1
|
Sajeevan A, Ramamurthy T, Solomon AP. Vibrio cholerae virulence and its suppression through the quorum-sensing system. Crit Rev Microbiol 2025; 51:22-43. [PMID: 38441045 DOI: 10.1080/1040841x.2024.2320823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/21/2023] [Accepted: 02/10/2024] [Indexed: 03/06/2024]
Abstract
Vibrio cholerae is a cholera-causing pathogen known to instigate severe contagious diarrhea that affects millions globally. Survival of vibrios depend on a combination of multicellular responses and adapt to changes that prevail in the environment. This process is achieved through a strong communication at the cellular level, the process has been recognized as quorum sensing (QS). The severity of infection is highly dependent on the QS of vibrios in the gut milieu. The quorum may exist in a low/high cell density (LCD/HCD) state to exert a positive or negative response to control the regulatory pathogenic networks. The impact of this regulation reflects on the transition of pathogenic V. cholerae from the environment to infect humans and cause outbreaks or epidemics of cholera. In this context, the review portrays various regulatory processes and associated virulent pathways, which maneuver and control LCD and HCD states for their survival in the host. Although several treatment options are existing, promotion of therapeutics by exploiting the virulence network may potentiate ineffective antibiotics to manage cholera. In addition, this approach is also useful in resource-limited settings, where the accessibility to antibiotics or conventional therapeutic options is limited.
Collapse
Affiliation(s)
- Anusree Sajeevan
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Thandavarayan Ramamurthy
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Disease, Kolkata, India
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
2
|
Islam MT, Nahar KS, Ara N, Biswas SM, Waliullah, Tasnim J, Sakib MN, Al-Mamun A, Islam A, Bristi A, Sultana M, Ahmed D, Seed KD, Camilli A, Ahmed T, Alam M. A fatal case of Vibrio cholerae-associated diarrhea and bacteremia in a 30-year-old carrier of beta-thalassemia. Gut Pathog 2024; 16:76. [PMID: 39702517 DOI: 10.1186/s13099-024-00655-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/07/2024] [Indexed: 12/21/2024] Open
Abstract
Bacterial infections leading to bacteremia and septicemic shock constitute an emerging public health concern globally, especially in areas where sanitation is poor and safe drinking water is scarce. Enteric pathogens such as Vibrio cholerae are responsible for many deaths caused by contaminated food and water in these areas. While cholera is the prominent clinical threat posed by V. cholerae, outcomes like bacteremia turning into sepsis and associated morbidity and mortality have been increasing globally in recent times. Here, we report an alarming case of fatal sepsis with a probable association of V. cholerae bacteremia in Bangladesh. In September 2023, a 30-year-old man with a pre-condition of beta-thalassemia presented to a tertiary care hospital with acute diarrhea, abdominal pain, nausea, and fever and died within 36 h of admission with acute cholecystitis, metabolic acidosis, acute kidney injury, pancytopenia, and refractory septic shock with multi-organ dysfunction syndrome. Blood culture detected V. cholerae, which was further characterized as hemolytic, carrying the hemolysin gene and genes for the virulence factor type-three secretion system. The isolate was confirmed as V. cholerae non-O1/O139 (NOVC), which differed in genetic properties from the few contemporary NOVC isolates associated with diarrheal cases in Bangladesh. To manage the diarrhea and septicemic condition, the patient was treated empirically with metronidazole and meropenem. However, antibiotic susceptibility testing showed the strain was susceptible to all the routinely prescribed drugs for V. cholerae infections. To the best of our knowledge, this investigation provides the first molecular description of a fatal case of V. cholerae-associated bacteremia in Bangladesh and underscores the need for comprehensive investigations on bacterial septicemia to prevent future casualties.
Collapse
Affiliation(s)
| | - Kazi Sumaita Nahar
- ICDDR,B (International Centre for Diarrheal Disease Research, Dhaka, Bangladesh
| | | | | | - Waliullah
- ICDDR,B (International Centre for Diarrheal Disease Research, Dhaka, Bangladesh
| | - Jarin Tasnim
- ICDDR,B (International Centre for Diarrheal Disease Research, Dhaka, Bangladesh
| | | | - Abdullah Al-Mamun
- ICDDR,B (International Centre for Diarrheal Disease Research, Dhaka, Bangladesh
| | - Alimul Islam
- ICDDR,B (International Centre for Diarrheal Disease Research, Dhaka, Bangladesh
| | - Anindita Bristi
- ICDDR,B (International Centre for Diarrheal Disease Research, Dhaka, Bangladesh
| | - Marzia Sultana
- ICDDR,B (International Centre for Diarrheal Disease Research, Dhaka, Bangladesh
| | - Dilruba Ahmed
- ICDDR,B (International Centre for Diarrheal Disease Research, Dhaka, Bangladesh
| | - Kimberley D Seed
- Department of Plant and Microbial Biology, University of California - Berkeley, Berkeley, CA, USA
| | | | - Tahmeed Ahmed
- ICDDR,B (International Centre for Diarrheal Disease Research, Dhaka, Bangladesh
| | - Munirul Alam
- ICDDR,B (International Centre for Diarrheal Disease Research, Dhaka, Bangladesh.
- Infectious Diseases Division International Centre for Diarrheal Disease Research, Shaheed Tajuddin Ahmed Sarani, Bangladesh 68, Mohakhali, Dhaka, 1212, Bangladesh.
| |
Collapse
|
3
|
Manna T, Chandra Guchhait K, Jana D, Dey S, Karmakar M, Hazra S, Manna M, Jana P, Panda AK, Ghosh C. Wastewater-based surveillance of Vibrio cholerae: Molecular insights on biofilm regulatory diguanylate cyclases, virulence factors and antibiotic resistance patterns. Microb Pathog 2024; 196:106995. [PMID: 39368563 DOI: 10.1016/j.micpath.2024.106995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
Vibrio cholerae is an inherent inhabitant of aquatic ecosystems. The Indian state of West Bengal, especially the Gangetic delta region is the highest cholera affected region and is considered as the hub of Asiatic cholera. V. cholerae were isolated from publicly accessible wastewater of Midnapore, West Bengal, India. Serotyping determined all isolates to be of non-O1/non-O139 serogroups. Moderate biofilm-forming abilities were noticed in most of the isolates (74.7 %) while, high biofilm formation was recorded for only 6.3 % isolates and 19 % of isolates exhibited low/non-biofilm-forming abilities. PCR-based screening of crucial diguanylate cyclases (DGCs) involved in cyclic-di-GMP-mediated biofilm signaling was performed. cdgH and cdgM were the most abundant DGCs among 93.7 % and 91.5 % of isolates, respectively. Other important DGCs, i.e., cdgK, cdgA, cdgL, and vpvC were present in 84 %, 75.5 %, 72 % and 68 % of isolates, respectively. Besides, the non-O1/non-O139 isolates were screened for the occurrence of virulence factor encoding genes. Moreover, among these non-O1/non-O139 isolates, two strains (3.17 %) harbored both ctxA and ctxB genes, which encode the cholera toxin associated with epidemic cholera. ompU was the most prevalent virulence factor, present in 24.8 % of isolates. Other virulence factors like, zot and st were found in 4.7 % and 9.5 % of isolates. Genes encoding tcp and ace were found to be PCR-negative for the isolates. Additionally, crucial virulence factor regulators, toxT, toxR and hapR were found to be PCR-positive in all the isolates. Antibiotic resistance patterns displayed further vulnerabilities with decreased sensitivity towards commonly used antibiotics with multiple antibiotic resistance index ranging between 0.37 and 0.62. The presence of cholera toxin-encoding multi-drug resistant (MDR) V. cholerae strains in environmental settings is alarming. High occurrence of DGCs are considered to encourage further investigations to use them as alternative therapeutic targets against MDR cholera pathogen due to their unique presence in bacterial systems.
Collapse
Affiliation(s)
- Tuhin Manna
- Deparment of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India
| | | | - Debarati Jana
- Deparment of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India
| | - Subhamoy Dey
- Deparment of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India; Centre for Life Sciences, Vidyasagar University, Midnapore, West Bengal, India
| | - Monalisha Karmakar
- Deparment of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India
| | - Subrata Hazra
- Deparment of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India
| | - Mousumi Manna
- Deparment of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India
| | - Pradip Jana
- Deparment of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India
| | - Amiya Kumar Panda
- Department of Chemistry, Vidyasagar University, Midnapore, West Bengal, India
| | - Chandradipa Ghosh
- Deparment of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India.
| |
Collapse
|
4
|
Zhang Q, Alter T, Fleischmann S. Non-O1/Non-O139 Vibrio cholerae-An Underestimated Foodborne Pathogen? An Overview of Its Virulence Genes and Regulatory Systems Involved in Pathogenesis. Microorganisms 2024; 12:818. [PMID: 38674762 PMCID: PMC11052320 DOI: 10.3390/microorganisms12040818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/05/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
In recent years, the number of foodborne infections with non-O1 and non-O139 Vibrio cholerae (NOVC) has increased worldwide. These have ranged from sporadic infection cases to localized outbreaks. The majority of case reports describe self-limiting gastroenteritis. However, severe gastroenteritis and even cholera-like symptoms have also been described. All reported diarrheal cases can be traced back to the consumption of contaminated seafood. As climate change alters the habitats and distribution patterns of aquatic bacteria, there is a possibility that the number of infections and outbreaks caused by Vibrio spp. will further increase, especially in countries where raw or undercooked seafood is consumed or clean drinking water is lacking. Against this background, this review article focuses on a possible infection pathway and how NOVC can survive in the human host after oral ingestion, colonize intestinal epithelial cells, express virulence factors causing diarrhea, and is excreted by the human host to return to the environment.
Collapse
Affiliation(s)
| | | | - Susanne Fleischmann
- Institute of Food Safety and Food Hygiene, School of Veterinary Medicine, Freie Universität Berlin, Königsweg 69, 14163 Berlin, Germany; (Q.Z.); (T.A.)
| |
Collapse
|
5
|
Muzembo BA, Kitahara K, Ohno A, Khatiwada J, Dutta S, Miyoshi SI. Vibriosis in South Asia: A systematic review and meta-analysis. Int J Infect Dis 2024; 141:106955. [PMID: 38311027 DOI: 10.1016/j.ijid.2024.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/04/2024] [Accepted: 01/29/2024] [Indexed: 02/06/2024] Open
Abstract
OBJECTIVES South Asia remains home to foodborne diseases caused by the Vibrio species. We aimed to compile and update information on the epidemiology of vibriosis in South Asia. METHODS For this systematic review and meta-analysis, we searched PubMed, Web of Science, EMBASE, and Google Scholar for studies related to vibriosis in South Asia published up to May 2023. A random-effects meta-analysis was used to estimate the pooled isolation rate of non-cholera-causing Vibrio species. RESULTS In total, 38 studies were included. Seven of these were case reports and 22 were included in the meta-analysis. The reported vibriosis cases were caused by non-O1/non-O139 V. cholerae, V. parahaemolyticus, V. fluvialis, and V. vulnificus. The overall pooled isolation rate was 4.0% (95% confidence interval [CI] 3.0-5.0%) in patients with diarrhea. Heterogeneity was high (I2 = 98.0%). The isolation rate of non-O1/non-O139 V. cholerae, V. parahaemolyticus, and V. fluvialis were 9.0 (95% CI 7.0-10.0%), 1.0 (95% CI 1.0-2.0%), and 2.0 (95% CI: 1.0-3.0%), respectively. Regarding V. parahaemolyticus, O3:K6 was the most frequently isolated serotype. Cases peaked during summer. Several studies reported antibiotic-resistant strains and those harboring extended-spectrum beta-lactamases genes. CONCLUSIONS This study demonstrates a high burden of infections caused by non-cholera-causing Vibrio species in South Asia.
Collapse
Affiliation(s)
- Basilua Andre Muzembo
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
| | - Kei Kitahara
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan; Collaborative Research Centre of Okayama University for Infectious Diseases in India at ICMR-NICED, Kolkata, India
| | - Ayumu Ohno
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan; Collaborative Research Centre of Okayama University for Infectious Diseases in India at ICMR-NICED, Kolkata, India
| | | | - Shanta Dutta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shin-Ichi Miyoshi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
6
|
El-Zamkan MA, Ahmed AS, Abdelhafeez HH, Mohamed HMA. Molecular characterization of Vibrio species isolated from dairy and water samples. Sci Rep 2023; 13:15368. [PMID: 37717062 PMCID: PMC10505214 DOI: 10.1038/s41598-023-42334-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/08/2023] [Indexed: 09/18/2023] Open
Abstract
Vibrio species can cause foodborne infections and lead to serious gastrointestinal illnesses. The purpose of this research was to detect the Vibrio cholerae and Vibrio parahaemolyticus in raw milk, dairy products, and water samples. Also, it investigated the virulence factors, antibiotic resistance and biofilm formation in isolated bacteria. Conventional and molecular approaches were used to identify the isolates in this study. Vibrio species were detected in 5% of the samples. Vibrio cholerae and Vibrio parahaemolyticus were isolated from 1.25 and 1.5%, respectively, of the total samples. Penicillin resistance was detected in all strains of Vibrio cholerae and Vibrio parahaemolyticus, with a MAR index ranging from 0.16 to 0.5. Four isolates were moderate biofilm producer and three of them were MDR. When Vibrio cholerae was screened for virulence genes, ctxAB, hlyA, and tcpA were found in 80, 60, and 80% of isolates, respectively. However, tdh + /trh + associated-virulence genes were found in 33.3% of Vibrio parahaemolyticus isolates.
Collapse
Affiliation(s)
- Mona A El-Zamkan
- Department of Food Hygiene and Control (Milk Hygiene), Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt.
| | - Ahmed Shaban Ahmed
- Department of Food Hygiene and Control (Milk Hygiene), Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Hanan H Abdelhafeez
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt.
| | - Hams M A Mohamed
- Department of Microbiology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt.
| |
Collapse
|
7
|
Abioye OE, Nontongana N, Osunla CA, Okoh AI. Antibiotic resistance and virulence genes profiling of Vibrio cholerae and Vibrio mimicus isolates from some seafood collected at the aquatic environment and wet markets in Eastern Cape Province, South Africa. PLoS One 2023; 18:e0290356. [PMID: 37616193 PMCID: PMC10449182 DOI: 10.1371/journal.pone.0290356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023] Open
Abstract
The current study determines the density of Vibrio spp. and isolates V. cholerae and Vibrio mimicus from fish-anatomical-sites, prawn, crab and mussel samples recovered from fish markets, freshwater and brackish water. Virulence and antibiotic resistance profiling of isolates were carried out using standard molecular and microbiology techniques. Vibrio spp. was detected in more than 90% of samples [134/144] and its density was significantly more in fish than in other samples. Vibrio. cholerae and V. mimicus were isolated in at least one sample of each sample type with higher isolation frequency in fish samples. All the V. cholerae isolates belong to non-O1/non-O139 serogroup. One or more V. cholerae isolates exhibited intermediate or resistance against each of the eighteen panels of antibiotics used but 100% of the V. mimicus were susceptible to amikacin, gentamycin and chloramphenicol. Vibrio cholerae exhibited relatively high resistance against polymyxin, ampicillin and amoxicillin/clavulanate while V. mimicus isolates exhibited relatively high resistance against nitrofurantoin, ampicillin and polymixin. The multiple-antibiotic-resistance-index [MARI] for isolates ranges between 0 and 0.67 and 48% of the isolates have MARI that is >0.2 while 55% of the isolates exhibit MultiDrug Resistance Phenotypes. The percentage detection of acc, ant, drf18, sul1, mcr-1, blasvh, blaoxa, blatem, blaoxa48, gyrA, gyrB and parC resistance-associated genes were 2%, 9%, 14%, 7%, 2%, 25%, 7%, 2%, 2%, 32%, 25% and 27% respectively while that for virulence-associated genes in increasing other was ace [2%], tcp [11%], vpi [16%], ompU [34%], toxR [43%], rtxC [70%], rtxA [73%] and hyla [77%]. The study confirmed the potential of environmental non-O1/non-O139 V. cholerae and V. mimicus to cause cholera-like infection and other vibriosis which could be difficult to manage with commonly recommended antibiotics. Thus, regular monitoring of the environment to create necessary awareness for this kind of pathogens is important in the interest of public health.
Collapse
Affiliation(s)
| | - Nolonwabo Nontongana
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
| | - Charles A. Osunla
- Department of Microbiology, Adekunle Ajasin University, Akungba Akoko, Nigeria
| | - Anthony I. Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
| |
Collapse
|
8
|
Chaudhary N, Mohan B, Kaur H, Modgil V, Kant V, Bhatia A, Taneja N. Vibrio Phage VMJ710 Can Prevent and Treat Disease Caused by Pathogenic MDR V. cholerae O1 in an Infant Mouse Model. Antibiotics (Basel) 2023; 12:1046. [PMID: 37370365 DOI: 10.3390/antibiotics12061046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/03/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Cholera, a disease of antiquity, is still festering in developing countries that lack safe drinking water and sewage disposal. Vibrio cholerae, the causative agent of cholera, has developed multi-drug resistance to many antimicrobial agents. In aquatic habitats, phages are known to influence the occurrence and dispersion of pathogenic V. cholerae. We isolated Vibrio phage VMJ710 from a community sewage water sample of Manimajra, Chandigarh, in 2015 during an outbreak of cholera. It lysed 46% of multidrug-resistant V. cholerae O1 strains. It had significantly reduced the bacterial density within the first 4-6 h of treatment at the three multiplicity of infection (MOI 0.01, 0.1, and 1.0) values used. No bacterial resistance was observed against phage VMJ710 for 20 h in the time-kill assay. It is nearest to an ICP1 phage, i.e., Vibrio phage ICP1_2012 (MH310936.1), belonging to the class Caudoviricetes. ICP1 phages have been the dominant bacteriophages found in cholera patients' stools since 2001. Comparative genome analysis of phage VMJ710 and related phages indicated a high level of genetic conservation. The phage was stable over a wide range of temperatures and pH, which will be an advantage for applications in different environmental settings. The phage VMJ710 showed a reduction in biofilm mass growth, bacterial dispersal, and a clear disruption of bacterial biofilm structure. We further tested the phage VMJ710 for its potential therapeutic and prophylactic properties using infant BALB/c mice. Bacterial counts were reduced significantly when phages were administered before and after the challenge of orogastric inoculation with V. cholerae serotype O1. A comprehensive whole genome study revealed no indication of lysogenic genes, genes associated with possible virulence factors, or antibiotic resistance. Based on all these properties, phage VMJ710 can be a suitable candidate for oral phage administration and could be a viable method of combatting cholera infection caused by MDR V. cholerae pathogenic strains.
Collapse
Affiliation(s)
- Naveen Chaudhary
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Balvinder Mohan
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Harpreet Kaur
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Vinay Modgil
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Vishal Kant
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Alka Bhatia
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Neelam Taneja
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| |
Collapse
|
9
|
Saha S, Aggarwal S, Singh DV. Attenuation of quorum sensing system and virulence in Vibrio cholerae by phytomolecules. Front Microbiol 2023; 14:1133569. [PMID: 37065125 PMCID: PMC10098448 DOI: 10.3389/fmicb.2023.1133569] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/28/2023] [Indexed: 04/01/2023] Open
Abstract
The Vibrio cholerae, a gram-negative bacterium, is the causative agent of cholera. Quorum sensing is a cell-to-cell communication that leads to gene expression, accumulation of signaling molecules, biofilm formation, and production of virulence factors. The quorum sensing pathway in V. cholerae is regulated by luxO, and biofilm formation and other virulence factors are positively controlled by aphA and negatively by hapR. Hence, targeting the global regulator luxO would be a promising approach to modulate the QS to curtail V. cholerae pathogenesis. The present study investigated the modulating activity of quercetin and naringenin on biofilm formation and quorum-sensing regulated phenotypes in V. cholerae. Then after we determined the anti-quorum sensing capability of phytomolecules against the model organism Chromobacterium violaceum. Also, we performed flow cytometry for live/dead bacteria, MTT assay, CLSM, and growth curve analysis to determine their role as QS modulators rather than anti-bacterial. V. cholerae strains VC287 and N16961 formed thick biofilm. We observed a two-fold reduction in the expression of biofilm-associated genes comprising gbpA, vpsA, rbmA, and mbaA in the presence of phytomolecules indicating that phytomolecules modulate quorum sensing pathway rather than killing the bacteria. These phytomolecules were non-toxic and non-hemolytic and had anti-adhesion and anti-invasion properties. In addition, quercetin and naringenin were found to be highly effective compared to known quorum-sensing inhibitors terrein and furanone C-30. Thus, this study provides evidence that phytomolecules: quercetin and naringenin modulate the quorum-sensing pathway rather than killing the bacteria and can be used as an anti-quorum-sensing molecule for therapy against the pathogen.
Collapse
Affiliation(s)
- Subhasree Saha
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Shifu Aggarwal
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Durg Vijai Singh
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
- Department of Biotechnology, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, India
- *Correspondence: Durg Vijai Singh, ;
| |
Collapse
|
10
|
Nateghizad H, Sajadi R, Shivaee A, Shirazi O, Sharifian M, Tadi DA, Amini K. Resistance of Vibrio cholera to antibiotics that inhibit cell wall synthesis: A systematic review and meta-analysis. Front Pharmacol 2023; 14:1027277. [PMID: 37021056 PMCID: PMC10069679 DOI: 10.3389/fphar.2023.1027277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/10/2023] [Indexed: 04/07/2023] Open
Abstract
Objective: Cholera is a challenging ancient disease caused by Vibrio cholera (V. cholera). Antibiotics that prevent cell wall synthesis are among the first known antibiotic groups. Due to its high consumption, V. cholera has developed resistance to the majority of antibiotics in this class. Resistance to recommended antibiotics for the treatment of V. cholera has also increased. In light of the decrease in consumption of certain antibiotics in this group that inhibit cell wall synthesis and the implementation of new antibiotics, it is necessary to determine the antibiotic resistance pattern of V. cholera and to employ the most effective treatment antibiotic. Method: An comprehensive systematic search for relevant articles was conducted in PubMed, Web of Science, Scopus, and EMBASE through October 2020. Stata version 17.1 utilized the Metaprop package to execute a Freeman-Tukey double arcsine transformation in order to estimate weighted pooled proportions. Results: A total of 131 articles were included in the meta-analysis. Ampicillin was the most investigated antibiotic. The prevalence of antibiotic resistance was in order aztreonam (0%), cefepime (0%), imipenem (0%), meropenem (3%), fosfomycin (4%), ceftazidime (5%), cephalothin (7%), augmentin (8%), cefalexin (8%), ceftriaxone (9%), cefuroxime (9%), cefotaxime (15%), cefixime (37%), amoxicillin (42%), penicillin (44%), ampicillin (48%), cefoxitin (50%), cefamandole (56%), polymyxin-B (77%), carbenicillin (95%) respectively. Discussion: Aztreonam, cefepime, and imipenem are the most efficient V. cholera cell wall synthesis inhibitors. There has been an increase in resistance to antibiotics such as cephalothin, ceftriaxone, amoxicillin, and meropenem. Over the years, resistance to penicillin, ceftazidime, and cefotaxime, has decreased.
Collapse
Affiliation(s)
- Hossein Nateghizad
- Department of Biology, Faculty of Basic Sciences, East of Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Rojina Sajadi
- Department of Biology, Faculty of Basic Sciences, East of Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ali Shivaee
- Department of Microbiology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Shirazi
- Department of Veterinary medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohadeseh Sharifian
- Department of Veterinary medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Danyal Abbasi Tadi
- Department Of Veterinary, Azad University Of Shahr-E Kord, Shahrekord, Iran
| | - Kumarss Amini
- Department of Microbiology, Saveh Branch, Islamic Azad University, Saveh, Iran
- *Correspondence: Kumarss Amini,
| |
Collapse
|
11
|
Al-Farsi F, Al-Siyabi T, Al-Adawi B, Al-Tai A. Favourable outcomes of non-O1, non-O139 Vibrio cholerae bacteraemia in vulnerable populations: a case series. IJID REGIONS 2022; 3:76-78. [PMID: 35755472 PMCID: PMC9216316 DOI: 10.1016/j.ijregi.2022.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/21/2022] [Accepted: 03/08/2022] [Indexed: 11/28/2022]
Abstract
Background Non-O1, non-O139 Vibrio cholerae (NOVC) bacteraemia is an uncommon infection and could be associated with life-threatening conditions in susceptible hosts. Definitive management guidelines are lacking. Aim To describe the clinical spectrum, treatment practices and outcome of NOVC bacteraemia. Methods Eight patients with NOVC bacteraemia admitted to two large tertiary care hospitals in Oman were identified over a 10-year period (2010-2020). Data were extracted retrospectively from the hospital patient data management. Results Six (75.0%) patients were male, and the median age of patients was 67.5 years. The majority of cases (87.5%) were not associated with travel and no clear sources were identified. All patients had predisposing factors including diabetes mellitus, chronic liver disease or malignancies. Gastrointestinal symptoms were the predominant manifestations in 75.0% of cases, but diarrhoea was only reported in one patient. Conclusions Early presentation (median interval from symptom onset to presentation 1.5 days), appropriate management and highly susceptible isolates may have contributed to the favourable outcome, as there were no cases of death or severe course of infection. All patients were discharged home after a median of 9 days of hospitalization.
Collapse
Affiliation(s)
- Fatma Al-Farsi
- Medical Microbiology Residency Programme, Oman Medical Specialty Board, Muscat, Oman
| | - Turkiya Al-Siyabi
- Department of Microbiology and Immunology, Sultan Qaboos University Hospital, Muscat, Oman
| | - Badriya Al-Adawi
- Department of Microbiology and Immunology, Sultan Qaboos University Hospital, Muscat, Oman
| | - Amal Al-Tai
- Department of Microbiology, The Royal Hospital, Muscat, Oman
| |
Collapse
|
12
|
Guchhait KC, Manna T, Barai M, Karmakar M, Nandi SK, Jana D, Dey A, Panda S, Raul P, Patra A, Bhattacharya R, Chatterjee S, Panda AK, Ghosh C. Antibiofilm and anticancer activities of unripe and ripe Azadirachta indica (neem) seed extracts. BMC Complement Med Ther 2022; 22:42. [PMID: 35152903 PMCID: PMC8843028 DOI: 10.1186/s12906-022-03513-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 01/07/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Antibiotic resistances of pathogens and breast cancer warrant the search for new alternative strategies. Phytoextracts can eradicate microbe-borne diseases as well as cancer with lower side effects compared to conventional antibiotics. AIM Unripe and ripe Azadirachta indica (neem) seed extracts were explored as potential antibiofilm and anticancer agents in combating multidrug-resistant infectious bacteria as well as anticancer agents against the MDR breast cancer cell lines. METHODS Shed-dried neem seeds (both unripe and ripe) were pulverized and extracted using methanol. The chemical components were identified with FTIR and gas chromatography - mass spectrometry. Antibiofilm activity of neem seed extracts were assessed in terms of minimum biofilm inhibitory concentration (MBIC), minimum biofilm eradication concentration (MBEC), and fluorescence microscopic studies on Staphylococcus aureus and Vibrio cholerae. Bacterial cells were studied by fluorescence microscopy using acridine orange/ethidium bromide as the staining agents. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values were evaluated to observe the antibacterial activities. Cytotoxicity of the extracts against human blood lymphocytes and the anticancer activity against drug-resistant breast cancer cell lines were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and fluorescence-activated cell sorting (FACS) studies. RESULTS 4-Ethyl-2-hydroxy-2-cyclopentene-1-one, phthalic acid, and 2-hexyl-tetrahydro thiophane were the major compounds in unripe neem seed, whereas 3,5-dihydroxy-6-methyl-2,3-dihydro-4-H-pyran-4-one and 4-ethylbenzamide were predominant in ripe neem seed. Triazine derivatives were also common for both the extracts. MBIC values of unripe and ripe neem seed extracts for S. aureus are 75 and 100 µg/mL, respectively, and for V. cholerae, they are 100 and 300 µg/mL, respectively. MBEC values of unripe and ripe seed extracts are 500 and 300 µg/mL, respectively for S. aureus and for V. cholerae the values are 700 and 500 µg/mL, respectively. Fluorescence microscopic studies at 16 and 24 h, after bacterial culture, demonstrate enhanced antibiofilm activity for the ripe seed extract than that of the unripe seeds for both the bacteria. MTT assay reveals lower cytotoxicity of both the extracts towards normal blood lymphocytes, and anticancer activity against breast cancer cell line (MDA-MB-231) with superior activity of ripe seed extract. FACS studies further supported higher anticancer activity for ripe seed extract. CONCLUSIONS Methanolic extract of neem seeds could substantially inhibit and eradicate biofilm along with their potent antibacterial and anticancer activities. Both the extracts showed higher antibiofilm and antibacterial activity against S. aureus (gram-positive) than V. cholerae (gram-negative). Moreover, ripe seed extract showed higher antibiofilm and anticancer activity than unripe extracts.
Collapse
Affiliation(s)
- Kartik Chandra Guchhait
- Department of Human Physiology, Vidyasagar University, Midnapore, 721102, West Bengal, India
| | - Tuhin Manna
- Department of Human Physiology, Vidyasagar University, Midnapore, 721102, West Bengal, India
| | - Manas Barai
- Department of Chemistry, Vidyasagar University, Midnapore, 721102, West Bengal, India
| | - Monalisha Karmakar
- Department of Human Physiology, Vidyasagar University, Midnapore, 721102, West Bengal, India
| | - Sourav Kumar Nandi
- Department of Molecular Biology, Netaji Subhas Chandra Bose Cancer Research Institute, 3081 Nayabad, Kolkata, 700094, West Bengal, India
| | - Debarati Jana
- Department of Human Physiology, Vidyasagar University, Midnapore, 721102, West Bengal, India
| | - Aditi Dey
- Department of Human Physiology, Vidyasagar University, Midnapore, 721102, West Bengal, India
| | - Suman Panda
- Department of Biophysics, Bose Institute, P-1/12 CIT Road, Scheme VIIM, Kankurgachi, Kolkata, 700054, West Bengal, India
| | - Priyanka Raul
- Department of Human Physiology, Vidyasagar University, Midnapore, 721102, West Bengal, India
| | - Anuttam Patra
- Chemistry of Interfaces Group, Luleå University of Technology, SE- 97187, Luleå, Sweden
| | - Rittwika Bhattacharya
- Department of Molecular Biology, Netaji Subhas Chandra Bose Cancer Research Institute, 3081 Nayabad, Kolkata, 700094, West Bengal, India
| | - Subhrangsu Chatterjee
- Department of Biophysics, Bose Institute, P-1/12 CIT Road, Scheme VIIM, Kankurgachi, Kolkata, 700054, West Bengal, India
| | - Amiya Kumar Panda
- Department of Chemistry, Vidyasagar University, Midnapore, 721102, West Bengal, India
- Sadhu Ram Chand Murmu University of Jhargram, Jhargram, 721507, West Bengal, India
| | - Chandradipa Ghosh
- Department of Human Physiology, Vidyasagar University, Midnapore, 721102, West Bengal, India.
| |
Collapse
|
13
|
Antimicrobial Drug-resistance Profile of Vibrio Parahaemolyticus isolated from Japanese Horse Mackerel ( Trachurus Japonicus). Food Saf (Tokyo) 2021; 9:75-80. [PMID: 34631335 PMCID: PMC8472095 DOI: 10.14252/foodsafetyfscj.d-21-00001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/17/2021] [Indexed: 01/22/2023] Open
Abstract
This study aimed at investigating antimicrobial resistance (AMR) profile of Vibrio parahaemolyticus (V. parahaemolyticus). The bacteria were isolated from wild-caught and farmed Japanese horse mackerel (Trachurus japonicus), and examined for the antimicrobial drug resistance. Furthermore, the serotype, and the genes of thermostable direct hemolysin (tdh) and cholera toxin transcriptional activator (toxR) of the isolates were investigated by using a serotype testing kit and PCR method. Eighty-eight and 126 V. parahaemolyticus strains were isolated from wild-caught and farmed Japanese horse mackerel, respectively. Ten and 18 distinct serotypes were detected from wild-caught and farmed Japanese horse mackerel. All strains were negative for tdh genes but positive for toxR genes. Resistances to ampicillin (ABP) and to both ABP and fosfomycin (FOM) were observed in 54 and 23 strains from the wild-caught fish, while those resistant strains from farm fish were 112 and 7 strains. Multidrug-resistance to three or four drugs including ABP was observed in one or two strains from the wild-caught fish. These results strongly suggest that the environmental exposure of antimicrobial drugs results in the spread of resistant genes in Japanese horse mackerel. This study highlights the need for monitoring the spread of resistance genes to the human intestinal flora as well as to other bacteria in the environment.
Collapse
|
14
|
Ahmadi MH. Global status of tetracycline resistance among clinical isolates of Vibrio cholerae: a systematic review and meta-analysis. Antimicrob Resist Infect Control 2021; 10:115. [PMID: 34362438 PMCID: PMC8343947 DOI: 10.1186/s13756-021-00985-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND There has been an increasing resistance rate to tetracyclines, the first line treatment for cholera disease caused by V. cholera strains, worldwide. The aim of the present study was to determine the global status of resistance to this class of antibiotic among V. cholera isolates. METHODS For the study, electronic databases were searched using the appropriate keywords including: 'Vibrio', 'cholera', 'Vibrio cholerae', 'V. cholerae', 'resistance', 'antibiotic resistance', 'antibiotic susceptibility', 'antimicrobial resistance', 'antimicrobial susceptibility', 'tetracycline', and 'doxycycline'. Finally, after some exclusion, 52 studies from different countries were selected and included in the study and meta-analysis was performed on the collected data. RESULTS The average resistance rate for serogroup O1 to tetracycline and doxycycline was 50% and 28%, respectively (95% CI). A high level of heterogeneity (I2 > 50%, p-value < 0.05) was observed in the studies representing resistance to tetracycline and doxycycline in O1 and non-O1, non-O139 serogroups. The Begg's tests did not indicate the publication bias (p-value > 0.05). However, the Egger's tests showed some evidence of publication bias in the studies conducted on serogroup O1. CONCLUSIONS The results of the present study show that the overall resistance to tetracyclines is relatively high and prevalent among V. cholerae isolates, throughout the world. This highlights the necessity of performing standard antimicrobial susceptibility testing prior to treatment choice along with monitoring and management of antibiotic resistance patterns of V. cholerae strains in order to reduce the emergence and propagation of antibiotic resistant strains as well as the failure of treatment.
Collapse
|
15
|
Fu H, Yu P, Liang W, Kan B, Peng X, Chen L. Virulence, Resistance, and Genomic Fingerprint Traits of Vibrio cholerae Isolated from 12 Species of Aquatic Products in Shanghai, China. Microb Drug Resist 2020; 26:1526-1539. [PMID: 33156741 PMCID: PMC7757592 DOI: 10.1089/mdr.2020.0269] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Vibrio cholerae is a waterborne bacterium and can cause epidemic cholera disease worldwide. Continuous monitoring of V. cholerae contamination in aquatic products is imperative for assuring food safety. In this study, we determined virulence, antimicrobial susceptibility, heavy metal tolerance, and genomic fingerprints of 370 V. cholerae isolates recovered from 12 species of commonly consumed aquatic products collected from July to September of 2018 in Shanghai, China. Among the species, Leiocassis longirostris, Ictalurus punetaus, Ophiocephalus argus Cantor, and Pelteobagrus fulvidraco were for the first time detected for V. cholerae. Toxin genes ctxAB, tcpA, ace, and zot were absent from all the V. cholerae isolates. However, high occurrence of virulence-associated genes was detected, such as hapA (82.7%), hlyA (81.4%), rtxCABD (81.4%, 24.3%, 80.3%, and 80.8%, respectively), and tlh (80.5%). Approximately 62.2% of the 370 V. cholerae isolates exhibited resistance to streptomycin, followed by ampicillin (60.3%), rifampicin (53.8%), trimethoprim (38.4%), and sulfamethoxazole-trimethoprim (37.0%). Moreover, ∼57.6% of the isolates showed multidrug resistant phenotypes with 57 resistance profiles, which was significantly different among the 12 species (multiple antimicrobial resistance index, p < 0.001). Meanwhile, high incidence of tolerance to heavy metals Hg2+ (69.5%), Ni2+ (32.4%), and Cd2+ (30.8%) was observed among the isolates. The enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR)-based fingerprinting profiles classified the 370 V. cholerae isolates into 239 different ERIC-genotypes, which demonstrated diverse genomic variation among the isolates. Overall, the results in this study meet the increasing need of food safety risk assessment of aquatic products.
Collapse
Affiliation(s)
- Huiyu Fu
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, Shanghai, People's Republic of China
| | - Pan Yu
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, Shanghai, People's Republic of China
| | - Weili Liang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Biao Kan
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Xu Peng
- Archaea Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Lanming Chen
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, Shanghai, People's Republic of China
| |
Collapse
|
16
|
Dutta K, Karmakar A, Jana D, Ballav S, Shityakov S, Panda AK, Ghosh C. Benzyl isocyanate isolated from the leaves of Psidium guajava inhibits Staphylococcus aureus biofilm formation. BIOFOULING 2020; 36:1000-1017. [PMID: 33172298 DOI: 10.1080/08927014.2020.1842877] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 09/03/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
Benzyl isocyanate (BIC), from methanol extract of Psidium guajava leaves, exhibited substantial anti-biofilm activities against Staphylococcus aureus, the common bacterial pathogen in nosocomial infections. Major components of the extract included eugenol, BIC, phenyl-2-methoxy-4-(1-propenyl)-acetate and 2,5-pyrrolidinedione,1-penta-3-4-dienyl, analyzed by GC-MS and HPLC studies. BIC exhibited substantial anti-biofilm activitiy against S. aureus, established by assaying biofilm formation, biofilm metabolic activity, bacterial adherence to hydrocarbons, exopolysaccharide formation, and optical and scanning electron microscopic studies. BIC significantly downregulated the important biofilm markers of S. aureus, viz., icaAD, sarA and agr, observed by quantitative real time polymerase chain reaction analysis. Molecular docking studies revealed thermodynamically favorable interaction of BIC with IcaA, SarA and Agr, having Gibbs energy values of -8.45, -9.09 and -10.29 kcal mol-1, respectively. BIC after binding to IcaR, the repressor of IcaA, influences its binding to target DNA site (Eshape, -157.27 kcal mol-1). The results are considered to demonstrate anti-biofilm potential of BIC against bacterial infections.
Collapse
Affiliation(s)
- Kunal Dutta
- Department of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India
| | - Amit Karmakar
- Department of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India
| | - Debarati Jana
- Department of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India
| | - Saroj Ballav
- Department of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India
| | - Sergey Shityakov
- Department of Anaesthesia and Critical Care, University of Würzburg, Würzburg, Germany
| | - Amiya Kumar Panda
- Department of Chemistry, Vidyasagar University, Midnapore, West Bengal, India
| | - Chandradipa Ghosh
- Department of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India
| |
Collapse
|
17
|
Tangestani MG, Alinezhad J, Khajeian A, Gharibi S, Haghighi MA. Identification of cholix toxin gene in Vibrio cholerae non-O1/non-O139 isolated from diarrhea patients in Bushehr, Iran. IRANIAN JOURNAL OF MICROBIOLOGY 2020; 12:273-280. [PMID: 32994897 PMCID: PMC7502140 DOI: 10.18502/ijm.v12i4.3929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background and Objectives: Cholixin (cholix toxin) is a novel exotoxin in Vibrio cholerae identified as an elongation factor II specific ADP-ribosyltransferase which inhibits protein synthesis in the eukaryotic cell. Previous researches have suggested that cholixin probably is an important virulence factor in non-O1/non-O139 V. cholerae (NAG) serotypes that could be related to extra-intestinal rather than intestinal infections. This study was aimed to investigate the frequency and genetic diversity of colixin gene (chxA) in clinical V. cholerae NAG isolates. Materials and Methods: The presence of chxA gene in 44 clinical V. cholerae NAG isolates were screened using PCR through specific primers designed for the receptor-binding domain (RBD) of chxA gene. The five PCR products of chxA gene were sequenced. Results: This study showed that chxA gene presented in 19 V. cholerae NAG isolates. The sequences analysis of 5 out of 19 the partial chxA genes amplicon showed that 4 of them belonged to chxA I and the other one belonged to chxA II subtypes. Two distinct clusters were revealed for these isolates by phylogenic analysis, too. Conclusion: The chxA gene contained high frequency among V. cholerae NAG isolates in Bushehr, Iran. The polymorphism study on RBD of cholixin gene is suggested as an appropriate method for phylogenic characterization of the various chxA gene subtypes.
Collapse
Affiliation(s)
- Marziyeh Gholizadeh Tangestani
- Department of Microbiology and Parasitology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran.,The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Jafar Alinezhad
- Department of Microbiology and Parasitology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran.,The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Abdolmohammad Khajeian
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Somayyeh Gharibi
- Department of Microbiology, School of Sciences, Kherad Institute of Higher Education, Bushehr, Iran
| | - Mohammad Ali Haghighi
- Department of Microbiology and Parasitology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran.,The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
18
|
Vezzulli L, Baker-Austin C, Kirschner A, Pruzzo C, Martinez-Urtaza J. Global emergence of environmental non-O1/O139 Vibrio cholerae infections linked with climate change: a neglected research field? Environ Microbiol 2020; 22:4342-4355. [PMID: 32337781 DOI: 10.1111/1462-2920.15040] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 04/22/2020] [Indexed: 12/20/2022]
Abstract
The bacterium Vibrio cholerae is a natural inhabitant of aquatic ecosystems across the planet. V. cholerae serogroups O1 and O139 are responsible for cholera outbreaks in developing countries accounting for 3-5 million infections worldwide and 28.800-130.000 deaths per year according to the World Health Organization. In contrast, V. cholerae serogroups other than O1 and O139, also designated as V. cholerae non-O1/O139 (NOVC), are not associated with epidemic cholera but can cause other illnesses that may range in severity from mild (e.g. gastroenteritis, otitis, etc.) to life-threatening (e.g. necrotizing fasciitis). Although generally neglected, NOVC-related infections are on the rise and represent one of the most striking examples of emerging human diseases linked to climate change. NOVC strains are also believed to potentially contribute to the emergence of new pathogenic strains including strains with epidemic potential as a direct consequence of genetic exchange mechanisms such as horizontal gene transfer and genetic recombination. Besides general features concerning the biology and ecology of NOVC strains and their associated diseases, this review aims to highlight the most relevant aspects related to the emergence and potential threat posed by NOVC strains under a rapidly changing environmental and climatic scenario.
Collapse
Affiliation(s)
- Luigi Vezzulli
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - Craig Baker-Austin
- Centre for Environment, Fisheries and Aquaculture Science, CEFAS, Weymouth, UK
| | - Alexander Kirschner
- Institute for Hygiene and Applied Immunology - Water Microbiology, Medical University of Vienna, Vienna, Austria.,Division Water Quality and Health, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Carla Pruzzo
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - Jaime Martinez-Urtaza
- Centre for Environment, Fisheries and Aquaculture Science, CEFAS, Weymouth, UK.,Department of Genetics and Microbiology, Facultat de Biociéncies, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|