1
|
Romano IG, Johnson-Weaver B, Core SB, Jamus AN, Brackeen M, Blough B, Dey S, Huang Y, Staats H, Wetsel WC, Chackerian B, Frietze KM. Two doses of Qβ virus like particle vaccines elicit protective antibodies against heroin and fentanyl. NPJ Vaccines 2025; 10:57. [PMID: 40148356 PMCID: PMC11950649 DOI: 10.1038/s41541-025-01105-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
Opioid overdoses and opioid use disorder (OUD) are major public health concerns. Current treatment approaches for OUD have failed to slow the growth of the opioid crisis. Opioid vaccines have shown pre-clinical success in targeting multiple different opioid drugs. However, the need for many immunizations can limit their clinical implementation. In this study, we investigate the development of novel opioid vaccines by independently targeting fentanyl and the active metabolites of heroin using a bacteriophage virus-like particle (VLP) vaccine platform. We establish the successful conjugation of haptens to bacteriophage Qβ VLPs and demonstrate immunogenicity of Qβ-fentanyl, Qβ-morphine, and Qβ-6-acetylmorphine in animal models after one or two immunizations. We show that these vaccines elicit high-titer, high-avidity, and durable antibody responses. Moreover, we reveal their protective capacities against heroin or fentanyl challenge after two immunizations. Overall, these findings establish Qβ-VLP conjugated vaccines for heroin and fentanyl as promising opioid vaccine candidates.
Collapse
Affiliation(s)
- Isabella G Romano
- Department of Molecular Genetics and Microbiology, School of Medicine, University of New Mexico, Albuquerque, NM, USA
| | | | - Susan B Core
- Department of Molecular Genetics and Microbiology, School of Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Andzoa N Jamus
- Department of Molecular Genetics and Microbiology, School of Medicine, University of New Mexico, Albuquerque, NM, USA
| | | | - Bruce Blough
- RTI International, Research Triangle Park, NC, USA
| | | | | | - Herman Staats
- Department of Pathology, School of Medicine, Duke University, Durham, NC, USA
| | - William C Wetsel
- Departments of Neurobiology, Cell Biology, and Psychiatry and Behavioral Sciences, Mouse Behavioral and Neuroendocrine Analysis Core Facility, School of Medicine, Duke University, Durham, NC, USA
| | - Bryce Chackerian
- Department of Molecular Genetics and Microbiology, School of Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Kathryn M Frietze
- Department of Molecular Genetics and Microbiology, School of Medicine, University of New Mexico, Albuquerque, NM, USA.
| |
Collapse
|
2
|
Romano IG, Johnson-Weaver B, Core SB, Jamus AN, Brackeen M, Blough B, Dey S, Huang Y, Staats H, Wetsel WC, Chackerian B, Frietze KM. A two-dose regimen of Qβ virus-like particle-based vaccines elicit protective antibodies against heroin and fentanyl. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.608988. [PMID: 39257808 PMCID: PMC11383672 DOI: 10.1101/2024.08.28.608988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Opioid overdoses and the growing rate of opioid use disorder (OUD) are major public health concerns, particularly in the United States. Current treatment approaches for OUD have failed to slow the growth of the opioid crisis. Opioid vaccines have shown pre-clinical success in targeting multiple different opioid drugs. However, the need for many immunizations can limit their clinical implementation. In this study, we investigate the development of novel opioid vaccines by independently targeting fentanyl and the active metabolites of heroin using a bacteriophage virus-like particle (VLP) vaccine platform. We establish the successful conjugation of haptens to bacteriophage Qβ VLPs and demonstrate immunogenicity of Qβ-fentanyl, Qβ-morphine, and Qβ-6-acetylmorphine in animal models after one or two immunizations. We show that in independently or in combination, these vaccines elicit high-titer, high-avidity, and durable antibody responses. Moreover, we reveal their protective capacities against heroin or fentanyl challenge after two immunizations. Overall, these findings establish Qβ-VLP conjugated vaccines for heroin and fentanyl as very promising opioid vaccine candidates.
Collapse
|
3
|
Siddoway AC, White BM, Narasimhan B, Mallapragada SK. Synthesis and Optimization of Next-Generation Low-Molecular-Weight Pentablock Copolymer Nanoadjuvants. Vaccines (Basel) 2023; 11:1572. [PMID: 37896975 PMCID: PMC10611236 DOI: 10.3390/vaccines11101572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/27/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Polymeric nanomaterials such as Pluronic®-based pentablock copolymers offer important advantages over traditional vaccine adjuvants and have been increasingly investigated in an effort to develop more efficacious vaccines. Previous work with Pluronic® F127-based pentablock copolymers, functionalized with poly(diethyl aminoethyl methacrylate) (PDEAEM) blocks, demonstrated adjuvant capabilities through the antigen presentation and crosslinking of B cell receptors. In this work, we describe the synthesis and optimization of a new family of low-molecular-weight Pluronic®-based pentablock copolymer nanoadjuvants with high biocompatibility and improved adjuvanticity at low doses. We synthesized low-molecular-weight Pluronic® P123-based pentablock copolymers with PDEAEM blocks and investigated the relationship between polymer concentration, micellar size, and zeta potential, and measured the release kinetics of a model antigen, ovalbumin, from these nanomaterials. The Pluronic® P123-based pentablock copolymer nanoadjuvants showed higher biocompatibility than the first-generation Pluronic® F127-based pentablock copolymer nanoadjuvants. We assessed the adjuvant capabilities of the ovalbumin-containing Pluronic® P123-based pentablock copolymer-based nanovaccines in mice, and showed that animals immunized with these nanovaccines elicited high antibody titers, even when used at significantly reduced doses compared to Pluronic® F127-based pentablock copolymers. Collectively, these studies demonstrate the synthesis, self-assembly, biocompatibility, and adjuvant properties of a new family of low-molecular-weight Pluronic® P123-based pentablock copolymer nanomaterials, with the added benefits of more efficient renal clearance, high biocompatibility, and enhanced adjuvanticity at low polymer concentrations.
Collapse
Affiliation(s)
- Alaric C. Siddoway
- Department of Chemical & Biological Engineering, Iowa State University, Ames, IA 50011, USA; (A.C.S.); (B.M.W.); (B.N.)
| | - Brianna M. White
- Department of Chemical & Biological Engineering, Iowa State University, Ames, IA 50011, USA; (A.C.S.); (B.M.W.); (B.N.)
| | - Balaji Narasimhan
- Department of Chemical & Biological Engineering, Iowa State University, Ames, IA 50011, USA; (A.C.S.); (B.M.W.); (B.N.)
- Nanovaccine Institute, Ames, IA 50011, USA
| | - Surya K. Mallapragada
- Department of Chemical & Biological Engineering, Iowa State University, Ames, IA 50011, USA; (A.C.S.); (B.M.W.); (B.N.)
- Nanovaccine Institute, Ames, IA 50011, USA
| |
Collapse
|
4
|
Shiohara M, Suzuki S, Shichinohe S, Ishigaki H, Nakayama M, Nomura N, Shingai M, Sekiya T, Ohno M, Iida S, Kawai N, Kawahara M, Yamagishi J, Ito K, Mitsumata R, Ikeda T, Motokawa K, Sobue T, Kida H, Ogasawara K, Itoh Y. Inactivated whole influenza virus particle vaccines induce neutralizing antibodies with an increase in immunoglobulin gene subclones of B-lymphocytes in cynomolgus macaques. Vaccine 2022; 40:4026-4037. [PMID: 35641357 DOI: 10.1016/j.vaccine.2022.05.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/03/2022] [Accepted: 05/17/2022] [Indexed: 10/18/2022]
Abstract
The All-Japan Influenza Vaccine Study Group has been developing a more effective vaccine than the current split vaccines for seasonal influenza virus infection. In the present study, the efficacy of formalin- and/or β-propiolactone-inactivated whole virus particle vaccines for seasonal influenza was compared to that of the current ether-treated split vaccines in a nonhuman primate model. The monovalent whole virus particle vaccines or split vaccines of influenza A virus (H1N1) and influenza B virus (Victoria lineage) were injected subcutaneously into naïve cynomolgus macaques twice. The whole virus particle vaccines induced higher titers of neutralizing antibodies against H1N1 influenza A virus and influenza B virus in the plasma of macaques than did the split vaccines. At challenge with H1N1 influenza A virus or influenza B virus, the virus titers in nasal swabs and the increases in body temperatures were lower in the macaques immunized with the whole virus particle vaccine than in those immunized with the split vaccine. Repertoire analyses of immunoglobulin heavy chain genes demonstrated that the number of B-lymphocyte subclones was increased in macaques after the 1st vaccination with the whole virus particle vaccine, but not with the split vaccine, indicating that the whole virus particle vaccine induced the activation of vaccine antigen-specific B-lymphocytes more vigorously than did the split vaccine at priming. Thus, the present findings suggest that the superior antibody induction ability of the whole virus particle vaccine as compared to the split vaccine is attributable to its stimulatory properties on the subclonal differentiation of antigen-specific B-lymphocytes.
Collapse
Affiliation(s)
- Masanori Shiohara
- Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Saori Suzuki
- Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Shintaro Shichinohe
- Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Hirohito Ishigaki
- Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Misako Nakayama
- Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Naoki Nomura
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Masashi Shingai
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Toshiki Sekiya
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Marumi Ohno
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Sayaka Iida
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Naoko Kawai
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Mamiko Kawahara
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Junya Yamagishi
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Kimihito Ito
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | | | | | - Kenji Motokawa
- Business Planning & Management Department, Daiichi Sankyo Biotech Co. Ltd., Saitama, Japan
| | - Tomoyoshi Sobue
- Group III, Modality Research Laboratories, Daiichi Sankyo Co. Ltd., Tokyo, Japan
| | - Hiroshi Kida
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan; Collaborating Research Center for the Control of Infectious Diseases, Nagasaki University, Nagasaki, Japan
| | - Kazumasa Ogasawara
- Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Japan; International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yasushi Itoh
- Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Japan.
| |
Collapse
|
5
|
The potential of neuraminidase as an antigen for nasal vaccines to increase cross-protection against influenza viruses. J Virol 2021; 95:e0118021. [PMID: 34379511 DOI: 10.1128/jvi.01180-21] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite the availability of vaccines that efficiently reduce the severity of clinical symptoms, influenza viruses still cause substantial morbidity and mortality worldwide. In this regard, nasal influenza vaccines-because they induce virus-specific IgA-may be more effective than traditional parenteral formulations in preventing infection of the upper respiratory tract. In addition, the neuraminidase (NA) of influenza virus has shown promise as a vaccine antigen to confer broad cross-protection, in contrast to hemagglutinin (HA), the target of most current vaccines, which undergoes frequent antigenic changes leading to vaccine ineffectiveness against mismatched heterologous strains. However, the usefulness of NA as an antigen for nasal vaccines is unclear. Here, we compared NA and HA as antigens for nasal vaccines in mice. Intranasal immunization with recombinant NA (rNA) plus adjuvant protected mice against not only homologous but also heterologous virus challenge in the upper respiratory tract, whereas intranasal immunization with rHA failed to protect against heterologous challenge. In addition, intranasal immunization with rNA, but not rHA, conferred cross-protection even in the absence of adjuvant in virus infection-experienced mice; this strong cross-protection was due to the broader binding capacity of NA-specific antibodies to heterologous virus. Furthermore, the NA-specific IgA in the upper respiratory tract that was induced through rNA intranasal immunization recognized more epitopes than did the NA-specific IgG and IgA in plasma, again increasing cross-protection. Together, our findings suggest the potential of NA as an antigen for nasal vaccines to provide broad cross-protection against both homologous and heterologous influenza viruses. IMPORTANCE Because mismatch between vaccine strains and epidemic strains cannot always be avoided, the development of influenza vaccines that induce broad cross-protection against antigenically mismatched heterologous strains is needed. Although the importance of NA-specific antibodies to cross-protection in humans and experimental animals is becoming clear, the potential of NA as an antigen for providing cross-protection through nasal vaccines is unknown. We show here that intranasal immunization with NA confers broad cross-protection in the upper respiratory tract, where virus transmission is initiated, by inducing NA-specific IgA that recognizes a wide range of epitopes. These data shed new light on NA-based nasal vaccines as powerful anti-influenza tools that confer broad cross-protection.
Collapse
|
6
|
Shibuya M, Tamiya S, Kawai A, Yoshioka Y. Nasal-subcutaneous prime-boost regimen for inactivated whole-virus influenza vaccine efficiently protects mice against both upper and lower respiratory tract infections. Biochem Biophys Res Commun 2021; 554:166-172. [PMID: 33798943 DOI: 10.1016/j.bbrc.2021.03.099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/18/2021] [Indexed: 10/21/2022]
Abstract
Although influenza vaccines are effective for reducing viral transmission and the severity of clinical symptoms, influenza viruses still induce considerable morbidity and mortality worldwide. Seasonal influenza viruses infect the upper respiratory tract initially but then often induce severe pulmonary complications in the lower respiratory tract. Therefore, influenza vaccines that prevent viral infection at both the upper and lower respiratory tracts are highly anticipated. Here, we examined whether using different vaccination routes for priming and boosting achieved protection in both regions of the respiratory tract. To this end, we used inactivated whole-virion influenza vaccines to immunize mice either subcutaneously or intranasally for both priming and boosting. Regardless of the route used for boosting, the levels of virus-specific IgG in plasma were higher in mice primed subcutaneously than those in control mice, which received PBS only. In addition, intranasal priming followed by subcutaneous boosting induced higher levels of virus-specific IgG in plasma than those in control mice. The levels of virus-specific nasal IgA were higher in mice that were primed intranasally than in control mice or in mice primed subcutaneously. Furthermore, intranasal priming but not subcutaneous priming provided protection against viral challenge in the upper respiratory tract. In addition, when coupled with subcutaneous boosting, both subcutaneous and intranasal priming protected against viral challenge in the lower respiratory tract. These results indicate that intranasal priming followed by subcutaneous boosting induces both virus-specific IgG in plasma and IgA in nasal washes and protects against virus challenge in both the upper and lower respiratory tracts. Our results will help to develop novel vaccines against influenza viruses and other respiratory viruses.
Collapse
Affiliation(s)
- Meito Shibuya
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shigeyuki Tamiya
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Atsushi Kawai
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yasuo Yoshioka
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan; The Research Foundation for Microbial Diseases of Osaka University (BIKEN), 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan; Global Center for Medical Engineering and Informatics, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|