1
|
Shafiq A, Khan S, Rahman S, Ali A, Ilyas U, Altaf R, Shareef U, Khan S, Madni A. Synthesis and characterization of folate functionalized core-shell pluronic/chitosan nanoparticles against rheumatoid arthritis. Int J Biol Macromol 2025; 314:144111. [PMID: 40368204 DOI: 10.1016/j.ijbiomac.2025.144111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 04/15/2025] [Accepted: 05/09/2025] [Indexed: 05/16/2025]
Abstract
Significant advances in novel drug delivery systems have led to the development of ligand-conjugated nanoparticles, enabling targeted delivery of therapeutic agents to disease-specific sites. A widely adopted approach for treating rheumatoid arthritis involves targeting folate receptors, which are overexpressed in inflamed tissues. This study focused on formulating methotrexate-loaded, folate-conjugated core-shell polymeric nanoparticles (PF/CS). These nanoparticles were synthesized using self-micellization and ionic gelation techniques, resulting in particles with an average size of 185.0 ± 2.08 nm, a PDI of <0.5, and a zeta potential of 19.9 ± 2.23 mV indicating excellent stability and uniformity. Ligand conjugation was confirmed using 1H Nuclear Magnetic Resonance Spectroscopy and Fourier Transformed Infrared Spectroscopy. Further physicochemical characterization, including Differential Scanning Calorimetry, Thermo-Gravimetric Analysis, and X-ray Diffraction analysis, demonstrated good compatibility and thermal stability. In vitro studies showed sustained drug release for up to 72 h and higher cytotoxicity against RAW 264.7 macrophage cells with folate-conjugated PF/CS nanoparticles compared to non-conjugated ones. Ex-vivo hemocompatibility testing confirmed their non-hemolytic nature. Acute toxicity studies indicated biocompatibility and safety. In vivo assessments in rats showed enhanced therapeutic effects with folate-conjugated nanoparticles. In silico modeling supported experimental findings. It is concluded that folate-conjugated PF/CS nanoparticles offer a promising platform for sustained methotrexate delivery in rheumatoid arthritis treatment.
Collapse
Affiliation(s)
- Afifa Shafiq
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan.
| | - Safiullah Khan
- Department of Pharmacy and Allied Health Sciences, Iqra University, H-9 Campus Islamabad, Islamabad, Pakistan.
| | - Sadia Rahman
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan.
| | - Ahsan Ali
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Umair Ilyas
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan.
| | - Reem Altaf
- Faculty of Pharmacy, CUST, Islamabad, Pakistan.
| | - Usman Shareef
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan.
| | - Shahzeb Khan
- Faculty of Life Sciences, School of Pharmacy and Biomedical Sciences, University of Bradford, UK.
| | - Asadullah Madni
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.
| |
Collapse
|
2
|
Ragheb MA, Ragab MS, Mahdy FY, Elsebaie MS, Saber AM, AbdElmalak YO, Elsafoury RH, Elatreby AA, Rochdi AM, El-Basyouni AW, Shoukry MM, Eldeeb MA, El-Sherif RM, Abdelhamid IA, Salah-Eldin DS. Folic acid-modified chitosan nanoparticles for targeted delivery of a binuclear Co(II) complex in cancer therapy. Int J Biol Macromol 2025; 311:144034. [PMID: 40345288 DOI: 10.1016/j.ijbiomac.2025.144034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 04/21/2025] [Accepted: 05/06/2025] [Indexed: 05/11/2025]
Abstract
A salient challenge in cancer chemotherapy is the successful delivery of drugs to cancer cells. Therapeutic agents can be delivered to cancer cells in a targeted and efficient manner using nanoparticles (NPs). Herein, we present the molecular characterization of a novel binuclear Co(II) complex with octahedral geometry based on Schiff base from dehydroacetic acid and piperazine derivatives. DNA and BSA binding interactions were investigated using UV-Vis spectroscopy and gel electrophoresis. In vitro cytotoxicity of Co(II) complex was assessed against microbes and human cells (Cancer: MDA-MB-231, MCF7, A375, HepG2; Non-cancerous: HSF, WI-38) using well diffusion and MTT assays. Chitosan decorated with folic acid (CS-FA) was fabricated to encapsulate Co(II) complex, which may serve as a nano-targeted drug delivery system, to dampen its adverse effects on non-cancerous cells. TEM and DLS analysis confirmed nano-sized and stable monodisperse nanosuspension of both (CS-FA) and (CS-FA-Co(II) complex) systems. CS-FA-Co(II) complex NPs exhibited an 8.3-fold increase in cytotoxicity against folate-receptor-positive MDA-MB-231 cells, while remaining safe for folate-receptor-negative HSF cells. They also induced cell cycle arrest, inhibited migration, and triggered apoptosis by modulating Bax, Bcl-2, caspase-3, and CDH1. These findings highlight CS-FA NPs as a promising targeted delivery system for Co(II) complex-based cancer therapeutic agents, offering improved efficacy.
Collapse
Affiliation(s)
- Mohamed A Ragheb
- Chemistry Department (Biochemistry Division), Faculty of Science, Cairo University, Giza, P.O. 12613, Egypt; Biotechnology Department, Faculty of Nanotechnology for Postgraduate Studies, Cairo University, Sheikh Zayed Branch Campus, Giza 12588, Egypt.
| | - Mona S Ragab
- Chemistry Department, Faculty of Science, Cairo University, Giza, P.O. 12613, Egypt
| | - Fatma Y Mahdy
- Biotechnology Department, Faculty of Science, Cairo University, Giza, P.O. 12613, Egypt
| | - Mohamed S Elsebaie
- Biotechnology Department, Faculty of Science, Cairo University, Giza, P.O. 12613, Egypt
| | - Amal M Saber
- Biotechnology Department, Faculty of Science, Cairo University, Giza, P.O. 12613, Egypt
| | - Youstina O AbdElmalak
- Biotechnology Department, Faculty of Science, Cairo University, Giza, P.O. 12613, Egypt
| | - Reem H Elsafoury
- Biotechnology Department, Faculty of Science, Cairo University, Giza, P.O. 12613, Egypt
| | - Amal A Elatreby
- Biotechnology Department, Faculty of Science, Cairo University, Giza, P.O. 12613, Egypt
| | - Ahmed M Rochdi
- Biotechnology Department, Faculty of Science, Cairo University, Giza, P.O. 12613, Egypt
| | - Ahmed W El-Basyouni
- Biotechnology Department, Faculty of Science, Cairo University, Giza, P.O. 12613, Egypt
| | - Mohamed M Shoukry
- Chemistry Department, Faculty of Science, Cairo University, Giza, P.O. 12613, Egypt
| | - Mohamed A Eldeeb
- Department of Chemistry, Illinois State University, IL, United States.
| | - Rabab M El-Sherif
- Chemistry Department, Faculty of Science, Cairo University, Giza, P.O. 12613, Egypt; Faculty of Postgraduate Studies for Nanotechnology, Cairo University, P.O. 12588, Giza, Egypt
| | - Ismail A Abdelhamid
- Chemistry Department, Faculty of Science, Cairo University, Giza, P.O. 12613, Egypt.
| | - Doaa S Salah-Eldin
- Chemistry Department (Biochemistry Division), Faculty of Science, Cairo University, Giza, P.O. 12613, Egypt
| |
Collapse
|
3
|
Kaladari F, El-Maghrabey M, Kishikawa N, El-Shaheny R, Kuroda N. Polymerized Alizarin Red-Inorganic Hybrid Nanoarchitecture (PARIHN) as a Novel Fluorogenic Label for the Immunosorbent Assay of COVID-19. BIOSENSORS 2025; 15:256. [PMID: 40277569 PMCID: PMC12025067 DOI: 10.3390/bios15040256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 04/26/2025]
Abstract
This study seeks to develop and implement a non-enzymatic fluorescent labeling for immunoassay and immunochromatographic assay (ICAs) targeting SARS-CoV-2, to meet the extensive interest and need for effective COVID-19 diagnosis. In this manuscript, we delineate the development, synthesis, and evaluation of a novel quinone polymer zinc hybrid nanoarchitecture, referred to as polymerized alizarin red-inorganic hybrid nanoarchitecture (PARIHN), which integrates an antibody for direct use in fluorescent immunoassays, offering enhanced sensitivity, reduced costs, and improved environmental sustainability. The designed nanoarchitecture can enhance the sensitivity of the immunoassay and enable rapid results without the complexities associated with enzymes, such as their low stability and high cost. At first, a chitosan-alizarin polymer was synthesized utilizing quinone-chitosan conjugation chemistry (QCCC). Then, the chitosan-alizarin polymer was embedded with the detection antibody using zinc ion, forming PARIHN, which was proven to be a stable label with the ability to enhance the assay stability and sensitivity of the immunoassay. PARIHN can react with phenylboronic acid (PBA) or boric acid through its alizarin content to produce fluorescence signals with an LOD of 15.9 and 2.6 pm for PBA and boric acid, respectively, which is the first use of a boric acid derivative in signal generation in the immunoassay. Furthermore, PARIHN demonstrated high practicality in detecting SARS-CoV-2 nucleoprotein in fluorescence (PBA and boric acid) systems with an LOD of 0.76 and 10.85 pm, respectively. Furthermore, owing to the high brightness of our PARIHN fluorogenic reaction, our labeling approach was extended to immunochromatographic assays for SARS-CoV-2 with high sensitivity down to 9.45 pg/mL.
Collapse
Affiliation(s)
- Fatema Kaladari
- Department of Analytical Chemistry for Pharmaceuticals, Course of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Mahmoud El-Maghrabey
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; (M.E.-M.); (R.E.-S.)
| | - Naoya Kishikawa
- Department of Analytical Chemistry for Pharmaceuticals, Course of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Rania El-Shaheny
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; (M.E.-M.); (R.E.-S.)
| | - Naotaka Kuroda
- Department of Analytical Chemistry for Pharmaceuticals, Course of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| |
Collapse
|
4
|
Patole V, Swami D, Ingavle G, Behere I, Ottoor D, Vyawahare N, Jha A, Deshkar S, Undale V, Sanap A, Kheur S, Kumar A. Gallic acid-guar gum and chitosan-based polyelectrolyte complex film exhibited enhanced wound healing in full-thickness excision wound model. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025:1-34. [PMID: 39760659 DOI: 10.1080/09205063.2024.2439668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/03/2024] [Indexed: 01/07/2025]
Abstract
Recently, there has been a great interest in the development of innovative wound dressing materials based on natural bioactives, as they can accelerate the healing process and address the issues related to traditional wound dressings. The current study focuses on developing a novel derivative of guar gum (GG) and gallic acid (GA) using a simple, free radical-mediated polymerization reaction aimed at enhancing the antioxidant properties of GG. Multiple spectroscopic investigations were performed to validate the GA-GG conjugate. NMR and FTIR confirmed GA integration, UV spectroscopy indicated changes in electronic transition, DSC analysis suggested a reduction in crystallinity, and XRD revealed structural modifications. SEM revealed a porous structure that reflected its polymerized nature. Due to inadequate mechanical strength and film-forming ability of the synthesized GA-GG conjugate, polyelectrolyte complexation method using chitosan was explored to form a polyelectrolyte complex (PEC) film. The film exhibited a high swelling rate, excellent antioxidant properties, and was both hemocompatible and exhibited improved antimicrobial properties. In vitro, in ovo, and in vivo characterizations were performed to compare the performance of these biocomposite films to those of their counterparts. It promoted angiogenesis in the chick yolk sac membrane and demonstrated good cytocompatibility in cell proliferation studies on the viability of the L929 mouse fibroblast cell line. In vivo wound healing efficacy of the PEC film in wound closure was 94.5% as compared to the untreated disease control group (p < 0.001). This work highlights the development of an innovative GA-GG conjugate/chitosan PEC-based film with significant potential for wound healing applications.
Collapse
Affiliation(s)
- Vinita Patole
- Department of Pharmaceutics, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, India
| | - Dhaneshwari Swami
- Department of Pharmaceutics, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, India
| | - Ganesh Ingavle
- Advanced Cell and Gene Therapy Manufacturing (GMP) Unit, NIHR Biomedical Research Centre Guy's and St Thomas' NHS Foundation Trust and King's College London, Clinical Research Facility, Guy's Hospital, London, UK
| | - Isha Behere
- Symbiosis Centre for Stem Cell Research (SCSCR) and Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University), Pune, India
| | - Divya Ottoor
- Department of Chemistry, Savitribai Phule Pune University, Pune, India
| | - Nikita Vyawahare
- Department of Chemistry, Savitribai Phule Pune University, Pune, India
| | - Abhishek Jha
- Department of Pharmaceutics, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, India
| | - Sanjeevani Deshkar
- Department of Pharmaceutics, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, India
| | - Vaishali Undale
- Department of Pharmacology, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, India
| | - Avinash Sanap
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - Supriya Kheur
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - Avinash Kumar
- Department of Medical Affairs, Curie Sciences, Samastipur, Bihar, India
| |
Collapse
|
5
|
Romdoni Y, Prasedya ES, Kadja GTM, Kitamoto Y, Khalil M. Efficient delivery of anticancer drugs using functionalized-Ag-decorated Fe 3O 4@SiO 2 nanocarrier with folic acid and β-cyclodextrin. Biochim Biophys Acta Gen Subj 2024; 1868:130643. [PMID: 38797254 DOI: 10.1016/j.bbagen.2024.130643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/21/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Nanocarrier surface functionalization has been widely regarded as a promising approach for achieving precise and targeted drug delivery systems. In this work, the fabrication of functionalized-Ag-decorated Fe3O4@SiO2 (Fe3O4@SiO2-Ag) nanocarriers with folic acid (FA) and β-cyclodextrin (BCD) exhibit a remarkable capacity for delivering two types of anticancer drugs, i.e., doxorubicin (DOX) and epirubicin (EPI), into cancer cells. The effective functionalization of Fe3O4@SiO2-Ag nanoparticles has been achieved through the use of cysteine (Cys) as an anchor for attaching FA and BCD via EDC-NHS coupling and Steglich esterification methods, respectively. The findings indicate that surface functionalization had no significant impact on the physicochemical characteristics of the nanoparticles. However, it notably affected DOX and EPI loading and release efficiency. The electrostatic conjugation of DOX/EPI onto the surface of Fe3O4@SiO2-Ag/Cys/FA and Fe3O4@SiO2-Ag/Cys/BCD exhibited maximum loading efficiency of 50-60% at concentration ratio of DOX/EPI to nanoparticles of 1:14. These nanocarriers also achieved an 40-47% DOX/EPI release over 36 days. Furthermore, the drug-loaded functionalized-nanocarrier showed cytotoxic effects on SK-MEL-2 cells, as demonstrated by an in vitro MTT assay. This suggests that the as-prepared functionalized-nanoparticles have promise as a carrier for the efficient anticancer drugs.
Collapse
Affiliation(s)
- Yoga Romdoni
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, 16424 Depok, West Java, Indonesia; Low Dimension Materials Lab., Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, 16424 Depok, West Java, Indonesia
| | - Eka Sunarwidhi Prasedya
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Mataram, 83125 Lombok, West Nusa Tenggara, Indonesia; Bioscience and Biotechnology Research Center, Faculty of Mathematics and Natural Sciences, University of Mataram, 83125 Lombok, West Nusa Tenggara, Indonesia
| | - Grandprix T M Kadja
- Division of Inorganic and Physical Chemistry, Institut Teknologi Bandung, Jalan Ganesha No. 10, Bandung 40132, Indonesia; Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jalan Ganesha No. 10, Bandung 40132, Indonesia; Center for Catalysis and Reaction Engineering, Institut Teknologi Bandung, Jalan Ganesha No. 10, Bandung 40132, Indonesia
| | - Yoshitaka Kitamoto
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama 226-8502, Japan
| | - Munawar Khalil
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, 16424 Depok, West Java, Indonesia; Low Dimension Materials Lab., Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, 16424 Depok, West Java, Indonesia.
| |
Collapse
|
6
|
Sivasubramanian K, Tamilselvi Y, Velmurugan P, Oleyan Al-Otibi F, Ibrahim Alharbi R, Mohanavel V, Manickam S, Rebecca L J, Rudragouda Patil B. Enhanced applications in dentistry through autoclave-assisted sonochemical synthesis of Pb/Ag/Cu trimetallic nanocomposites. ULTRASONICS SONOCHEMISTRY 2024; 108:106966. [PMID: 38924854 PMCID: PMC11259945 DOI: 10.1016/j.ultsonch.2024.106966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/10/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
In recent years, researchers have increasingly focused on the development of multiphase trimetallic nanocomposites (TMNC) incorporating ternary metals or metal oxides, which hold significant potential as alternatives for combatting biofilms and bacterial infections. Enhanced oral health is ensured by the innovative techniques used to effectively prevent bacterial adherence and formation of biofilm on dental sutures. In this investigation, TMNC, which consists of Pb, Ag, and Cu, was synthesized using an autoclave-assisted sonochemical technique. Following synthesis, TMNC were characterized using FTIR, XRD, BET, XPS, TGA, and Raman spectroscopy to analyze their shape and microstructure. Subsequent evaluations, including MTT assay, antibacterial activity testing, and biofilm formation analysis, were conducted to assess the efficiency of the synthesized TMNC. Cytotoxicity and anti-human oral squamous cell carcinoma activities of TMNC were evaluated using the Human Oral Cancer cell line (KB) cell line through MTT assay, demonstrating a dose-dependent increase in anti-human oral squamous cell carcinoma activity against the KB cell line compared to the normal cell line, resulting in notably high cell viability. Furthermore, an ultrasonic probe was employed to incorporate TMNC onto dental suturing threads, with different concentrations of TMNC, ultrasonic power levels, and durations considered to determine optimal embedding conditions that result in the highest antibacterial activity. The inhibitory effects of TMNC, both in well diffusion assays and when incorporated into dental suturing threads, against gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) bacteria on Mueller-Hinton agar (MHA) were assessed using various concentrations of TMNC. The results of the study indicated that the efficacy of TMNC in inhibiting bacterial growth on dental suturing threads remained impressive, even at low concentrations. Moreover, an evaluation of their potential to destabilize biofilms formed by S. aureus and E. coli, the two pathogens in humans, indicated that TMNC would be a promising anti-biofilm agent.
Collapse
Affiliation(s)
- Kanagasabapathy Sivasubramanian
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Selaiyur, Chennai, Tamil Nadu 600073, India
| | - Yuvaraj Tamilselvi
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Selaiyur, Chennai, Tamil Nadu 600073, India
| | - Palanivel Velmurugan
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Selaiyur, Chennai, Tamil Nadu 600073, India.
| | - Fatimah Oleyan Al-Otibi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh 11451, Saudi Arabia
| | - Raedah Ibrahim Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh 11451, Saudi Arabia
| | - Vinayagam Mohanavel
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Selaiyur, Chennai, Tamil Nadu 600073, India
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei
| | - Jeyanthi Rebecca L
- Department of Industrial Biotechnology, Bharath Institute of Higher Education and Research, Selaiyur, Chennai, Tamil Nadu 600073, India
| | | |
Collapse
|
7
|
Prodana M, Stoian AB, Ionita D, Brajnicov S, Boerasu I, Enachescu M, Burnei C. In-Depth Characterization of Two Bioactive Coatings Obtained Using MAPLE on TiTaZrAg. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2989. [PMID: 38930358 PMCID: PMC11205300 DOI: 10.3390/ma17122989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
TiZrTaAg alloy is a remarkable material with exceptional properties, making it a unique choice among various industrial applications. In the present study, two types of bioactive coatings using MAPLE were obtained on a TiZrTaAg substrate. The base coating consisted in a mixture of chitosan and bioglass in which zinc oxide and graphene oxide were added. The samples were characterized in-depth through a varied choice of methods to provide a more complete picture of the two types of bioactive coating. The analysis included Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), ellipsometry, and micro-Raman. The Vickers hardness test was used to determine the hardness of the films and the penetration depth. Film adhesion forces were determined using atomic force microscopy (AFM). The corrosion rate was highlighted by polarization curves and by using electrochemical impedance spectroscopy (EIS). The performed tests revealed that the composite coatings improve the properties of the TiZrTaAg alloy, making them feasible for future use as scaffold materials or in implantology.
Collapse
Affiliation(s)
- Mariana Prodana
- Department of General Chemistry, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (M.P.); (A.B.S.)
| | - Andrei Bogdan Stoian
- Department of General Chemistry, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (M.P.); (A.B.S.)
| | - Daniela Ionita
- Department of General Chemistry, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (M.P.); (A.B.S.)
| | - Simona Brajnicov
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania;
| | - Iulian Boerasu
- Center for Surface Science and Nanotechnology, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (I.B.); (M.E.)
| | - Marius Enachescu
- Center for Surface Science and Nanotechnology, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (I.B.); (M.E.)
| | - Cristian Burnei
- Clinical Department of Orthopedics and Traumatology II, Clinical Emergency Hospital, Calea Floreasca 8, 014461 Bucharest, Romania;
| |
Collapse
|
8
|
Mahboubi F, Mohammadnejad J, Khaleghi S. Bifunctional folic acid targeted biopolymer Ag@NMOF nanocomposite [{Zn2 (1,4-bdc) 2 (DABCO)} n] as a novel theranostic agent for molecular imaging of colon cancer by SERS. Heliyon 2024; 10:e29876. [PMID: 38681609 PMCID: PMC11046199 DOI: 10.1016/j.heliyon.2024.e29876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024] Open
Abstract
Without a doubt, cancer and its negative impact on human health have created many hurdles for people across the world since conventional approaches have not offered a reliable ability in the eradication of cancer. As a result, finding novel approaches, like using bimodal nanoparticles as a potential nanocarrier in molecular imaging and cancer therapy, is remarkably required these days. In the present study, ex-situ (Ge) and in-situ (Gi) green synthesized silver (Ag) nanoparticles entrapped in metal-organic framework nanocomposites (NMOF) coated with folic acid (FA) targeted chitosan (CS) was successfully developed as a novel bifunctional nanocarrier for detection and treatment of colon cancer cells. Then nanocarriers, such as NMOF-CS-FA, Ge-Ag@NMOF-CS-FA, Gi-Ag@NMOF-CS-FA, and C-Ag@NMOF-CS-FA, were characterized via FT-IR, DLS, SERS, TEM, and SEM and results have potentially confirmed the quality and quantity of synthesized nanocomposites. The hydrodynamic diameters of NMOF-CS, Ge-Ag@NMOF-CS, Gi-Ag@NMOF-CS, and C-Ag@NMOF-CS specimens were measured at around 99.7 ± 10 nm, 110 ± 10 nm, 118 ± 10 nm, 115 ± 10 nm, respectively. Also, the PDI values less than 0.2 confirm the reliable distribution of these nanocomposites. Afterward, the cell viability assay was conducted on HCT116 and HGF cell lines for evaluating biocompatibility and targeting efficiency of nanocomposites; FA functionalized nanocomposites have intensively indicated better performance in cancer cells targeting and their inhibition, and IC50 was attained for 10 ng/mL of Ge-Ag@NMOF-CS-FA while non-targeted nanocarriers did not have toxicity more than 20 % on HCT116 colon cancer cells. Moreover, according to the results, the cell viability of HGF normal cells was at least 85 % after being exposed to different concentrations of nanocomposites for 24 h. This indicates that the synthesized nanocomposites do not have significant toxic effects on normal cells. The results indicate that this novel nanocomposite has the potential to effectively deliver drugs to cancer cells.
Collapse
Affiliation(s)
- Fatemeh Mahboubi
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Javad Mohammadnejad
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Sepideh Khaleghi
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
9
|
Hatamiazar M, Mohammadnejad J, Khaleghi S. Chitosan-Albumin Nanocomposite as a Promising Nanocarrier for Efficient Delivery of Fluconazole Against Vaginal Candidiasis. Appl Biochem Biotechnol 2024; 196:701-716. [PMID: 37178249 DOI: 10.1007/s12010-023-04492-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/15/2023]
Abstract
Currently, the high incidence of fungal infections among females has resulted in outstanding problems. Candida species is related with multidrug resistance and destitute clinical consequences. Chitosan-albumin derivatives with more stability exhibit innate antifungal and antibacterial effects that boost the activity of the drug without inflammatory impact. The stability and sustained release of Fluconazole in mucosal tissues can be ensured by encapsulating in protein/polysaccharide nanocomposites. Thus, we developed chitosan-albumin nanocomposite (CS-A) loaded with Fluconazole (Flu) antifungals against vaginal candidiasis. Various ratios of CS/Flu (1:1, 1:2, 2:1) were prepared. Thereafter, the CS-A-Flu nanocomposites were qualified and quantified using FT-IR, DLS, TEM, and SEM analytical devices, and the size range from 60 to 100 nm in diameter was attained for the synthesized nanocarriers. Afterward, the antifungal activity, biofilm reduction potency, and cell viability assay were performed for biomedical evaluation of formulations. The minimum inhibitory concentration) and minimum fungicidal concentration on Candida albicans were attained at 125 ng/μL and 150 ng/μL after treatment with a 1:2 (CS/Flu) ratio of CS-A-Flu. The biofilm reduction assay indicated that biofilm formation was between 0.05 and 0.1% for CS-A-Flu at all ratios. The MTT assay also exhibited excellent biocompatibility for samples, about 7 to 14% toxicity on human HGF normal cells. These data have indicated that CS-A-Flu would be a promising candidate against Candida albicans.
Collapse
Affiliation(s)
- Morvarid Hatamiazar
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, 1916893813, Iran
| | - Javad Mohammadnejad
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Sepideh Khaleghi
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, 1916893813, Iran.
| |
Collapse
|
10
|
Abbasi P, Fahimi H, Khaleghi S. Novel Chimeric Endolysin Conjugated Chitosan Nanocomplex as a Potential Inhibitor Against Gram-Positive and Gram-Negative Bacteria. Appl Biochem Biotechnol 2024; 196:478-490. [PMID: 37140784 DOI: 10.1007/s12010-023-04484-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/05/2023]
Abstract
Resistance to antimicrobial agents has created potential problems in finding efficient treatments against bacteria. Thus, using new therapeutics, such as recombinant chimeric endolysin, would be more beneficial for eliminating resistant bacteria. The treatment ability of these therapeutics can be further improved if they are used with biocompatible nanoparticles like chitosan (CS). In this work, covalently conjugated chimeric endolysin to CS nanoparticles (C) and non-covalently entrapped endolysin in CS nanoparticles (NC) were effectively developed and, consequently, qualified and quantified using analytical devices, including FT-IR, dynamic light scattering, and TEM. Eighty to 150 nm and 100 nm to 200 nm in diameter were measured for CS-endolysin (NC) and CS-endolysin (C) using a TEM, respectively. The lytic activity, synergistic interaction, and biofilm reduction potency of nano-complexes were investigated on Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and Pseudomonas aeruginosa (P. aeruginosa) strains. The outputs revealed a good lytic activity of nano-complexes after 24 h and 48 h of treatment, especially in P. aeruginosa (approximately 40% cell viability after 48 h of treatment with 8 ng/mL), and potential biofilm reduction performance was attained in E. coli strains (about 70% reduction after treatment with 8 ng/mL). The synergistic interaction between nano-complexes and vancomycin was exhibited in E. coli, P. aeruginosa, and S. aureus strains at 8 ng/mL concentrations, while the synergistic effects of pure endolysin and vancomycin were not remarkable in E. coli strains. These nano-complexes would be more beneficial in suppressing the bacteria with a high level of antibiotic resistance.
Collapse
Affiliation(s)
- Paria Abbasi
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, 1916893813, Iran
| | - Hossein Fahimi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Khaleghi
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, 1916893813, Iran.
| |
Collapse
|
11
|
Ramezani F, Moghadasi M, Shamsasenjan K, Narmani A. Folic Acid-Decorated Chitosan-PLGA Nanobiopolymers for Targeted Drug Delivery to Acute Lymphoblastic Leukemia Cells: In Vitro Studies. Technol Cancer Res Treat 2024; 23:15330338241308077. [PMID: 39711084 DOI: 10.1177/15330338241308077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
OBJECTIVES This study developed a drug delivery system (DDS) using folic acid (FA)-functionalized chitosan (CS) and poly (lactic-co-glycolic acid) (PLGA) nanocarriers for targeted sodium butyrate (NB) delivery to leukemia cells (NALM6). The goal was to enhance NB's therapeutic efficacy while reducing its cytotoxicity to non-malignant cells. METHODS FA-CS-PLGA nanocarriers were synthesized and characterized using Fourier-transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS), zeta potential analysis, transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). Encapsulation efficiency, release kinetics, cytotoxicity, and apoptosis induction were assessed using MTT assays and flow cytometry in NALM6 cells. RESULTS The FA-CS-PLGA nanocarriers had a surface charge of 34.2 ± 0.12 mV and a size range of 40-60 nm. Encapsulation efficiency was 16%, with 16% of NB released within the first 4 h. MTT assays showed a reduction in leukemia cell viability to 26% after 24 h with 400 nM FA-CS-PLGA-NB, compared to over 50% viability with pure NB. The IC50 was around 300 nM. Flow cytometry revealed that FA-CS-PLGA-NB induced apoptosis in over 20% of leukemia cells, far exceeding the 5% induced by unmodified NB. CONCLUSION FA-CS-PLGA nanocarriers show significant promise as a targeted DDS for leukemia therapy, enhancing NB delivery to leukemia cells and improving therapeutic efficacy while minimizing off-target toxicity. These results support further in vivo studies and potential clinical applications.
Collapse
Affiliation(s)
- Fatemeh Ramezani
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Moghadasi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Karim Shamsasenjan
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asghar Narmani
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| |
Collapse
|
12
|
Narmani A, Ganji S, Amirishoar M, Jahedi R, Kharazmi MS, Jafari SM. Smart chitosan-PLGA nanocarriers functionalized with surface folic acid ligands against lung cancer cells. Int J Biol Macromol 2023:125554. [PMID: 37356696 DOI: 10.1016/j.ijbiomac.2023.125554] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 05/15/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
Lung cancer is the second most prevalent and first killer cancer worldwide, and conventional approaches do not have enough ability to suppress it. Therefore, a novel targeted chitosan (CS)-poly lactic-co-glycolic acid (PLGA)-folic acid (FA) nanocarrier was developed for delivery of sorafenib (Sor) to lung cancer cells. The nanocarrier (CPSF) had a size of 30-40 nm with globular shapes. Surface charge and drug content of CPSF were ascertained at about 1.1 mV and 15 %, respectively. Controlled (4 % within 2 h) and pH-sensitive (18 % within 2 h at pH = 5.0) Sor release were observed for the nanocarrier. The MTT assay demonstrated a cell viability of 13 % after 24 h treatment with 400 nM CPSF in A549 cancer cells while it was 78 % in MSC normal cells. The qRT-PCR revealed >8 folds and 11 folds increase for Caspase9 and P53 genes after 5 h treatment with 100 nM (IC50) CPSF; but a reduction of 5 folds was observed for the Bcl2 gene. Besides, 57 % and 20 % apoptosis were attained in cell cycle arrest and apoptosis assays for CPSF, respectively. CPF indicated about 88 % internalization in cancer cells. These data prove that CPSF is a promising nanodelivery system for lung cancer suppression.
Collapse
Affiliation(s)
- Asghar Narmani
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, 1439957131 Tehran, Iran
| | - Saeid Ganji
- Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Maryam Amirishoar
- Department of Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roghayyeh Jahedi
- Department of Plant Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471 Tabriz, Iran
| | | | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
13
|
Fabrication of octenyl succinic anhydride starch grafted with folic acid and its loading potential for doxorubicin hydrochloride. Int J Biol Macromol 2023; 236:123907. [PMID: 36870656 DOI: 10.1016/j.ijbiomac.2023.123907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/29/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
In this study, octenyl succinic anhydride (OSA) starch with different folic acid (FA) grafting time was prepared and the degree of FA substitution at different grafting time was determined. The results of XPS quantitatively reflected the surface elemental composition of OSA starch grafted with FA. FTIR spectra further confirmed the successful introduction of FA on OSA starch granules. SEM images showed that the surface roughness of OSA starch granules was more obvious with higher FA grafting time. The particle size, zeta potential, and swelling properties were determined to study the effect of FA on the structure of OSA starch. TGA indicated that FA effectively enhanced the thermal stability of OSA starch at high temperature. The crystalline form of the OSA starch gradually transformed from A type to a hybrid A and V-type with the progress of FA grafting reaction. In addition, the anti-digestive properties of OSA starch were enhanced after grafting FA. Using doxorubicin hydrochloride (DOX) as the model drug, the loading efficiency of OSA starch grafted with FA for DOX reached 87.71 %. These results provide novel insights into OSA starch grafted with FA as potential strategy for loading DOX.
Collapse
|
14
|
Zamanvaziri A, Meshkat M, Alazmani S, Khaleghi S, Hashemi M. Targeted PEGylated Chitosan Nano-complex for Delivery of Sodium Butyrate to Prostate Cancer: An In Vitro Study. Technol Cancer Res Treat 2023; 22:15330338231159223. [PMID: 36855824 PMCID: PMC9983112 DOI: 10.1177/15330338231159223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Introduction: Cancer remains a challenging issue against human health throughout the world; As a result, introducing novel approaches would be beneficial for cancer treatment. In this research, sodium butyrate (Sb) is one of the effective anti-cancer therapeutics (also a potent survival factor for normal cells) that was used for prostate cancer suppression in the platform of modified chitosan (CS) nano-complex (polyethylene glycol (PEG)-folic acid (FA)-Sb-CS). Methods: Different analytical devices including Fourier transform infrared, dynamic light scattering, high-performance liquid chromatography, scanning electron microscopy, and transmission electron microscopy were applied for the characterization of synthetics. On the other hand, biomedical tests including cell viability assay, molecular and functional assay of apoptosis/autophagy pathways, and cell cycle arrest analysis were potentially implemented on human PC3 (folate receptor-negative prostate cancer) and DU145 (folate receptor-positive prostate cancer) and HFF-1 normal cell lines. Results: The quality of the syntheses was effectively verified, and the size range from 140 to 170 nm was determined for the PEG-CS-FA-Sb sample. Also, 75 ± 5% of drug entrapment efficiency with controlled drug release manner (Sb release of 54.21% and 74.04% for pHs 7.4 and 5.0) were determined for nano-complex. Based on MTT results, PEG-CS-FA-Sb has indicated 72.07% and 33.53% cell viability after 24 h of treatment with 9 mM on PC3 and DU145 cell lines, respectively, which is desirable anti-cancer performance. The apoptotic and autophagy genes overexpression was 15-fold (caspase9), 2.5-fold (BAX), 11-fold (ATG5), 2-fold (BECLIN1), and 3-fold (mTORC1) genes in DU145 cancer cells. More than 50% of cell cycle arrest and 45.05% of apoptosis were obtained for DU145 cancer cells after treatment with nano-complex. Conclusion: Hence, the synthesized Sb-loaded nano-complex could specifically suppress prostate cancer cell growth and induce apoptosis and autophagy in the molecular and cellular phases.
Collapse
Affiliation(s)
- Ali Zamanvaziri
- Department of Genetics, Faculty of Advanced Sciences and Technology, Tehran Medical Science, 68106Islamic Azad University, Tehran, Iran
| | - Mahboobeh Meshkat
- Department of Biology, Division of Cellular and Molecular Biology, Nourdanesh University of Meymeh, Meymeh, Isfahan, Iran
| | - Soroush Alazmani
- Student research committee, School of Medicine, 440827Iran University of Medical Science, Tehran, Iran
| | - Sepideh Khaleghi
- Department of Biotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, 68106Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Sciences and Technology, Tehran Medical Science, 68106Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence Science Research Center, Farhikhtegan Hospital Tehran Medical Sciences, 68106Islamic Azad University, Tehran, Iran
| |
Collapse
|
15
|
Yu C, Chen X, Zhu W, Li L, Peng M, Zhong Y, Naeem A, Zang Z, Guan Y. Synthesis of Gallic Acid-Loaded Chitosan-Grafted-2-Acrylamido-2-Methylpropane Sulfonic Acid Hydrogels for Oral Controlled Drug Delivery: In Vitro Biodegradation, Antioxidant, and Antibacterial Effects. Gels 2022; 8:gels8120806. [PMID: 36547330 PMCID: PMC9777532 DOI: 10.3390/gels8120806] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/04/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
In this study, chitosan (CS) and 2-acrylamido-2-methylpropane sulfonic acid (AMPS)-based hydrogels were formulated by the free radical polymerization technique for the controlled release of gallic acid. Fourier transform infrared spectroscopy (FTIR) confirmed the successful preparation and loading of gallic acid within the hydrogel network. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) confirmed the increased thermal stability of the hydrogels following the crosslinking and polymerization of chitosan and AMPS. In X-ray diffraction analysis (XRD), the crystallinity of the raw materials decreased, indicating strong crosslinking of the reagents and the formation of a new polymeric network of hydrogels. Scanning electron microscopy (SEM) revealed that the hydrogel had a rough, dense, and porous surface, which is consistent with the highly polymerized composition of the hydrogel. After 48 h, the hydrogels exhibited higher swelling at pH 1.2 (swelling ratio of 19.93%) than at pH 7.4 (swelling ratio of 15.65%). The drug release was analyzed using ultraviolet-visible (UV-Vis) spectrophotometer and demonstrated that after 48 h, gallic acid release was maximum at pH 1.2 (85.27%) compared to pH 7.4 (75.19%). The percent porosity (78.36%) and drug loading increased with the increasing concentration of chitosan and AMPS, while a decrease was observed with the increasing concentration of ethylene glycol dimethyl methacrylate (EGDMA). Crosslinking of the hydrogels increased with concentrations of chitosan and EGDMA but decreased with AMPS. In vitro studies demonstrated that the developed hydrogels were biodegradable (8.6% degradation/week) and had antimicrobial (zone of inhibition of 21 and 16 mm against Gram-positive bacteria Escherichia coli and Staphylococcus aureus as well as 13 mm against Gram-negative bacteria Pseudomonas aeruginosa, respectively) and antioxidant (73% DPPH and 70% ABTS) properties. Therefore, the prepared hydrogels could be used as an effective controlled drug delivery system.
Collapse
|
16
|
Amiryaghoubi N, Abdolahinia ED, Nakhlband A, Aslzad S, Fathi M, Barar J, Omidi Y. Smart chitosan–folate hybrid magnetic nanoparticles for targeted delivery of doxorubicin to osteosarcoma cells. Colloids Surf B Biointerfaces 2022; 220:112911. [DOI: 10.1016/j.colsurfb.2022.112911] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/22/2022] [Accepted: 10/07/2022] [Indexed: 11/27/2022]
|
17
|
J. A, P. A, M. SM, D. PA, Maria Packiam S, Balthazar JD. Preparation and characterization studies of chitosan encapsulated ZnO nanoparticles modified with folic acid and their antibacterial activity against selected bacterial species. PARTICULATE SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1080/02726351.2022.2145587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Agnes J.
- Materials Research Centre, Department of Physics, St. Xavier’s College (Autonomous), Palayamkottai, India
- Department of Physics, St. Xavier’s College (Autonomous), Palayamkottai, India
| | - Ajith P.
- Materials Research Centre, Department of Physics, St. Xavier’s College (Autonomous), Palayamkottai, India
| | - Sappani Muthu M.
- Materials Research Centre, Department of Physics, St. Xavier’s College (Autonomous), Palayamkottai, India
| | - Prem Anand D.
- Manonmaniam Sundaranar University, Abishekapatti, India
| | - Soosaimanickam Maria Packiam
- Entomology Research Institute (ERI), Loyola College, Chennai, India
- Department of Advanced Zoology and Biotechnology, Loyola College, Chennai, India
| | | |
Collapse
|
18
|
Bilal M, Ikram M, Shujah T, Haider A, Naz S, Ul-Hamid A, Naz M, Haider J, Shahzadi I, Nabgan W. Chitosan-Grafted Polyacrylic Acid-Doped Copper Oxide Nanoflakes Used as a Potential Dye Degrader and Antibacterial Agent: In Silico Molecular Docking Analysis. ACS OMEGA 2022; 7:41614-41626. [PMID: 36406528 PMCID: PMC9670908 DOI: 10.1021/acsomega.2c05625] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
This study examined the catalytic and bactericidal properties of polymer-doped copper oxide (CuO). For this purpose, a facile co-precipitation method was used to synthesize CuO nanostructures doped with CS-g-PAA. Various concentrations (2, 4, and 6%) of dopants were systematically incorporated into a fixed amount of CuO. The prepared samples were analyzed by different optical, structural, and morphological characterizations. Field emission scanning electron microscopy and transmission electron microscopy micrographs indicated that doping transformed CuO's agglomerated rod-like surface morphology to form nanoflakes. UV-vis spectroscopy revealed that the optical spectra of the samples exhibit a redshift after doping, leading to a decrease in band gap energy from 3.3 to 2.5 eV. The purpose of the study was to test the catalytic activity of pristine and CS-g-PAA doped CuO for the degradation of methylene blue in acidic, basic, and neutral conditions using NaBH4 as a reducing agent in an aqueous medium. Furthermore, antibacterial activity was evaluated against Gram-positive and Gram-negative bacteria, namely, Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Overall, enhanced bactericidal performance was observed upon doping CS-g-PAA into CuO, i.e., 4.25-6.15 and 4.40-8.15 mm against S. aureus and 1.35-4.20 and 2.25-5.25 mm against E. coli at the lowest and highest doses, respectively. The relevant catalytic and bactericidal action mechanisms of samples are also proposed in the study. Moreover, in silico molecular docking studies illustrated the role of these prepared nanomaterials as possible inhibitors of FabH and FabI enzymes of the fatty acid biosynthetic pathway.
Collapse
Affiliation(s)
- Muhammad Bilal
- Solar
Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore54000, Punjab, Pakistan
| | - Muhammad Ikram
- Solar
Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore54000, Punjab, Pakistan
| | - Tahira Shujah
- Department
of Physics, University of Central Punjab, Lahore54000, Punjab, Pakistan
| | - Ali Haider
- Department
of Clinical Medicine, Faculty of Veterinary and Animal Sciences, Muhammad
Nawaz Shareef, University of Agriculture, 66000Multan, Punjab, Pakistan
| | - Sadia Naz
- Tianjin
Institute of Industrial Biotechnology, Chinese
Academy of Sciences, Tianjin300308, China
| | - Anwar Ul-Hamid
- Core
Research Facilities, King Fahd University
of Petroleum & Minerals, Dhahran31261, Saudi Arabia
| | - Misbah Naz
- Department
of Chemistry, University of the Education, 54000Lahore, Pakistan
| | - Junaid Haider
- Tianjin
Institute of Industrial Biotechnology, Chinese
Academy of Sciences, Tianjin300308, China
| | - Iram Shahzadi
- Punjab
University College of Pharmacy, Allama Iqbal Campus, University of the Punjab, Lahore54000, Pakistan
| | - Walid Nabgan
- Departament
d’Enginyeria Química, Universitat
Rovira i Virgili, 43007Tarragona, Spain
| |
Collapse
|
19
|
Li A, Ye Y, Gong P, Xiao B, Jiang B. DMTMM‐mediated
grafting reaction of glucuronic acid on chitosan. J Appl Polym Sci 2022. [DOI: 10.1002/app.53318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Aoqi Li
- College of Chemistry Sichuan University Chengdu China
| | - Yingqing Ye
- Technology development center Jingkun Chemistry Company Kunshan China
| | - Peixin Gong
- Technology development center Jingkun Chemistry Company Kunshan China
| | - Bo Xiao
- College of Chemistry Sichuan University Chengdu China
| | - Bo Jiang
- College of Chemistry Sichuan University Chengdu China
| |
Collapse
|
20
|
Chitosan/xanthan gum-based (Hydroxypropyl methylcellulose-co-2-Acrylamido-2-methylpropane sulfonic acid) interpenetrating hydrogels for controlled release of amorphous solid dispersion of bioactive constituents of Pueraria lobatae. Int J Biol Macromol 2022; 224:380-395. [DOI: 10.1016/j.ijbiomac.2022.10.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/01/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022]
|
21
|
Nanofortification of vitamin B-complex in food matrix: Need, regulations, and prospects. FOOD CHEMISTRY: MOLECULAR SCIENCES 2022; 4:100100. [PMID: 35769403 PMCID: PMC9235048 DOI: 10.1016/j.fochms.2022.100100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/07/2022] [Accepted: 03/12/2022] [Indexed: 11/17/2022]
Abstract
Overview of nanomaterials to fortify food with vitamin B-complex. Nanofortification of food with vitamin B-complex to overcome conventional fortification challenges. Regulatory aspects, prospects, and upcoming trends of this indispensable technology are also discussed.
Micronutrient malnutrition (or hidden hunger) caused by vitamin B-complex deficiency is a significant concern in the growing population. Vitamin B-complex plays an essential role in many body functions. With the introduction of nanotechnology in the food industry, new and innovative techniques have started to develop, which holds a promising future to end malnutrition and help achieve United Nations Sustainable Developmental Goal-2 (UN SDG-2), named as zero hunger. This review highlights the need for nanofortification of vitamin B-complex in food matrix to address challenges faced by conventional fortification methods (bioavailability, controlled release, physicochemical stability, and shelf life). Further, different nanomaterials like organic, inorganic, carbon, and composites along with their applications, are discussed in detail. Among various nanomaterials, organic nanomaterials (lipid, polysaccharides, proteins, and biopolymers) were found best for fortifying vitamin B-complex in foods. Additionally, different regulatory aspects across the globe and prospects of this upcoming field are also highlighted in this review.
Collapse
|
22
|
Ullah S, Azad AK, Nawaz A, Shah KU, Iqbal M, Albadrani GM, Al-Joufi FA, Sayed AA, Abdel-Daim MM. 5-Fluorouracil-Loaded Folic-Acid-Fabricated Chitosan Nanoparticles for Site-Targeted Drug Delivery Cargo. Polymers (Basel) 2022; 14:2010. [PMID: 35631891 PMCID: PMC9145180 DOI: 10.3390/polym14102010] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/24/2022] [Accepted: 05/09/2022] [Indexed: 12/13/2022] Open
Abstract
Nanoparticles play a vital role in cancer treatment to deliver or direct the drug to the malignant cell, avoiding the attacking of normal cells. The aim of the study is to formulate folic-acid-modified chitosan nanoparticles for colon cancer. Chitosan was successfully conjugated with folic acid to produce a folic acid-chitosan conjugate. The folate-modified chitosan was loaded with 5-FU using the ionic gelation method. The prepared nanoparticles were characterized for size, zeta potential, surface morphology, drug contents, entrapment efficiency, loading efficiency, and in vitro release study. The cytotoxicity study of the formulated nanoparticles was also investigated. The conjugation of folic acid with chitosan was confirmed by FTIR and NMR spectroscopy. The obtained nanoparticles were monodispersed nanoparticles with a suitable average size and a positive surface charge. The size and zeta potential and PDI of the CS-5FU-NPs were 208 ± 15, 26 ± 2, and +20 ± 2, respectively, and those of the FA-CS-5FU-NPs were 235 ± 12 and +20 ± 2, respectively, which are in the acceptable ranges. The drug contents' % yield and the %EE of folate-decorated NPs were 53 ± 1.8% and 59 ± 2%, respectively. The in vitro release of the FA-CS-5FU-NPs and CS-5FU-NPs was in the range of 10.08 ± 0.45 to 96.57 ± 0.09% and 6 ± 0.31 to 91.44 ± 0.21, respectively. The cytotoxicity of the nanoparticles was enhanced in the presence of folic acid. The presence of folic acid in nanoparticles shows much higher cytotoxicity as compared to simple chitosan nanoparticles. The folate-modified nanoparticles provide a potential way to enhance the targeting of tumor cells.
Collapse
Affiliation(s)
- Shafi Ullah
- Advanced Drug Delivery Lab, Gomal Center of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (S.U.); (A.N.); (K.U.S.); (M.I.)
| | - Abul Kalam Azad
- Pharmaceutical Technology Unit, Faculty of Pharmacy, AIMST University, Bedong 08100, Malaysia
| | - Asif Nawaz
- Advanced Drug Delivery Lab, Gomal Center of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (S.U.); (A.N.); (K.U.S.); (M.I.)
| | - Kifayat Ullah Shah
- Advanced Drug Delivery Lab, Gomal Center of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (S.U.); (A.N.); (K.U.S.); (M.I.)
| | - Muhammad Iqbal
- Advanced Drug Delivery Lab, Gomal Center of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (S.U.); (A.N.); (K.U.S.); (M.I.)
| | - Ghadeer M. Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Fakhria A. Al-Joufi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
| | - Amany A. Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt;
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
23
|
Highly Efficient and Rapid Removal of Methylene Blue from Aqueous Solution Using Folic Acid-Conjugated Dendritic Mesoporous Silica Nanoparticles. Processes (Basel) 2022. [DOI: 10.3390/pr10040705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Dendritic Mesoporous Silica Nanoparticles (DMSNs) are considered superior in the adsorption of unfavorable chemical compounds and biological pollutants. Herein, we have synthesized folic acid-terminated dendritic mesoporous silica nanoparticles (FA-DMSN) for the removal of cationic dyes, methylene blue (MB), from aqueous solutions. The structural, morphological, functional, specific surface area, pore size distribution, and thermal properties of the synthesized DMSNs were identified using a scanning electron microscope (SEM), a transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), Brunauer−Emmett−Teller (BET), and Thermogravimetric Analyzer (TGA). The synthesized DMSNs exhibited a high surface area (521 m2 −1) and pore volume (1.2 cm3 g−1). In addition, it features both wide pore size and narrow distributions, which strongly affect the adsorption performance in terms of the equilibrium uptake time. Moreover, the impact of pH, contacting time, and dye’s initial concentration on the removal efficiency of MB was studied. The extraction efficiency of FA-DMSN was found to be three times more effective than the bare DMSN materials. Langmuir isotherm fitted the experimental data very well with a correlation coefficient value of 0.99. According to the Langmuir model, the maximum adsorption capacity was 90.7 mg/g. Furthermore, the intra−particle diffusion model revealed a significantly fast intra-particle diffusion which can be attributed to the presence of the large pore’s channels. Finally, the fast adsorption of MB molecules, reaching their equilibrium capacity within tens of seconds, as well as the low cost and ease of FA-DMSN fabrication, makes the developed material an effective adsorbent for water remediations.
Collapse
|
24
|
Chelladurai M, Margavelu G, Vijayakumar S, González-Sánchez ZI, Vijayan K, Sahadevan R. Preparation and characterization of amine-functionalized mupirocin-loaded zinc oxide nanoparticles: A potent drug delivery agent in targeting human epidermoid carcinoma (A431) cells. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
25
|
Gamboa-Solana CDC, Chuc-Gamboa MG, Aguilar-Pérez FJ, Cauich-Rodríguez JV, Vargas-Coronado RF, Aguilar-Pérez DA, Herrera-Atoche JR, Pacheco N. Zinc Oxide and Copper Chitosan Composite Films with Antimicrobial Activity. Polymers (Basel) 2021; 13:3861. [PMID: 34833159 PMCID: PMC8619498 DOI: 10.3390/polym13223861] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022] Open
Abstract
The role of the oral microbiome and its effect on dental diseases is gaining interest. Therefore, it has been sought to decrease the bacterial load to fight oral cavity diseases. In this study, composite materials based on chitosan, chitosan crosslinked with glutaraldehyde, chitosan with zinc oxide particles, and chitosan with copper nanoparticles were prepared in the form of thin films, to evaluate a new alternative with a more significant impact on the oral cavity bacteria. The chemical structures and physical properties of the films were characterized using by Fourier transform infrared spectroscopy (FTIR,) Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), elemental analysis (EDX), thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), and contact angle measurements. Subsequently, the antimicrobial activity of each material was evaluated by agar diffusion tests. No differences were found in the hydrophilicity of the films with the incorporation of ZnO or copper particles. Antimicrobial activity was found against S. aureus in the chitosan film crosslinked with glutaraldehyde, but not in the other compositions. In contrast antimicrobial activity against S. typhimurium was found in all films. Based on the data of present investigation, chitosan composite films could be an option for the control of microorganisms with potential applications in various fields, such as medical and food industry.
Collapse
Affiliation(s)
- Candy del Carmen Gamboa-Solana
- Facultad de Odontología, Universidad Autónoma de Yucatán, Calle 61 A #492 A x 90 y Av. Itzáes, Centro., Mérida C.P. 97000, Mexico; (C.d.C.G.-S.); (F.J.A.-P.); (D.A.A.-P.); (J.R.H.-A.)
| | - Martha Gabriela Chuc-Gamboa
- Facultad de Odontología, Universidad Autónoma de Yucatán, Calle 61 A #492 A x 90 y Av. Itzáes, Centro., Mérida C.P. 97000, Mexico; (C.d.C.G.-S.); (F.J.A.-P.); (D.A.A.-P.); (J.R.H.-A.)
| | - Fernando Javier Aguilar-Pérez
- Facultad de Odontología, Universidad Autónoma de Yucatán, Calle 61 A #492 A x 90 y Av. Itzáes, Centro., Mérida C.P. 97000, Mexico; (C.d.C.G.-S.); (F.J.A.-P.); (D.A.A.-P.); (J.R.H.-A.)
| | - Juan Valerio Cauich-Rodríguez
- Centro de Investigación Científica de Yucatán, Unidad de Materiales, Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Mexico; (J.V.C.-R.); (R.F.V.-C.)
| | - Rossana Faride Vargas-Coronado
- Centro de Investigación Científica de Yucatán, Unidad de Materiales, Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Mexico; (J.V.C.-R.); (R.F.V.-C.)
| | - David Alejandro Aguilar-Pérez
- Facultad de Odontología, Universidad Autónoma de Yucatán, Calle 61 A #492 A x 90 y Av. Itzáes, Centro., Mérida C.P. 97000, Mexico; (C.d.C.G.-S.); (F.J.A.-P.); (D.A.A.-P.); (J.R.H.-A.)
| | - José Rubén Herrera-Atoche
- Facultad de Odontología, Universidad Autónoma de Yucatán, Calle 61 A #492 A x 90 y Av. Itzáes, Centro., Mérida C.P. 97000, Mexico; (C.d.C.G.-S.); (F.J.A.-P.); (D.A.A.-P.); (J.R.H.-A.)
| | - Neith Pacheco
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Parque Científico Tecnológico de Yucatán, km 5.5 Carretera, Sierra Papacal-Chuburná, Chuburná C.P. 97302, Mexico;
| |
Collapse
|
26
|
Hanna DH, R. Saad G. Induction of mitochondria mediated apoptosis in human ovarian cancer cells by folic acid coated tin oxide nanoparticles. PLoS One 2021; 16:e0258115. [PMID: 34597348 PMCID: PMC8486119 DOI: 10.1371/journal.pone.0258115] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/17/2021] [Indexed: 12/15/2022] Open
Abstract
PURPOSE This study aims to prepare folic acid coated tin oxide nanoparticles (FA-SnO2 NPs) for specifically targeting human ovarian cancer cells with minimum side effects against normal cells. METHODS The prepared FA-SnO2 NPs were characterized by FT-IR, UV-vis spectroscopy, XRD, SEM and TEM. The inhibition effects of FA-SnO2 NPs against SKOV3 cancer cell were tested by MTT and LDH assay. Apoptosis induction in FA-SnO2 NPs treated SKOV3 cells were investigated using Annexin V/PI, AO/EB and Comet assays and the possible mechanisms of the cytotoxic action were studied by Flow cytometry, qRT-PCR, Immunohistochemistry, and Western blotting analyses. The effects of FA-SnO2 NPs on reactive oxygen species generation in SKOV3 cells were also examined. Additionally, the safety of utilization FA-SnO2 NPs were studied in vivo using Wister rats. RESULTS The obtained FA-SnO2 NPs displayed amorphous spherical morphology with an average diameter of 157 nm and a zeta potential value of -24 mV. Comparing to uncoated SnO2 NPs, FA-SnO2 NPs had a superior inhibition effect towards SKOV3 cell growth that was suggested to be mediated through higher reactive oxygen species generation. It was showed that FA-SnO2 NPs increased significantly the % of apoptotic cells in the sub- G1 and G2/M phases with a higher intensity comet nucleus in SKOV3 treated cells. Furthermore, FA-SnO2 NPs was significantly increased the expression levels of P53, Bax, and cleaved Caspase-3 and accompanied with a significant decrease of Bcl-2 in the treated SKOV3 cells. CONCLUSION Overall, the results suggested that an increase in cellular FA-SnO2 NPs internalization resulted in a significant induced cytotoxicity in SKOV3 cancer cells in dose-dependent mode through ROS-mediated cell apoptosis that may have occurred through mitochondrial pathway. Additionally, the results confirmed the safety of utilization FA-SnO2 NPs against living systems. So, FA-SnO2 NPs with a specific targeting moiety may be a promising therapeutic candidate for human ovarian cancer.
Collapse
Affiliation(s)
- Demiana H. Hanna
- Faculty of Science, Department of Chemistry, Cairo University, Giza, Egypt
| | - Gamal R. Saad
- Faculty of Science, Department of Chemistry, Cairo University, Giza, Egypt
| |
Collapse
|
27
|
Narayan R, Gadag S, Cheruku SP, Raichur AM, Day CM, Garg S, Manandhar S, Pai KSR, Suresh A, Mehta CH, Nayak Y, Kumar N, Nayak UY. Chitosan-glucuronic acid conjugate coated mesoporous silica nanoparticles: A smart pH-responsive and receptor-targeted system for colorectal cancer therapy. Carbohydr Polym 2021; 261:117893. [PMID: 33766378 DOI: 10.1016/j.carbpol.2021.117893] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/17/2021] [Accepted: 02/28/2021] [Indexed: 12/16/2022]
Abstract
Glycosylated pH-sensitive mesoporous silica nanoparticles (MSNs) of capecitabine (CAP) were developed for targeting colorectal cancer. The MSNs possessed an average pore diameter of 8.12 ± 0.43 nm, pore volume of 0.73 ± 0.21 cm3/g, and particle size of 245.24 ± 5.75 nm. A high loading of 180.51 ± 5.23 mg/g attributed to the larger pore volume was observed. The surface of the drug-loaded MSNs were capped with chitosan-glucuronic acid (CHS-GCA) conjugate to combine two strategies viz. pH-sensitive, and lectin receptor mediated uptake. In vitro studies demonstrated a pH-sensitive and controlled release of CAP which was further enhanced in the presence of rat caecal content. Higher uptake of the (CAP-MSN)CHS-GCA was observed in HCT 116 cell lines. The glycosylated nanoparticles revealed reduction in the tumors, aberrant crypt foci, dysplasia and inflammation, and alleviation in the toxic features. This illustrated that the nanoparticles showed promising antitumor efficacy with reduced toxicity and may be used as a effective carrier against cancer.
Collapse
Affiliation(s)
- Reema Narayan
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shivaprasad Gadag
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sri Pragnya Cheruku
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ashok M Raichur
- Department of Materials Engineering, Indian Institute of Science, Bengaluru, Karnataka, 560012, India
| | - Candace Minhthu Day
- UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Sanjay Garg
- UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Suman Manandhar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Karkala Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Akhil Suresh
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Chetan Hasmukh Mehta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Nitesh Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Usha Yogendra Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
28
|
Gudimella KK, Appidi T, Wu HF, Battula V, Jogdand A, Rengan AK, Gedda G. Sand bath assisted green synthesis of carbon dots from citrus fruit peels for free radical scavenging and cell imaging. Colloids Surf B Biointerfaces 2021; 197:111362. [DOI: 10.1016/j.colsurfb.2020.111362] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 01/14/2023]
|
29
|
de Sousa Victor R, Marcelo da Cunha Santos A, Viana de Sousa B, de Araújo Neves G, Navarro de Lima Santana L, Rodrigues Menezes R. A Review on Chitosan's Uses as Biomaterial: Tissue Engineering, Drug Delivery Systems and Cancer Treatment. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4995. [PMID: 33171898 PMCID: PMC7664280 DOI: 10.3390/ma13214995] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022]
Abstract
Chitosan, derived from chitin, is a biopolymer consisting of arbitrarily distributed β-(1-4)-linked D-glucosamine and N-acetyl-D-glucosamine that exhibits outstanding properties- biocompatibility, biodegradability, non-toxicity, antibacterial activity, the capacity to form films, and chelating of metal ions. Most of these peculiar properties are attributed to the presence of free protonable amino groups along the chitosan backbone, which also gives it solubility in acidic conditions. Moreover, this biopolymer can also be physically modified, thereby presenting a variety of forms to be developed. Consequently, this polysaccharide is used in various fields, such as tissue engineering, drug delivery systems, and cancer treatment. In this sense, this review aims to gather the state-of-the-art concerning this polysaccharide when used as a biomaterial, providing information about its characteristics, chemical modifications, and applications. We present the most relevant and new information about this polysaccharide-based biomaterial's applications in distinct fields and also the ability of chitosan and its various derivatives to selectively permeate through the cancer cell membranes and exhibit anticancer activity, and the possibility of adding several therapeutic metal ions as a strategy to improve the therapeutic potential of this polymer.
Collapse
Affiliation(s)
- Rayssa de Sousa Victor
- Graduate Program in Materials Science and Engineering, Laboratory of Materials Technology (LTM), Federal University of Campina Grande, Campina Grande 58429-900, Brazil
- Laboratory of Materials Technology (LTM), Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil; (G.d.A.N.); (L.N.d.L.S.); (R.R.M.)
| | - Adillys Marcelo da Cunha Santos
- Center for Science and Technology in Energy and Sustainability (CETENS), Federal University of Recôncavo da Bahia (UFRB), Feira de Santana 44042-280, Brazil;
| | - Bianca Viana de Sousa
- Department of Chemical Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil;
| | - Gelmires de Araújo Neves
- Laboratory of Materials Technology (LTM), Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil; (G.d.A.N.); (L.N.d.L.S.); (R.R.M.)
| | - Lisiane Navarro de Lima Santana
- Laboratory of Materials Technology (LTM), Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil; (G.d.A.N.); (L.N.d.L.S.); (R.R.M.)
| | - Romualdo Rodrigues Menezes
- Laboratory of Materials Technology (LTM), Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil; (G.d.A.N.); (L.N.d.L.S.); (R.R.M.)
| |
Collapse
|
30
|
Agricultural and Biomedical Applications of Chitosan-Based Nanomaterials. NANOMATERIALS 2020; 10:nano10101903. [PMID: 32987697 PMCID: PMC7598667 DOI: 10.3390/nano10101903] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023]
Abstract
Chitosan has emerged as a biodegradable, nontoxic polymer with multiple beneficial applications in the agricultural and biomedical sectors. As nanotechnology has evolved as a promising field, researchers have incorporated chitosan-based nanomaterials in a variety of products to enhance their efficacy and biocompatibility. Moreover, due to its inherent antimicrobial and chelating properties, and the availability of modifiable functional groups, chitosan nanoparticles were also directly used in a variety of applications. In this review, the use of chitosan-based nanomaterials in agricultural and biomedical fields related to the management of abiotic stress in plants, water availability for crops, controlling foodborne pathogens, and cancer photothermal therapy is discussed, with some insights into the possible mechanisms of action. Additionally, the toxicity arising from the accumulation of these nanomaterials in biological systems and future research avenues that had gained limited attention from the scientific community are discussed here. Overall, chitosan-based nanomaterials show promising characteristics for sustainable agricultural practices and effective healthcare in an eco-friendly manner.
Collapse
|
31
|
Synthesis and characterization of folic acid-chitosan nanoparticles loaded with thymoquinone to target ovarian cancer cells. J Radioanal Nucl Chem 2020. [DOI: 10.1007/s10967-020-07058-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Meng D, Guo L, Shi D, Sun X, Shang M, Zhou X, Li J. Charge-conversion and ultrasound-responsive O-carboxymethyl chitosan nanodroplets for controlled drug delivery. Nanomedicine (Lond) 2019; 14:2549-2565. [PMID: 31271101 DOI: 10.2217/nnm-2019-0217] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Aim: O-carboxymethyl chitosan/perfluorohexane nanodroplets (O-CS NDs) and doxorubicin-loading O-carboxymethyl chitosan nanodroplets were synthesized and functionally tested as drug delivery system in vitro. Materials & methods: The characteristics, charge conversion, stability, cytotoxicity, ultrasound imaging ability, interaction with tumor cells of the nanodroplets and eradication on tumor cells of the doxorubicin-loaded nanodroplets were investigated. Results: O-CS NDs (below 200 nm) achieved higher tumor cellular associations at acidic pH, with great serum stability, pH-dependent charge conversion and good ultrasound imaging ability. Doxorubicin-loading O-carboxymethyl chitosan nanodroplets exhibited strong cytotoxicity on PC-3 cells with ultrasound exposure. Conclusion: These stable, safe and smart O-CS NDs may be a promising approach to improve cell interaction efficiency as an ultrasound imaging and cancer-targeting drug delivery system.
Collapse
Affiliation(s)
- Dong Meng
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Lu Guo
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Dandan Shi
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Xiao Sun
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Mengmeng Shang
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Xiaoying Zhou
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Jie Li
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| |
Collapse
|
33
|
Synthesis and Characterization of Acetic Acid-Doped Polyaniline and Polyaniline⁻Chitosan Composite. Biomimetics (Basel) 2019; 4:biomimetics4010015. [PMID: 31105200 PMCID: PMC6477596 DOI: 10.3390/biomimetics4010015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/13/2019] [Accepted: 01/17/2019] [Indexed: 12/17/2022] Open
Abstract
Polyaniline–chitosan (PAni–Cs) composite films were synthesized using a solution casting method with varying PAni concentrations. Polyaniline powders used in the composite synthesis were polymerized using acetic acid as the dopant media. Raman spectroscopy revealed that the PAni powders synthesized using hydrochloric acid and acetic acid did not exhibit significant difference to the chemical features of PAni, implying that PAni was formed in varying concentrations of the dopant media. The presence of agglomerated particles on the surface of the Cs composite, which may have been due to the presence of PAni powders, was observed with scanning electron microscope–energy dispersive X-ray spectroscopy (SEM–EDX). Ultraviolet–visible (UV–Vis) spectroscopy further showed the interaction of PAni with Cs where the Cs characteristic peak shifted to a higher wavelength. Cell viability assay also revealed that the synthesized PAni–Cs composites were nontoxic and may be utilized for future biomedical applications.
Collapse
|