities, oxidative stress, and low OAG genetic risk scores. Pathway analysis of metabolomic profiles implicated altered fatty acid and ketone body metabolism in this endotype, with 34 differentially enriched pathways (false discovery rate [FDR] < 0.05). Conclusions Integrated metabolomic profiles identified five distinct etiologic endotypes of OAG, suggesting pathological mechanisms related with a high-risk group of central vision loss progression in the Japanese population.
Collapse
Affiliation(s)
- Akiko Hanyuda
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, Chuo-ku, Tokyo, Japan
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Miyagi, Japan
| | - Yoshihiko Raita
- Department of Nephrology, Okinawa Prefectural Chubu Hospital, Uruma City, Naha, Japan
| | - Takahiro Ninomiya
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Miyagi, Japan
| | - Kazuki Hashimoto
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Miyagi, Japan
| | - Naoko Takada
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Miyagi, Japan
| | - Kota Sato
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Miyagi, Japan
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Miyagi, Japan
| | - Jin Inoue
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
- The Advanced Research Center for Innovations in Next-Generation Medicine (INGEM), Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
| | - Seizo Koshiba
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
- The Advanced Research Center for Innovations in Next-Generation Medicine (INGEM), Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
| | - Gen Tamiya
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
| | - Akira Narita
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
| | - Masato Akiyama
- Department of Ocular Pathology and Imaging Science, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Kazuko Omodaka
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Miyagi, Japan
| | - Satoru Tsuda
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Miyagi, Japan
| | - Yu Yokoyama
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Miyagi, Japan
| | - Noriko Himori
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Miyagi, Japan
- Department of Aging Vision Healthcare, Tohoku University Graduate School of Biomedical Engineering, Aoba-ku, Sendai, Miyagi, Japan
| | - Yasuko Yamamoto
- Ophthalmic Innovation Center, Santen Pharmaceutical Co., Ltd, Ikoma-shi, Nara, Japan
| | - Takazumi Taniguchi
- Ophthalmic Innovation Center, Santen Pharmaceutical Co., Ltd, Ikoma-shi, Nara, Japan
| | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Miyagi, Japan
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Miyagi, Japan
- Department of Retinal Disease Control, Ophthalmology, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Miyagi, Japan
| |
Collapse
|
3
|
Cho DH, Yun JH, Choi DY, Heo J, Kim EK, Ha J, Yoo C, Choi HI, Lee YJ, Kim HS. Long-term acclimation to organic carbon enhances the production of loliolide from Scenedesmus deserticola. BIORESOURCE TECHNOLOGY 2024; 412:131408. [PMID: 39222861 DOI: 10.1016/j.biortech.2024.131408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Production of functional biocompounds from microalgae has garnered interest from different industrial sectors; however, their overall productivity must be substantially improved for commercialization. Herein, long-term acclimation of Scenedesmus deserticola was conducted using glucose as an organic carbon source to enhance its heterotrophic capabilities and the production potential of loliolide. A year-long acclimation on agar plates led to the selection of S. deserticola HS4, which exhibited at least 2-fold increase in loliolide production potential; S. deserticola HS4 was subjected to further screening of its cultivation conditions and fed-batch cultivation was subsequently performed in liter-scale reactors. While S. deserticola HS4 exhibited shifts in cellular morphology and biochemical composition, the results suggested a substantial increase in its loliolide productivity regardless of trophic modes. Collectively, these results highlight the potential of long-term acclimation as an effective strategy for improving microalgal crops to align with industrial production practices.
Collapse
Affiliation(s)
- Dae-Hyun Cho
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea.
| | - Jin-Ho Yun
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science & Technology (UST), Daejeon 34113, Republic of Korea; Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Dong-Yoon Choi
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea.
| | - Jina Heo
- Department of Economy and Future Strategy Research, CRI, Cheongju 28517, Republic of Korea.
| | - Eun Kyung Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea.
| | - Juran Ha
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea.
| | - Chan Yoo
- ASK LABS, KRIBB BVC Center 109, Daejeon 34141, Republic of Korea.
| | - Hong Il Choi
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science & Technology (UST), Daejeon 34113, Republic of Korea.
| | - Yong Jae Lee
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science & Technology (UST), Daejeon 34113, Republic of Korea.
| | - Hee-Sik Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science & Technology (UST), Daejeon 34113, Republic of Korea; ASK LABS, KRIBB BVC Center 109, Daejeon 34141, Republic of Korea.
| |
Collapse
|
4
|
Chang CCJ, Liu B, Liebmann JM, Cioffi GA, Winn BJ. Glaucoma and the Human Microbiome. J Glaucoma 2024; 33:529-538. [PMID: 38809163 DOI: 10.1097/ijg.0000000000002448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/11/2024] [Indexed: 05/30/2024]
Abstract
PURPOSE OF REVIEW To explore a view of the human microbiome as an interconnected, functional, dynamic system that may be linked to the pathogenesis and progression of glaucoma. METHODS A literature review was undertaken that included publications from 1966 to 2023. RESULTS Bacterial lipopolysaccharides (LPS) activate toll-like receptors (TLR) and mediate the human immune response. The LPS-TLR4 pathway is a potential avenue for the ocular, gut, and oral microbiomes to interface and/or influence ocular disease. Studies of gut dysbiosis have shown that alterations in the healthy microbiota can predispose the host to immune-mediated inflammatory and neurodegenerative conditions, while oral and ocular surface dysbiosis has been correlated with glaucoma. While developmental exposure to commensal microflora has shown to be necessary for the autoimmune and neurodegenerative responses to elevated intraocular pressure to take place, commensal bacterial products like short-chain fatty acids have regulatory effects protective against glaucoma. SUMMARY Alterations to human microbiotas have been associated with changes in intestinal permeability, gene regulation, immune cell differentiation, and neural functioning, which may predispose the host to glaucoma. Select microbes have been highlighted for their potential contributions to glaucoma disease progression or protection, raising the potential for microbiota-based treatment modalities. Current topical glaucoma treatments may disrupt the ocular surface microbiota, potentially having ramifications on host health. Further study of the relationships between human microbiome and glaucoma is needed.
Collapse
Affiliation(s)
| | - Benjamin Liu
- Department of Ophthalmology, Columbia University Medical Center, New York-Presbyterian Hospital, New York, NY
| | | | | | - Bryan J Winn
- Department of Ophthalmology, Columbia University Medical Center, New York-Presbyterian Hospital, New York, NY
- Ophthalmology Section, Surgical Service, San Francisco Veterans Affairs Medical Center, San Francisco, CA
| |
Collapse
|
5
|
Ikeda HO, Hasegawa T, Abe H, Amino Y, Nakagawa T, Tada H, Miyata M, Oishi A, Morita S, Tsujikawa A. Efficacy and Safety of Branched Chain Amino Acids on Retinitis Pigmentosa: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Transl Vis Sci Technol 2024; 13:29. [PMID: 39150715 PMCID: PMC11343008 DOI: 10.1167/tvst.13.8.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 07/14/2024] [Indexed: 08/17/2024] Open
Abstract
Purpose The aim of this study was to investigate the efficacy and safety of orally administered branched-chain amino acids (BCAAs) on disease progression in patients with retinitis pigmentosa (RP). Methods A double-blind, randomized, placebo-controlled study was conducted at the Kyoto University Hospital. Seventy patients with RP aged 20 years or above were randomly assigned to the TK-98 (a combination of BCAAs in granule form) or placebo group. One packet (4.15 g) of the study drug was administered orally thrice daily for 78 weeks. Results There was no significant difference in the rate of change in the total point score, the primary endpoint, between the TK-98 (-52.4 ± 10.3 dB/year) and placebo (-42.9 ± 13.8 dB/year) groups. Ellipsoid zone length decreased by -76.5 ± 8.9 and -95.5 ± 12.2 µm/year in the TK-98 and placebo groups, respectively; although this difference was not significant, the TK-98 group showed slower degeneration. No serious adverse events were associated with the oral administration of TK-98 in patients with RP. Conclusions This study did not yield conclusive evidence supporting BCAA combination granules' effectiveness in slowing visual field progression in patients with RP. An insignificant trend toward a slower reduction in ellipsoid zone length was found in morphological tests. Further studies are required to fully understand the potential benefits of BCAA supplementation in RP. Translational Relevance Our study demonstrates the safety of administering BCAAs to patients with RP. Accordingly, larger, more homogeneous clinical studies with longer durations may suggest their potential as therapeutic agents.
Collapse
Affiliation(s)
- Hanako O. Ikeda
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, Japan
| | - Tomoko Hasegawa
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, Japan
- Research Fellow of the Japan Society for the Promotion of Science, Tokyo, Japan
| | - Hiroyasu Abe
- Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Sakyo, Kyoto, Japan
| | - Yoko Amino
- Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Sakyo, Kyoto, Japan
| | - Takayuki Nakagawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Sakyo, Kyoto, Japan
| | - Harue Tada
- Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Sakyo, Kyoto, Japan
| | - Manabu Miyata
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, Japan
| | - Akio Oishi
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, Japan
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Satoshi Morita
- Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Sakyo, Kyoto, Japan
| | - Akitaka Tsujikawa
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, Japan
| |
Collapse
|
6
|
Hu W, Chu T, Liao H, Wang W, Ha J, Kiburg K, Zhang X, Shang X, Huang Y, Zhang X, Tang S, Hu Y, Yu H, Yang X, He M, Zhu Z. Distinct and Overlapping Metabolites Associated with Visual Impairment and Cognitive Impairment. J Alzheimers Dis Rep 2024; 8:1093-1104. [PMID: 39434817 PMCID: PMC11491940 DOI: 10.3233/adr-230154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 06/27/2024] [Indexed: 10/23/2024] Open
Abstract
Background Previous studies found that visual impairment (VI) is associated with higher risk of cognitive impairment, but the molecular basis of these conditions is unknown. Objective We aim to compare the metabolite associations of VI and cognitive impairment. Methods The study population with comprehensive measurements was derived from the UK Biobank study. Visual acuity worse than 0.3 logMAR units were defined as VI. Failure in one or more of the four cognitive tests was defined as cognitive impairment. A panel of 249 metabolites was measured using a nuclear magnetic resonance metabolites profiling platform. Logistic regression models were applied to compare metabolite associations with VI and cognitive impairment. Results 23,775 participants with complete data on visual acuity, cognitive tests and metabolomics, and without a history of neurological disorders at baseline were included. After adjusting for confounding factors, VI was significantly associated with cognitive impairment (odds ratio[OR] = 1.49, 95% confidence interval [CI]: 1.27-1.74, p < 0.001). After multiple testing correction (p < 9×10-4), five metabolites including the ratio of omega-6 to omega-3 fatty acids (FAs) (OR = 1.18[1.10-1.27]), ratio of omega-3 to total FAs (OR = 0.84[0.77-0.91]), ratio of docosahexaenoic acid (DHA) to total FAs (OR = 0.86[0.80-0.94]), DHA (OR = 0.85[0.78-0.92]), and omega-3 FAs (OR = 0.84[0.77-0.91]) were uniquely associated with VI. Glycoprotein acetyls (OR = 1.06[1.03-1.10]) and alanine (OR = 0.95[0.92-0.98]) were exclusively associated with cognitive impairment. Albumin was identified as the common metabolite shared by the two phenotypes (OR = 0.90[0.85-0.95] for VI, and 0.95[0.92-0.98]) for cognitive impairment). Conclusions We identified distinct and overlapping metabolites associated with VI and cognitive impairment, unveiling their distinct metabolic profiles and potential common pathophysiology.
Collapse
Affiliation(s)
- Wenyi Hu
- Department of Ophthalmology, Guangdong Academy of Medical Sciences, Guangdong Provincial People’s Hospital, Guangzhou, China
- Centre for Eye Research Australia, Ophthalmology, University of Melbourne, Melbourne, Australia
- Department of Surgery (Ophthalmology), The University of Melbourne, Melbourne, Australia
| | | | - Huan Liao
- Neural Regeneration Group, Institute of Reconstructive Neurobiology, University of Bonn, Bonn, Germany
| | - Wei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jason Ha
- Centre for Eye Research Australia, Ophthalmology, University of Melbourne, Melbourne, Australia
| | - Katerina Kiburg
- Centre for Eye Research Australia, Ophthalmology, University of Melbourne, Melbourne, Australia
- Department of Surgery (Ophthalmology), The University of Melbourne, Melbourne, Australia
| | - Xiayin Zhang
- Department of Ophthalmology, Guangdong Academy of Medical Sciences, Guangdong Provincial People’s Hospital, Guangzhou, China
| | - Xianwen Shang
- Department of Ophthalmology, Guangdong Academy of Medical Sciences, Guangdong Provincial People’s Hospital, Guangzhou, China
- Centre for Eye Research Australia, Ophthalmology, University of Melbourne, Melbourne, Australia
- Department of Surgery (Ophthalmology), The University of Melbourne, Melbourne, Australia
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yu Huang
- Department of Ophthalmology, Guangdong Academy of Medical Sciences, Guangdong Provincial People’s Hospital, Guangzhou, China
| | - Xueli Zhang
- Department of Ophthalmology, Guangdong Academy of Medical Sciences, Guangdong Provincial People’s Hospital, Guangzhou, China
| | - Shulin Tang
- Department of Ophthalmology, Guangdong Academy of Medical Sciences, Guangdong Provincial People’s Hospital, Guangzhou, China
| | - Yijun Hu
- Department of Ophthalmology, Guangdong Academy of Medical Sciences, Guangdong Provincial People’s Hospital, Guangzhou, China
| | - Honghua Yu
- Department of Ophthalmology, Guangdong Academy of Medical Sciences, Guangdong Provincial People’s Hospital, Guangzhou, China
| | - Xiaohong Yang
- Department of Ophthalmology, Guangdong Academy of Medical Sciences, Guangdong Provincial People’s Hospital, Guangzhou, China
| | - Mingguang He
- Department of Surgery (Ophthalmology), The University of Melbourne, Melbourne, Australia
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China
- Research Centre for SHARP Vision, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Zhuoting Zhu
- Department of Ophthalmology, Guangdong Academy of Medical Sciences, Guangdong Provincial People’s Hospital, Guangzhou, China
- Centre for Eye Research Australia, Ophthalmology, University of Melbourne, Melbourne, Australia
- Department of Surgery (Ophthalmology), The University of Melbourne, Melbourne, Australia
| |
Collapse
|
7
|
Ahmed RF, Elbaset MA, Farouk H, Shabana ME, Ahmed-Farid OA, Nasr M. Nanoliposomal amino acids counteracting protein malnutrition induced hematopoietic and hepatic complications. J Drug Deliv Sci Technol 2023; 89:105051. [DOI: 10.1016/j.jddst.2023.105051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
8
|
Canovai A, Tribble JR, Jöe M, Westerlund DY, Amato R, Trounce IA, Dal Monte M, Williams PA. Pyrroloquinoline quinone drives ATP synthesis in vitro and in vivo and provides retinal ganglion cell neuroprotection. Acta Neuropathol Commun 2023; 11:146. [PMID: 37684640 PMCID: PMC10486004 DOI: 10.1186/s40478-023-01642-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Retinal ganglion cells are highly metabolically active requiring strictly regulated metabolism and functional mitochondria to keep ATP levels in physiological range. Imbalances in metabolism and mitochondrial mechanisms can be sufficient to induce a depletion of ATP, thus altering retinal ganglion cell viability and increasing cell susceptibility to death under stress. Altered metabolism and mitochondrial abnormalities have been demonstrated early in many optic neuropathies, including glaucoma, autosomal dominant optic atrophy, and Leber hereditary optic neuropathy. Pyrroloquinoline quinone (PQQ) is a quinone cofactor and is reported to have numerous effects on cellular and mitochondrial metabolism. However, the reported effects are highly context-dependent, indicating the need to study the mechanism of PQQ in specific systems. We investigated whether PQQ had a neuroprotective effect under different retinal ganglion cell stresses and assessed the effect of PQQ on metabolic and mitochondrial processes in cortical neuron and retinal ganglion cell specific contexts. We demonstrated that PQQ is neuroprotective in two models of retinal ganglion cell degeneration. We identified an increased ATP content in healthy retinal ganglion cell-related contexts both in in vitro and in vivo models. Although PQQ administration resulted in a moderate effect on mitochondrial biogenesis and content, a metabolic variation in non-diseased retinal ganglion cell-related tissues was identified after PQQ treatment. These results suggest the potential of PQQ as a novel neuroprotectant against retinal ganglion cell death.
Collapse
Affiliation(s)
- Alessio Canovai
- Division of Eye and Vision, Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
- Department of Biology, University of Pisa, Pisa, Italy
| | - James R. Tribble
- Division of Eye and Vision, Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Melissa Jöe
- Division of Eye and Vision, Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Daniela Y. Westerlund
- Division of Eye and Vision, Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Rosario Amato
- Department of Biology, University of Pisa, Pisa, Italy
| | - Ian A. Trounce
- Department of Surgery, Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Ophthalmology, University of Melbourne, Melbourne, VIC Australia
| | | | - Pete A. Williams
- Division of Eye and Vision, Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Zhang X, Xia M, Wu Y, Zhang F. Branched-Chain Amino Acids Metabolism and Their Roles in Retinopathy: From Relevance to Mechanism. Nutrients 2023; 15:2161. [PMID: 37432261 DOI: 10.3390/nu15092161] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 07/12/2023] Open
Abstract
Retinopathy is one of the leading causes of irreversible blindness and vision loss worldwide. Imbalanced nutrients play important roles in the pathogenesis and pathophysiology of retinal diseases. Branched-Chain Amino Acids (BCAAs), as essential amino acids, perform a variety of biological functions, including protein synthesis, glucose metabolism, lipid metabolism, inflammation, and oxidative stress in metabolic tissues of diabetes and aging-related diseases. Recently, it has been shown that BCAAs are highly related to neuroprotection, oxidative stress, inflammatory and glutamate toxicity in the retina of retinopathy. Therefore, this review summarizes the alterations of BCAA levels in retinopathy, especially diabetic retinopathy and aging-related macular disease, and the genetics, functions, and mechanisms of BCAAs in the retina as well as other metabolic tissues for reference. All of these efforts aim to provide fundamental knowledge of BCAAs for further discoveries and research on retina health based on the sensing and signaling of essential amino acids.
Collapse
Affiliation(s)
- Xiaonan Zhang
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Liaoning Provence Key Laboratory of Genome Engineered Animal Models, National Center of Genetically Engineered Animal Models for International Research, Institute for Genome Engineered Animal Models of Human Diseases, Dalian Medical University, Dalian 116000, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
| | - Mengxue Xia
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
| | - Yingjie Wu
- Liaoning Provence Key Laboratory of Genome Engineered Animal Models, National Center of Genetically Engineered Animal Models for International Research, Institute for Genome Engineered Animal Models of Human Diseases, Dalian Medical University, Dalian 116000, China
- Shandong Provincial Hospital, School of Laboratory Animal & Shandong Laboratory Animal Center, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250021, China
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| | - Fang Zhang
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
| |
Collapse
|
10
|
Wei P, He M, Han G. Metabolic Characterization of Ocular Tissues in Relation to Laser-Induced Choroidal Neovascularization in Rats. J Proteome Res 2022; 21:2979-2986. [PMID: 36315600 DOI: 10.1021/acs.jproteome.2c00506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Age-related macular degeneration is a metabolic compromise disorder whose main pathological feature is choroidal neovascularization (CNV) formation. Using untargeted metabolomics analysis, we determined to assess the metabolomic alterations in a CNV rat model to provide an insight into its pathogenesis. In the CNV model, there were 24 significantly changed metabolites in the plasma and 71 in various ocular tissues. Pathway analysis showed that certain metabolic pathways changed in interrelated tissues: for instance, in terms of the altered urea cycle, arginine and proline metabolism were increased in the plasma, while spermidine and spermine biosynthesis activities were increased in the retinal pigment epithelium (RPE)/choroid. The retina and RPE/choroid shared the same changed metabolites of branched-chain amino acid metabolism. Fatty acid metabolism was found to be the significant altered metabolic pathway in the retina of this CNV model. Although the metabolism pattern of different substances is specific for each ocular tissue, there is also a certain material exchange between different tissues. Dysregulated metabolomic profiles in differential tissues may point to an interconnected pathway, oxidative stress response, which may lead to RPE cell degeneration and, ultimately, CNV development.
Collapse
Affiliation(s)
- Pinghui Wei
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin 300020, PR China.,Nankai University Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin 300020, China.,Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, PR China
| | - Meiqin He
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300192, PR China
| | - Guoge Han
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin 300020, PR China.,Nankai University Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin 300020, China.,Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, PR China
| |
Collapse
|
11
|
Ahmed RF, Nasr M, Abd Elbaset M, Hussein AF, Ahmed-Farid OAH, Shafee N, Shabana ME. Combating hematopoietic and hepatocellular abnormalities resulting from administration of cisplatin: Role of liver targeted glycyrrhetinic acid nanoliposomes loaded with amino acids. Pharm Dev Technol 2022; 27:925-941. [PMID: 36168910 DOI: 10.1080/10837450.2022.2129687] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
The effectiveness of cisplatin in cancer treatment renders its use vital to clinicians. However, the accompanying side effects as cachexia, emesis and liver damage necessitate the use of a dietary supplement which is capable of hindering such undesirable complications. The branched chain amino acids as well as glutamine and arginine have been proven to be effective nutritional co-adjuvant therapeutic agents. Furthermore, new pharmaceutical approaches encompass designing organ-targeted nanoformulations to increase the medicinal efficacy. Therefore, the aim of the present study was to investigate the beneficial effects of liver-targeted amino acids-loaded nanoliposomes in counteracting the adverse hematopoietic and hepatic complications associated with cisplatin. Results revealed the use of the combination of two nanoliposomal formulations (one loading leucine + isolecuine + valine, and the other loading glutamine and arginine) given orally at a dose of 200 mg/kg for twelve days was effective against cisplatin-induced toxicities represented by improvement in the complete blood picture parameters, decrease in the serum hepatic enzymes levels, amelioration of the hepatic oxidative stress and cellular energy imbalance along with reduction in the histopathological abnormalities. It can be concluded that amino acids loaded nanoliposomes could be considered a new strategy in preventing cisplatin's adverse effects.
Collapse
Affiliation(s)
- Rania F Ahmed
- Department of Pharmacology, Medical Research and Clinical studies Institute, National Research Centre, (ID: 60014618), Dokki, 12622, Giza, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Egypt
| | - Marawan Abd Elbaset
- Department of Pharmacology, Medical Research and Clinical studies Institute, National Research Centre, (ID: 60014618), Dokki, 12622, Giza, Egypt
| | - Alyaa F Hussein
- Department of Pharmacology, Medical Research and Clinical studies Institute, National Research Centre, (ID: 60014618), Dokki, 12622, Giza, Egypt
| | - Omar A H Ahmed-Farid
- Department of Physiology, National Organization for Drug Control and Research, 12553, Giza, Egypt
| | - Nermin Shafee
- Department of Pathology, Medical Research and Clinical studies Institute, National Research Centre, (ID: 60014618), Dokki, 12622, Giza, Egypt
| | - Marwa E Shabana
- Department of Pathology, Medical Research and Clinical studies Institute, National Research Centre, (ID: 60014618), Dokki, 12622, Giza, Egypt
| |
Collapse
|
12
|
Iwai S, Hasegawa T, Ikeda HO, Tsujikawa A. Branched Chain Amino Acids Promote ATP Production Via Translocation of Glucose Transporters. Invest Ophthalmol Vis Sci 2022; 63:7. [PMID: 35930269 PMCID: PMC9363681 DOI: 10.1167/iovs.63.9.7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose We have previously shown that maintenance of ATP levels is a promising strategy for preventing neuronal cell death, and that branched chain amino acids (BCAAs) enhanced cellular ATP levels in cultured cells and antagonized cell death. BCAAs attenuated photoreceptor degeneration and retinal ganglion cell death in rodent models of retinal degeneration or glaucoma. This study aimed to elucidate the mechanisms through which BCAAs enhance ATP production. Methods Intracellular ATP concentration was measured in HeLa cells under glycolysis and citric acid cycle inhibited conditions. Next, glucose uptake was quantified in HeLa cells and in 661W retinal photoreceptor-derived cells under glycolysis inhibition, endoplasmic reticulum stress, and glucose transporters (GLUTs) inhibited conditions, by measuring the fluorescence of fluorescently labeled deoxy-glucose analog using flow cytometry. Then, the intracellular behavior of GLUT1 and GLUT3 were observed in HeLa or 661W cells transfected with enhanced green fluorescent protein-GLUTs. Results BCAAs recovered intracellular ATP levels during glycolysis inhibition and during citric acid cycle inhibition. BCAAs significantly increased glucose uptake and recovered decreased glucose uptake induced by endoplasmic reticulum stress or glycolysis inhibition. However, BCAAs were unable to increase intracellular ATP levels or glucose uptake when GLUTs were inhibited. Fluorescence microscopy revealed that supplementation of BCAAs enhanced the translocation of GLUTs proteins to the plasma membrane over time. Conclusions BCAAs increase ATP production by promoting glucose uptake through promotion of glucose transporters translocation to the plasma membrane. These results may help expand the clinical application of BCAAs in retinal neurodegenerative diseases, such as glaucoma and retinal degeneration.
Collapse
Affiliation(s)
- Sachiko Iwai
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomoko Hasegawa
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Research Fellow of the Japan Society for the Promotion of Science, Tokyo, Japan
| | - Hanako Ohashi Ikeda
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akitaka Tsujikawa
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
13
|
Gong Q, Zhang R, Wei F, Fang J, Zhang J, Sun J, Sun Q, Wang H. SGLT2 inhibitor-empagliflozin treatment ameliorates diabetic retinopathy manifestations and exerts protective effects associated with augmenting branched chain amino acids catabolism and transportation in db/db mice. Biomed Pharmacother 2022; 152:113222. [PMID: 35671581 DOI: 10.1016/j.biopha.2022.113222] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 11/28/2022] Open
Abstract
Empagliflozin (EMPA) is the first sodium-glucose co-transporter 2 inhibitor to significantly reduce cardiovascular and kidney complications in type 2 diabetes mellitus. Given this, we speculate that EMPA may have the potential to intervene in diabetic retinopathy (DR), which is another diabetes-specific microvascular complication. Db/db mice were treated with EMPA for different periods to observe the retinas and related mechanisms. EMPA effectively balanced body weight and blood glucose levels, mitigated ocular edema and microaneurysm in db/db mice. EMPA significantly inhibited oxidative stress, apoptosis and recovered tight junction in diabetic retinas. MS/MS analyses showed that EMPA suppressed aberrant branched-chain amino acid (BCAAs) accumulation in db/db retinas, which led to the inhibition of the mammalian target of rapamycin activation, downregulation of inflammation, and angiogenic factors, including TNF-ɑ, IL-6, VCAM-1, and VEGF induced by diabetes. Furthermore, branched-chain α-keto acids (BCKAs), which are catabolites of BCAAs, were increased in diabetic retinas and decreased with EMPA application. Moreover, branched-chain ketoacid dehydrogenase kinase (BCKDK) was enhanced, BCKDHA and BCKDHB were decreased in diabetic retinas. This could be reversed by EMPA treatment, thus promoting BCAAs catabolism to decrease BCAAs and BCKAs accumulation in diabetic retinas. The high levels of BCAAs in the plasma and enhanced L-type amino acid transporter 1 (LAT1) were responsible for the high levels of BCAAs in diabetic retinas, which could be inhibited by EMPA. Overall, EMPA could ameliorate DR manifestations. The normalization of BCAAs catabolism and intake may play a role in this process. This study supports EMPA as a protective drug against DR.
Collapse
Affiliation(s)
- Qiaoyun Gong
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Rulin Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Fang Wei
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Junwei Fang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Jingfa Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Jun Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Qian Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Haiyan Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.
| |
Collapse
|
14
|
Hanyuda A, Rosner BA, Wiggs JL, Willett WC, Tsubota K, Pasquale LR, Kang JH. Prospective study of dietary intake of branched-chain amino acids and the risk of primary open-angle glaucoma. Acta Ophthalmol 2022; 100:e760-e769. [PMID: 34240564 DOI: 10.1111/aos.14971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 06/17/2021] [Indexed: 11/27/2022]
Abstract
PURPOSE Metabolomic and preclinical studies suggest that branched-chain amino acids (BCAA) may be inversely associated with neurodegenerative diseases including glaucoma. We therefore assessed the long-term association between dietary intake of BCAA and incident primary open-angle glaucoma (POAG) and POAG subtypes. METHODS We followed biennially participants of the Nurses' Health Study (NHS; 65 531 women: 1984-2016), Health Professionals Follow-up Study (42 254 men: 1986-2016) and NHSII (66 904 women; 1991-2017). Eligible participants were 40+ years old and reported eye examinations. Repeated validated food frequency questionnaires were used to assess dietary intake of BCAA. Incident cases of POAG and POAG subtypes defined by visual field (VF) loss and untreated intraocular pressure (IOP) were confirmed by medical record review. Multivariable-adjusted relative risks (MVRRs) and 95% confidence intervals (CIs) were estimated using Cox proportional hazards models. RESULTS We identified 1946 incident POAG cases. The pooled MVRRs of POAG for the highest quintile (Q5 = 17.1 g/day) versus lowest quintile (Q1 = 11.2 g/day) of total BCAA intake was 0.93 (95% CI, 0.73-1.19; ptrend = 0.45; pheterogeneity by sex = 0.24). For subtypes of POAG defined by IOP level or POAG with only peripheral VF loss, no associations were observed for men or women (ptrend ≥ 0.20); however, for the POAG subtype with early paracentral VF loss, there was a suggestion of an inverse association in women (MVRRQ5versusQ1 = 0.80 [95% CI, 0.57-1.12; ptrend = 0.12]) but not in men (MVRRQ5versusQ1 = 1.38 [95% CI, 0.81-2.34; ptrend = 0.28; pheterogeneity by sex = 0.06]). CONCLUSION Higher dietary intake of BCAA was not associated with POAG risk.
Collapse
Affiliation(s)
- Akiko Hanyuda
- Department of Nutrition Harvard T.H. Chan School of Public Health Boston Massachusetts USA
- Department of Ophthalmology Keio University School of Medicine Tokyo Japan
- Epidemiology and Prevention Group Center for Public Health Sciences National Cancer Center Tokyo Japan
| | - Bernard A. Rosner
- Department of Biostatistics Harvard T.H. Chan School of Public Health Boston Massachusetts USA
- Channing Division of Network Medicine Department of Medicine Brigham and Women’s Hospital Harvard Medical School Boston Massachusetts USA
| | - Janey L. Wiggs
- Department of Ophthalmology Harvard Medical School Massachusetts Eye and Ear Boston Massachusetts USA
| | - Walter C. Willett
- Department of Nutrition Harvard T.H. Chan School of Public Health Boston Massachusetts USA
- Channing Division of Network Medicine Department of Medicine Brigham and Women’s Hospital Harvard Medical School Boston Massachusetts USA
- Department of Epidemiology Harvard T.H. Chan School of Public Health Boston Massachusetts USA
| | - Kazuo Tsubota
- Department of Ophthalmology Keio University School of Medicine Tokyo Japan
| | - Louis R. Pasquale
- Channing Division of Network Medicine Department of Medicine Brigham and Women’s Hospital Harvard Medical School Boston Massachusetts USA
- Department of Ophthalmology Icahn School of Medicine at Mount Sinai New York New York USA
| | - Jae H. Kang
- Channing Division of Network Medicine Department of Medicine Brigham and Women’s Hospital Harvard Medical School Boston Massachusetts USA
| |
Collapse
|
15
|
One-step induction of photoreceptor-like cells from human iPSCs by delivering transcription factors. iScience 2022; 25:103987. [PMID: 35330684 PMCID: PMC8938283 DOI: 10.1016/j.isci.2022.103987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 01/10/2022] [Accepted: 02/24/2022] [Indexed: 11/22/2022] Open
|
16
|
Yang P, Lockard R, Titus H, Hiblar J, Weller K, Wafai D, Weleber RG, Duvoisin RM, Morgans CW, Pennesi ME. Suppression of cGMP-Dependent Photoreceptor Cytotoxicity With Mycophenolate Is Neuroprotective in Murine Models of Retinitis Pigmentosa. Invest Ophthalmol Vis Sci 2021; 61:25. [PMID: 32785677 PMCID: PMC7441375 DOI: 10.1167/iovs.61.10.25] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Purpose To determine the effect of mycophenolate mofetil (MMF) on retinal degeneration on two mouse models of retinitis pigmentosa. Methods Intraperitoneal injections of MMF were administered daily in rd10 and c57 mice starting at postoperative day 12 (P12) and rd1 mice starting at P8. The effect of MMF was assessed with optical coherence tomography, immunohistochemistry, electroretinography, and OptoMotry. Whole retinal cyclic guanosine monophosphate (cGMP) and mycophenolic acid levels were quantified with mass spectrometry. Photoreceptor cGMP cytotoxicity was evaluated with cell counts of cGMP immunostaining. Results MMF treatment significantly delays the onset of retinal degeneration and cGMP-dependent photoreceptor cytotoxicity in rd10 and rd1 mice, albeit a more modest effect in the latter. In rd10 mice, treatment with MMF showed robust preservation of the photoreceptors up to P22 with associated suppression of cGMP immunostaining and microglial activation; The neuroprotective effect diminished after P22, but outer retinal thickness was still significantly thicker by P35 and OptoMotry response was significantly better up to P60. Whereas cGMP immunostaining of the photoreceptors were present in rd10 and rd1 mice, hyperphysiological whole retinal cGMP levels were observed only in rd1 mice. Conclusions Early treatment with MMF confers potent neuroprotection in two animal models of RP by suppressing the cGMP-dependent common pathway for photoreceptor cell death. The neuroprotective effect of MMF on cGMP-dependent cytotoxicity occurs independently of the presence of hyperphysiological whole retinal cGMP levels. Thus our data suggest that MMF may be an important new class of neuroprotective agent that could be useful in the treatment of patients with RP.
Collapse
Affiliation(s)
- Paul Yang
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Rachel Lockard
- School of Medicine, Oregon Health & Science University, Portland, Oregon, United States
| | - Hope Titus
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Jordan Hiblar
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Kyle Weller
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Dahlia Wafai
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Richard G Weleber
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Robert M Duvoisin
- Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, Oregon, United States
| | - Catherine W Morgans
- Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, Oregon, United States
| | - Mark E Pennesi
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| |
Collapse
|
17
|
Hop flower extracts mitigate retinal ganglion cell degeneration in a glaucoma mouse model. Sci Rep 2020; 10:21653. [PMID: 33303850 PMCID: PMC7730440 DOI: 10.1038/s41598-020-78731-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 11/30/2020] [Indexed: 11/08/2022] Open
Abstract
In glaucoma, retinal ganglion cells degenerate progressively, leading to visual field loss and blindness. Presently, the only treatment strategy for glaucoma is lowering the intraocular pressure. However, there are cases in which patients develop progressive visual field loss even though their intraocular pressures are within normal ranges. Therefore, the development of novel therapeutic strategies is an urgent endeavor. Besides high intraocular pressure, several other factors have been proposed to be associated with glaucoma progression, e.g., myopia, blood flow impairment, and amyloid β accumulation. We have previously reported that hop flower extracts possess γ-secretase inhibitory activities and reduce amyloid β deposition in the brains of Alzheimer's disease model mice. In the current study, we showed that administration of hop flower extracts to glutamate-aspartate transporter (GLAST) knockout mice, the glaucoma model mice, attenuated glaucomatous retinal ganglion cell degeneration. Preservation of retinal ganglion cells in hop flower extract-administered mice was confirmed using optical coherence tomography, confocal scanning laser ophthalmoscopy, and retinal flatmount and histological evaluations. Hop flower extracts are, therefore, deemed a possible candidate as a novel therapeutic agent to treat glaucoma.
Collapse
|
18
|
Wei P, He M, Teng H, Han G. Metabolomic analysis of the aqueous humor from patients with central retinal vein occlusion using UHPLC-MS/MS. J Pharm Biomed Anal 2020; 188:113448. [PMID: 32622112 DOI: 10.1016/j.jpba.2020.113448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/21/2020] [Accepted: 06/23/2020] [Indexed: 12/17/2022]
Abstract
Central retinal vein occlusion (CRVO) is one of the retinal fundus diseases and may result in irreversible visual impairment. Metabolic dysfunction has been proved to play an essential role in the pathogenesis of CRVO. We performed untargeted metabolomic analysis of the aqueous humor (AH) of patients with CRVO and controls using UHPLC-MS/MS. A total of 248 metabolites were identified in the tested AH samples, 37 of which allowed for the construction of an orthogonal partial least squares discriminant analysis model with good predictive capability (Q2cum = 0.834) and low risk of overfitting. The components contributing the most to the metabolomic signature of CRVO were those related to amino acid metabolism, carbohydrates, and fatty acid metabolites (variable importance on projection>1.0 and p < 0.05). The CRVO group appeared to have a lower AH concentration of carbohydrates and amino acids, but a relative higher concentration of carnitine-associated energetic substrates (butyryl carnitine, deoxycarnitine, N6-trimethyl-l-lysine) and osmolytes compared with those of the control group. These results indicate that patients with CRVO may have ocular aberrations in metabolic pathways involving certain amino acids, fatty acids, and carbohydrates. These metabolite changes might correlate with energy dysfunction and inflammation response in the AH of CRVO patients. This finding may provide insight into the pathophysiology of CRVO for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Pinghui Wei
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Nankai University, Tianjin, PR China; Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, PR China
| | - Meiqin He
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - He Teng
- Eye Institute and School of Optometry and Ophthalmology, Tianjin Medical University Eye Hospital, Tianjin, PR China
| | - Guoge Han
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Nankai University, Tianjin, PR China; Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, PR China.
| |
Collapse
|
19
|
Gong H, Zhang S, Li Q, Zuo C, Gao X, Zheng B, Lin M. Gut microbiota compositional profile and serum metabolic phenotype in patients with primary open-angle glaucoma. Exp Eye Res 2020; 191:107921. [PMID: 31917963 DOI: 10.1016/j.exer.2020.107921] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/16/2019] [Accepted: 01/05/2020] [Indexed: 02/07/2023]
Abstract
The gut microbiota (GM) and its influence on host metabolism are considered to be an environmental factor that contributes to the progression of many immune and neurodegenerative diseases. However, the features of the GM and serum metabolites in Primary open-angle glaucoma (POAG) patients have not been clearly elucidated. The purpose of this research is to explore the gut microbial composition and serum metabolic phenotype in POAG patients. 16S rRNA V4 genes of bacteria from the fecal samples of 30 POAG patients and 30 healthy subjects were sequenced by the Illumina MiSeq platform and then analyzed by QIIME. Their serum samples were analyzed by gas chromatography/mass spectrometry (GC-MS)-based metabolomics. The association between gut microbial species and host circulating metabolites and clinical phenotypes was also analyzed. Compared with controls, f Prevotellaceae, g unidentified Enterobacteriaceae, and s Escherichia coli increased the most in POAG patients, whereas g Megamonas and s Bacteroides plebeius significantly decreased in POAG patients. The alteration of the endogenous metabolomic profile in POAG patients included five amino acids or dipeptides, two hormone derivates, one purine derivative, one bile acid derivative and one organic acid. It also showed that citric acid was positively correlated with Megamonas, whereas L-γ-Glutamyl-L-alanine, MHPG, cholic acid glucuronide and hypoxanthine were negatively correlated with Megamonas. Mean visual acuity was negatively correlated with Blautia, mean VF-MD was negatively correlated with Faecalibacterium, and average RNFL thickness was positively correlated with Streptococcus. Our results revealed that there was a distinct difference in GM composition and serum metabolic phenotype between POAG patients and healthy individuals. This finding suggests the potential correlations between the GM and serum metabolites in the pathogenesis of glaucoma and thus provides new insight into the GM-targeted interventions of this disease.
Collapse
Affiliation(s)
- Haijun Gong
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China; Department of Ophthalmology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial hospital, Sun Yat-sen University, Guangzhou, China
| | - Simin Zhang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Qiguan Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial hospital, Sun Yat-sen University, Guangzhou, China
| | - Chengguo Zuo
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xinbo Gao
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Bingru Zheng
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Mingkai Lin
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
20
|
Metabolism and Functions of Amino Acids in Sense Organs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1265:201-217. [PMID: 32761578 DOI: 10.1007/978-3-030-45328-2_12] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sense organs (eyes, ears, nose, tongue, and skin) provide senses of sight, hearing, smell, taste, and touch, respectively, to aid the survival, development, learning, and adaptation of humans and other animals (including fish). Amino acids (AAs) play an important role in the growth, development, and functions of the sense organs. Recent work has identified receptor-mediated mechanisms responsible for the chemosensory transduction of five basic taste qualities (sweet, sour, bitter, umami and salty tastes). Abnormal metabolism of AAs result in a structural deformity of tissues and their dysfunction. To date, there is a large database for AA metabolism in the eye and skin under normal (e.g., developmental changes and physiological responses) and pathological (e.g., nutritional and metabolic diseases, nutrient deficiency, infections, and cancer) conditions. Important metabolites of AAs include nitric oxide and polyamines (from arginine), melanin and dopamine (from phenylalanine and tyrosine), and serotonin and melatonin (from tryptophan) in both the eye and the skin; γ-aminobutyrate (from glutamate) in the retina; and urocanic acid and histamine (from histidine) in the skin. At present, relatively little is known about the synthesis or catabolism of AAs in the ears, nose, and tongue. Future research should be directed to: (1) address this issue with regard to healthy ageing, nasal and sinus cancer, the regulation of food intake, and oral cavity health; and (2) understand how prenatal and postnatal nutrition and environmental pollution affect the growth, development and health of the sense organs, as well as their expression of genes (including epigenetics) and proteins in humans and other animals.
Collapse
|
21
|
Yoshida T, Nakajima H, Takahashi S, Kakizuka A, Imamura H. OLIVe: A Genetically Encoded Fluorescent Biosensor for Quantitative Imaging of Branched-Chain Amino Acid Levels inside Single Living Cells. ACS Sens 2019; 4:3333-3342. [PMID: 31845569 DOI: 10.1021/acssensors.9b02067] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Branched-chain amino acids (BCAAs) are essential amino acids, controlling cellular metabolic processes as signaling molecules; therefore, utilization of intracellular BCAAs may be regulated by the availability of nutrients in the environment. However, spatial and temporal regulation of intracellular BCAA concentration in response to environmental conditions has been unclear due to the lack of suitable methods for measuring BCAA concentrations inside single living cells. Here, we developed a Förster resonance energy transfer (FRET)-based genetically encoded biosensor for BCAAs, termed optical biosensor for leucine-isoleucine-valine (OLIVe). The biosensor showed approximately 2-fold changes in FRET values corresponding to BCAA concentrations. Importantly, FRET signals from HeLa cells expressing OLIVe in the cytoplasm and nucleus correlated with bulk intracellular BCAA concentrations determined from populations of cells by a biochemical method, and were decreased by knockdown of L-type amino acid transporter 1 (LAT1), a transporter for BCAAs, indicating that OLIVe can reliably report intracellular BCAA concentrations inside single living cells. We also succeeded in imaging BCAA concentrations in the mitochondria using mitochondria-targeted OLIVe. Using the BCAA imaging technique, we found apparently correlated concentrations between the cytoplasm and the mitochondria. We also found that extracellular non-BCAA amino acids affected intracellular BCAA concentrations. Of these amino acids, extracellular glutamine markedly increased intracellular BCAA concentrations in a LAT1-dependent manner. Unexpectedly, extracellular pyruvate was also found to have significant positive effects on maintaining intracellular BCAA concentrations, suggesting that the cells have pyruvate-dependent systems to import BCAAs and/or to regulate BCAA metabolism.
Collapse
Affiliation(s)
- Tomoki Yoshida
- Department of Functional Biology, Graduate School of Biostudies, Kyoto University, Yoshida-konoe-cho,
Sakyo-ku, Kyoto 606-8501, Japan
| | - Hitomi Nakajima
- Department of Functional Biology, Graduate School of Biostudies, Kyoto University, Yoshida-konoe-cho,
Sakyo-ku, Kyoto 606-8501, Japan
| | - Sena Takahashi
- Department of Functional Biology, Graduate School of Biostudies, Kyoto University, Yoshida-konoe-cho,
Sakyo-ku, Kyoto 606-8501, Japan
| | - Akira Kakizuka
- Department of Functional Biology, Graduate School of Biostudies, Kyoto University, Yoshida-konoe-cho,
Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiromi Imamura
- Department of Functional Biology, Graduate School of Biostudies, Kyoto University, Yoshida-konoe-cho,
Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
22
|
Hasegawa T, Ikeda HO. Adenosine triphosphate maintenance by branched chain amino acids as a novel neuroprotective strategy for retinal neurodegenerative diseases. Neural Regen Res 2019; 14:82-84. [PMID: 30531080 PMCID: PMC6263008 DOI: 10.4103/1673-5374.244788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Tomoko Hasegawa
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hanako Ohashi Ikeda
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine; Department of Experimental Therapeutics, Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Kyoto, Japan
| |
Collapse
|