1
|
Guo Y, Wang R, Lv C, Xu C, Shen G, Wang G, Zhang W, Wang Q, Zhao Y. Jak/Stat-regulated Esftz-f1 negatively regulates the antibacterial immunity of Eriocheir sinensis against Vibrio parahaemolyticus. FISH & SHELLFISH IMMUNOLOGY 2025; 162:110366. [PMID: 40273962 DOI: 10.1016/j.fsi.2025.110366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 04/18/2025] [Accepted: 04/22/2025] [Indexed: 04/26/2025]
Abstract
With the growing global demand for premium aquatic products, the expanding international market presence of Eriocheir sinensis has led to a continuous appreciation of its economic value. However, E. sinensis is threatened by various diseases during its breeding, among which bacterial diseases seriously affect its immune function and impede its growth. Ftz-f1, an orphan nuclear receptor, plays a vital role in the embryonic development, molting process, gonadal development, and immune regulation of invertebrates. This study aims to identify the ftz-f1 homolog, called Esftz-f1, in E. sinensis. The Esftz-f1 ORF spans 1770 bp, encoding a 589-amino acid protein that shares 87.84 % sequence similarity with the Litopenaeus vannamei homolog and this protein contains two conserved functional domains. It is widely expressed in the multiple tissues of E. sinensis, with particularly high expression in the hepatopancreas. Subcellular localization analysis revealed nuclear localization of EsFtz-f1. The expression level of Esftz-f1 changes significantly upon stimulation by V. parahaemolyticus. When Jak and Stat are silenced or inhibited, the expression levels of Esftz-f1 are significantly downregulated. After Esftz-f1 is silenced, the expression levels of antimicrobial peptides, the phagocytic ability of hemocytes, bacterial clearance rate and the survival rate of crabs are significantly upregulated, suggesting that EsFtz-f1 plays a negative regulatory role in the resistance of E. sinensis to V. parahaemolyticus infection. We believe our study will help broaden the research scope of orphan nuclear receptors. It may also provide useful insights that aid further study of the immune mechanism of E. sinensis and provided references for the prevention of diseases during its breeding.
Collapse
Affiliation(s)
- Yanan Guo
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Rongping Wang
- School of Aquatic and Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Chengyu Lv
- School of Aquatic and Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Chaohui Xu
- School of Aquatic and Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Guoqing Shen
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Guangyu Wang
- School of Aquatic and Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Wen Zhang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Qun Wang
- School of Aquatic and Life Sciences, Shanghai Ocean University, Shanghai, China.
| | - Yunlong Zhao
- School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
2
|
Muzembo BA, Kitahara K, Ohno A, Khatiwada J, Dutta S, Miyoshi SI. Vibriosis in South Asia: A systematic review and meta-analysis. Int J Infect Dis 2024; 141:106955. [PMID: 38311027 DOI: 10.1016/j.ijid.2024.01.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/04/2024] [Accepted: 01/29/2024] [Indexed: 02/06/2024] Open
Abstract
OBJECTIVES South Asia remains home to foodborne diseases caused by the Vibrio species. We aimed to compile and update information on the epidemiology of vibriosis in South Asia. METHODS For this systematic review and meta-analysis, we searched PubMed, Web of Science, EMBASE, and Google Scholar for studies related to vibriosis in South Asia published up to May 2023. A random-effects meta-analysis was used to estimate the pooled isolation rate of non-cholera-causing Vibrio species. RESULTS In total, 38 studies were included. Seven of these were case reports and 22 were included in the meta-analysis. The reported vibriosis cases were caused by non-O1/non-O139 V. cholerae, V. parahaemolyticus, V. fluvialis, and V. vulnificus. The overall pooled isolation rate was 4.0% (95% confidence interval [CI] 3.0-5.0%) in patients with diarrhea. Heterogeneity was high (I2 = 98.0%). The isolation rate of non-O1/non-O139 V. cholerae, V. parahaemolyticus, and V. fluvialis were 9.0 (95% CI 7.0-10.0%), 1.0 (95% CI 1.0-2.0%), and 2.0 (95% CI: 1.0-3.0%), respectively. Regarding V. parahaemolyticus, O3:K6 was the most frequently isolated serotype. Cases peaked during summer. Several studies reported antibiotic-resistant strains and those harboring extended-spectrum beta-lactamases genes. CONCLUSIONS This study demonstrates a high burden of infections caused by non-cholera-causing Vibrio species in South Asia.
Collapse
Affiliation(s)
- Basilua Andre Muzembo
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
| | - Kei Kitahara
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan; Collaborative Research Centre of Okayama University for Infectious Diseases in India at ICMR-NICED, Kolkata, India
| | - Ayumu Ohno
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan; Collaborative Research Centre of Okayama University for Infectious Diseases in India at ICMR-NICED, Kolkata, India
| | | | - Shanta Dutta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shin-Ichi Miyoshi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
3
|
Qin X, Hou Q, Zhao H, Wang P, Yang S, Liao N, Huang J, Li X, He Q, Nethmini RT, Jiang G, He S, Chen Q, Dong K, Li N. Resource diversity disturbs marine Vibrio diversity and community stability, but loss of Vibrio diversity enhances community stability. Ecol Evol 2024; 14:e11234. [PMID: 38646003 PMCID: PMC11027015 DOI: 10.1002/ece3.11234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/13/2024] [Accepted: 03/22/2024] [Indexed: 04/23/2024] Open
Abstract
Vibrio is a salt-tolerant heterotrophic bacterium that occupies an important ecological niche in marine environments. However, little is known about the contribution of resource diversity to the marine Vibrio diversity and community stability. In this study, we investigated the association among resource diversity, taxonomic diversity, phylogenetic diversity, and community stability of marine Vibrio in the Beibu Gulf. V. campbellii and V. hangzhouensis were the dominant groups in seawater and sediments, respectively, in the Beibu Gulf. Higher alpha diversity was observed in the sediments than in the seawater. Marine Vibrio community assembly was dominated by deterministic processes. Pearson's correlation analysis showed that nitrite (NO 2 - -N), dissolved inorganic nitrogen (DIN), ammonium (NH 4 + -N), and pH were the main factors affecting marine Vibrio community stability in the surface, middle, and bottom layers of seawater and sediment, respectively. Partial least-squares path models (PLS-PM) demonstrated that resource diversity, water properties, nutrients, and geographical distance had important impacts on phylogenetic and taxonomic diversity. Regression analysis revealed that the impact of resource diversity on marine Vibrio diversity and community stability varied across different habitats, but loss of Vibrio diversity increases community stability. Overall, this study provided insights into the mechanisms underlying the maintenance of Vibrio diversity and community stability in marine environments.
Collapse
Affiliation(s)
- Xinyi Qin
- Laboratory for Coastal Ocean Variation and Disaster Prediction, Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, College of Ocean and MeteorologyGuangdong Ocean UniversityZhanjiangChina
- Key Laboratory of Environment Change and Resources use in Beibu Gulf, Ministry of EducationNanning Normal UniversityNanningChina
| | - Qinghua Hou
- Laboratory for Coastal Ocean Variation and Disaster Prediction, Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, College of Ocean and MeteorologyGuangdong Ocean UniversityZhanjiangChina
| | - Huaxian Zhao
- Key Laboratory of Environment Change and Resources use in Beibu Gulf, Ministry of EducationNanning Normal UniversityNanningChina
| | - Pengbin Wang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of OceanographyMinistry of Natural Re‐SourcesHangzhouChina
| | - Shu Yang
- Key Laboratory of Environment Change and Resources use in Beibu Gulf, Ministry of EducationNanning Normal UniversityNanningChina
| | - Nengjian Liao
- College of Environmental Science and EngineeringGuilin University of TechnologyGuilinChina
| | | | - Xiaoli Li
- School of AgricultureLudong UniversityYantaiChina
| | - Qing He
- Laboratory for Coastal Ocean Variation and Disaster Prediction, Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, College of Ocean and MeteorologyGuangdong Ocean UniversityZhanjiangChina
| | - Rajapakshalage Thashikala Nethmini
- Laboratory for Coastal Ocean Variation and Disaster Prediction, Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, College of Ocean and MeteorologyGuangdong Ocean UniversityZhanjiangChina
| | - Gonglingxia Jiang
- Laboratory for Coastal Ocean Variation and Disaster Prediction, Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, College of Ocean and MeteorologyGuangdong Ocean UniversityZhanjiangChina
| | - Shiying He
- Key Laboratory of Environment Change and Resources use in Beibu Gulf, Ministry of EducationNanning Normal UniversityNanningChina
| | - Qingxiang Chen
- Laboratory for Coastal Ocean Variation and Disaster Prediction, Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, College of Ocean and MeteorologyGuangdong Ocean UniversityZhanjiangChina
| | - Ke Dong
- Department of Biological SciencesKyonggi UniversitySuwon‐siGyeonggi‐doSouth Korea
| | - Nan Li
- Laboratory for Coastal Ocean Variation and Disaster Prediction, Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, College of Ocean and MeteorologyGuangdong Ocean UniversityZhanjiangChina
| |
Collapse
|
4
|
Mavhungu M, Digban TO, Nwodo UU. Incidence and Virulence Factor Profiling of Vibrio Species: A Study on Hospital and Community Wastewater Effluents. Microorganisms 2023; 11:2449. [PMID: 37894107 PMCID: PMC10609040 DOI: 10.3390/microorganisms11102449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/15/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
This study aimed to determine the incidence and virulence factor profiling of Vibrio species from hospital wastewater (HWW) and community wastewater effluents. Wastewater samples from selected sites were collected, processed, and analysed presumptively by the culture dependent methods and molecular techniques. A total of 270 isolates were confirmed as Vibrio genus delineating into V. cholerae (27%), V. parahaemolyticus (9.1%), V. vulnificus (4.1%), and V. fluvialis (3%). The remainder (>50%) may account for other Vibrio species not identified in the study. The four Vibrio species were isolated from secondary hospital wastewater effluent (SHWE), while V. cholerae was the sole specie isolated from Limbede community wastewater effluent (LCWE) and none of the four Vibrio species was recovered from tertiary hospital wastewater effluent (THWE). However, several virulence genes were identified among V. cholerae isolates from SHWE: ToxR (88%), hylA (81%), tcpA (64%), VPI (58%), ctx (44%), and ompU (34%). Virulence genes factors among V. cholerae isolates from LCWE were: ToxR (78%), ctx (67%), tcpA (44%), and hylA (44%). Two different genes (vfh and hupO) were identified in all confirmed V. fluvialis isolates. Among V. vulnificus, vcgA (50%) and vcgB (67%) were detected. In V. parahaemolyticus, tdh (56%) and tlh (100%) were also identified. This finding reveals that the studied aquatic niches pose serious potential health risk with Vibrio species harbouring virulence signatures. The distribution of virulence genes is valuable for ecological site quality, as well as epidemiological marker in the control and management of diseases caused by Vibrio species. Regular monitoring of HWW and communal wastewater effluent would allow relevant establishments to forecast, detect, and mitigate any public health threats in advance.
Collapse
Affiliation(s)
- Mashudu Mavhungu
- Patho-Biocatalysis Group, Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa (T.O.D.)
- Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa
| | - Tennison O. Digban
- Patho-Biocatalysis Group, Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa (T.O.D.)
- Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa
| | - Uchechukwu U. Nwodo
- Patho-Biocatalysis Group, Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa (T.O.D.)
- Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa
| |
Collapse
|
5
|
Meng X, Chen F, Xiong M, Hao H, Wang KJ. A new pathogenic isolate of Kocuria kristinae identified for the first time in the marine fish Larimichthys crocea. Front Microbiol 2023; 14:1129568. [PMID: 37180261 PMCID: PMC10167289 DOI: 10.3389/fmicb.2023.1129568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/04/2023] [Indexed: 05/16/2023] Open
Abstract
In recent years, new emerging pathogenic microorganisms have frequently appeared in animals, including marine fish, possibly due to climate change, anthropogenic activities, and even cross-species transmission of pathogenic microorganisms among animals or between animals and humans, which poses a serious issue for preventive medicine. In this study, a bacterium was clearly characterized among 64 isolates from the gills of diseased large yellow croaker Larimichthys crocea that were raised in marine aquaculture. This strain was identified as K. kristinae by biochemical tests with a VITEK 2.0 analysis system and 16S rRNA sequencing and named K. kristinae_LC. The potential genes that might encode virulence-factors were widely screened through sequence analysis of the whole genome of K. kristinae_LC. Many genes involved in the two-component system and drug-resistance were also annotated. In addition, 104 unique genes in K. kristinae_LC were identified by pan genome analysis with the genomes of this strain from five different origins (woodpecker, medical resource, environment, and marine sponge reef) and the analysis results demonstrated that their predicted functions might be associated with adaptation to living conditions such as higher salinity, complex marine biomes, and low temperature. A significant difference in genomic organization was found among the K. kristinae strains that might be related to their hosts living in different environments. The animal regression test for this new bacterial isolate was carried out using L. crocea, and the results showed that this bacterium could cause the death of L. crocea and that the fish mortality was dose-dependent within 5 days post infection, indicating the pathogenicity of K. kristinae_LC to marine fish. Since K. kristinae has been reported as a pathogen for humans and bovines, in our study, we revealed a new isolate of K. kristinae_LC from marine fish for the first time, suggesting the potentiality of cross-species transmission among animals or from marine animals to humans, from which we would gain insight to help in future public prevention strategies for new emerging pathogens.
Collapse
Affiliation(s)
- Xiangyu Meng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Fangyi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
- Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Ming Xiong
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
- Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Hua Hao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
- Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
- Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
6
|
Ma JY, Zhu XK, Hu RG, Qi ZZ, Sun WC, Hao ZP, Cong W, Kang YH. A systematic review, meta-analysis and meta-regression of the global prevalence of foodborne Vibrio spp. infection in fishes: A persistent public health concern. MARINE POLLUTION BULLETIN 2023; 187:114521. [PMID: 36621299 DOI: 10.1016/j.marpolbul.2022.114521] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 12/14/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Human vibriosis, caused by pathogenic Vibrio spp., such as Vibrio parahaemolyticus, Vibrio cholerae and Vibrio vulnificus, has been increasing worldwide, mediated by increasing consumption of seafood. The present study was conducted to examine the global prevalence of V. vulnificus, V. parahaemolyticus and V. cholerae in fishes. We searched PubMed, Web of Science, Scopus, and CNKI for peer-reviewed articles and dissertations prior to December 31, 2021. A total of 24,831 articles were retrieved, and 82 articles contained 61 fish families were included. The global pooled prevalence of V. cholerae, V. parahaemolyticus and V. vulnificus in fishes was 9.56 % (95 % CI: 2.12-20.92), 24.77 % (95 % CI: 17.40-32.93) and 5.29 % (95 % CI: 0.38-13.61), respectively. Subgroup and meta-regression analyses showed that study-level covariates, including temperature, country, continent, origin and detection methods partly explained the between-study heterogeneity. These heterogeneities were underpinned by differences of the three Vibrio spp. in fishes at geographical and climatic scales. These results reveal a high global prevalence of pathogenic Vibrio spp. in fishes and highlight the need for implementation of more effective prevention and control measures to reduce food-borne infection in humans.
Collapse
Affiliation(s)
- Jun-Yang Ma
- Marine College, Shandong University, Weihai, Shandong 264209, PR China
| | - Xin-Kun Zhu
- Marine College, Shandong University, Weihai, Shandong 264209, PR China
| | - Ren-Ge Hu
- Marine College, Shandong University, Weihai, Shandong 264209, PR China
| | - Ze-Zheng Qi
- Marine College, Shandong University, Weihai, Shandong 264209, PR China
| | - Wen-Chao Sun
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 32503, PR China
| | - Zhi-Peng Hao
- Marine College, Shandong University, Weihai, Shandong 264209, PR China
| | - Wei Cong
- Marine College, Shandong University, Weihai, Shandong 264209, PR China.
| | - Yuan-Huan Kang
- Marine College, Shandong University, Weihai, Shandong 264209, PR China.
| |
Collapse
|
7
|
Nan X, Zhao K, Qin Y, Song Y, Guo Y, Luo Z, Li W, Wang Q. Antibacterial responses and functional characterization of the interferon gamma inducible lysosomal thiol reductase (GILT) protein in Chinese mitten crab (Eriocheir sinensis). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 136:104514. [PMID: 35977559 DOI: 10.1016/j.dci.2022.104514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
The inducible reductase of interferon gamma (IFN- γ), IFN-γ-induced lysosomal thiol reductase (GILT) is important in antiviral immunity, but its mechanism in invertebrate antimicrobial immunity is unclear. We determined that GILT protein was involved in the antibacterial immunity of Chinese mitten crab (Eriocheir sinensis). GILT protein was highly expressed in crab hemocytes and was significantly upregulated 6 h after bacterial stimulation. Recombinant E. sinensis GILT (rEsGILT) contained a CXXS active site that catalyzed disulfide bond reduction. Vibrio parahaemolyticus and Staphylococcus aureus were bound through interaction with peptidoglycan and lipopolysaccharide, respectively, and bacterial agglutination and clearance in the crabs was markedly promoted. Nevertheless, EsGILT exhibited no direct antibacterial or bactericidal activity. EsGILT also promoted crab hemocyte phagocytosis and played an anti-bacterial role, and inhibited hemocyte apoptosis. In summary, EsGILT promoted bacterial agglutination, clearance, and phagocytosis by recognizing and agglutinating pathogenic microorganisms and reduced the apoptosis level, indirectly participating in antibacterial reactions.
Collapse
Affiliation(s)
- Xingyu Nan
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Ke Zhao
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yukai Qin
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yu Song
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yanan Guo
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhi Luo
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Weiwei Li
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| | - Qun Wang
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
8
|
Nan X, Jin X, Song Y, Zhou K, Qin Y, Wang Q, Li W. Effect of polystyrene nanoplastics on cell apoptosis, glucose metabolism, and antibacterial immunity of Eriocheir sinensis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119960. [PMID: 35973454 DOI: 10.1016/j.envpol.2022.119960] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/14/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
The adverse effects of plastic waste and nanoplastics on the water environment have become a focus of global attention in recent years. In the present study, using adult Chinese mitten crabs (Eriocheir sinensis) as an animal model, the bioaccumulation and the in vivo and in vitro toxicity of polystyrene nanoplastics (PS NPs), alone or in combination with the bacteria, were investigated. This study aimed to investigate the effects of PS NPs on apoptosis and glucose metabolism in Chinese mitten crabs, and whether PS NPs could synergistically affect the antibacterial immunity of crabs. We observed that NPs were endocytosed by hemocytes, which are immune cells in crustaceans and are involved in innate immunity. The RNA sequencing data showed that after hemocytes endocytosed NPs, apoptosis and glucose metabolism-related gene expression was significantly induced, resulting in abnormal cell apoptosis and a glucose metabolism disorder. In addition, exposure to NPs resulted in changes in the antimicrobial immunity of crabs, including changes in antimicrobial peptide expression, survival, and bacterial clearance. In summary, NPs could be endocytosed by crab hemocytes, which adversely affected the cell apoptosis, glucose metabolism, and antibacterial immunity of Eriocheir sinensis. This study revealed the effects of NPs on crab immunity and lays the foundation for further exploration of the synergistic effect of NPs and bacteria.
Collapse
Affiliation(s)
- Xingyu Nan
- State Key Laboratory of Estuarine and Coastal Research, Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Xingkun Jin
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, PR China
| | - Yu Song
- State Key Laboratory of Estuarine and Coastal Research, Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Kaimin Zhou
- State Key Laboratory of Estuarine and Coastal Research, Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Yukai Qin
- State Key Laboratory of Estuarine and Coastal Research, Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Qun Wang
- State Key Laboratory of Estuarine and Coastal Research, Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Weiwei Li
- State Key Laboratory of Estuarine and Coastal Research, Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, PR China.
| |
Collapse
|
9
|
Ndraha N, Huang L, Wu VC, Hsiao HI. Vibrio parahaemolyticus in seafood: Recent progress in understanding influential factors at harvest and food safety intervention approaches. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Amatul-Samahah MA, Muthukrishnan S, Al-saari N, Ikhsan NFM, Zamri-Saad M, Azmai MNA, Yusof MT, Yasin ISM, Tanaka M, Mino S, Sawabe T. Genome sequence of Vibrio parahaemolyticus C5A causing acute hepatopancreatic necrosis disease in shrimp isolated from a Malaysian shrimp culture pond. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
11
|
A panoptic review of techniques for finfish disease diagnosis: The status quo and future perspectives. J Microbiol Methods 2022; 196:106477. [DOI: 10.1016/j.mimet.2022.106477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 12/27/2022]
|
12
|
Costa WF, Giambiagi-deMarval M, Laport MS. Antibiotic and Heavy Metal Susceptibility of Non-Cholera Vibrio Isolated from Marine Sponges and Sea Urchins: Could They Pose a Potential Risk to Public Health? Antibiotics (Basel) 2021; 10:1561. [PMID: 34943773 PMCID: PMC8698511 DOI: 10.3390/antibiotics10121561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 11/19/2022] Open
Abstract
Vibrio is an important human and animal pathogen that can carry clinically relevant antibiotic resistance genes and is present in different aquatic environments. However, there is a knowledge gap between antibiotic and heavy metal resistance and virulence potential when it is part of the microbiota from marine invertebrates. Here, we aimed to evaluate these characteristics and the occurrence of mobile genetic elements. Of 25 non-cholera Vibrio spp. from marine sponges and sea urchins collected at the coastlines of Brazil and France analyzed in this study, 16 (64%) were non-susceptible to antibiotics, and two (8%) were multidrug-resistant. Beta-lactam resistance (blaSHV) and virulence (vhh) genes were detected in sponge-associated isolates. The resistance gene for copper and silver (cusB) was detected in one sea urchin isolate. Plasmids were found in 11 (44%) of the isolates. This new information allows a better comprehension of antibiotic resistance in aquatic environments, since those invertebrates host resistant Vibrio spp. Thus, Vibrio associated with marine animals may pose a potential risk to public health due to carrying these antibiotic-resistant genes.
Collapse
Affiliation(s)
| | | | - Marinella Silva Laport
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, Rio de Janeiro 21941-902, Brazil; (W.F.C.); (M.G.-d.)
| |
Collapse
|
13
|
Ning H, Cong Y, Lin H, Wang J. Development of cationic peptide chimeric lysins based on phage lysin Lysqdvp001 and their antibacterial effects against Vibrio parahaemolyticus: A preliminary study. Int J Food Microbiol 2021; 358:109396. [PMID: 34560361 DOI: 10.1016/j.ijfoodmicro.2021.109396] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/26/2021] [Accepted: 09/03/2021] [Indexed: 01/22/2023]
Abstract
Cationic peptide chimeric lysins, Lysqdvp001-5aa, Lysqdvp001-10aa and Lysqdvp001-15aa, were designed based on lysin Lysqdvp001 from Vibrio parahaemolyticus (V. parahaemolyticus) phage qdvp001. These chimeric lysins showed equivalent peptidoglycan hydrolysis activities with Lysqdvp001 and could lyse the bacteria from the outside. The antibacterial activity as well as outer and inner membrane permeabilization of Lysqdvp001 and chimeric lysins against V. parahaemolyticus were Lysqdvp001-15aa>Lysqdvp001-10aa>Lysqdvp001-5aa>Lysqdvp001. Lysqdvp001-15aa exhibited an excellent antibacterial activity with minimum inhibition and bactericidal concentrations (MIC and MBC) of 0.2 and 0.4 mg/mL, respectively, and its antibacterial spectrum was much broader than phage qdvp001. Membrane hyperpolarization and membrane phospholipid exposure of V. parahaemolyticus were observed after Lysqdvp001-15aa treatments. Transmission electron microscope (TEM) showed Lysqdvp001-15aa destroyed structure integrity of V. parahaemolyticus. Besides, MIC and MBC of Lysqdvp001-15aa decreased V. parahaemolyticus counts in oyster by 3.20 and 4.03 log10CFU/g. Lysqdvp001-15aa at MBC eradicated about 50% of V. parahaemolyticus biofilms and inhibited over 90% of the formation of the bacterial biofilms.
Collapse
Affiliation(s)
- Houqi Ning
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Yu Cong
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Jingxue Wang
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, PR China.
| |
Collapse
|
14
|
Molecular characterization and antibiotic resistance of Vibrio parahaemolyticus from Indian oyster and their probable implication in food chain. World J Microbiol Biotechnol 2021; 37:145. [PMID: 34351514 PMCID: PMC8339392 DOI: 10.1007/s11274-021-03113-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 07/26/2021] [Indexed: 12/19/2022]
Abstract
Vibrio parahaemolyticus is one of the leading causes of diarrhoea and gastroenteritis in human on consumption of raw or insufficiently cooked seafood. This study was aimed at isolating and characterizing the pathogenic and pandemic V. parahaemolyticus from oysters (n = 90) in coastal parts of West Bengal, India; their antibiotic resistance and potential for involvement in the food chain. During bacteriological culture, typical V. parahaemolyticus colony was recovered in 88.9% samples followed by presumptive identification in 71 (78.9%) samples by characteristic biochemical (K/A) test. All the presumptive isolates (n = 71) were confirmed by species specific Vp-toxR PCR assay. Of these, 10 (14.08%) were tdh+ and none for the trh. Further, 5 (50%) of these tdh+ isolates were found to carry the pandemic potential gene in PGS-PCR assay; however, none in GS-PCR. Majority (80%) of these pathogenic (tdh+) isolates belonged to pandemic serovars (OUT: KUT; OUT: K24; O1: KUT; O1:K25; O10: KUT) and only 20% to non-pandemic serovars (OUT: K15; O9:K17). All the isolates (100%) exhibited resistance to cefpodoxime followed by ampicillin and cefotaxime (90%), ceftizoxime (60%), tetracycline (50%), ceftriaxone (40%), ciprofloxacin and nalidixic acid (10% each). Overall, the study findings suggested that 11.1% (10/90) of commonly marketed oysters in this area were harbouring pathogenic V. parahaemolyticus. Moreover, 5.5% (5/90) of the oyster population were harbouring pandemic strains of this pathogen. Besides, the pathogenic isolates from oysters were exhibiting a considerable genetic relatedness (53 to 70%) to human clinical isolates in PFGE analysis that relates to a substantial public health risk. Further, their multidrug resistance added gravity to the antimicrobial resistance (AMR), a globally growing public health threat and this is a critical area of concern especially during the treatment of foodborne gastroenteritis.
Collapse
|
15
|
Gu D, Wang K, Lu T, Li L, Jiao X. Vibrio parahaemolyticus CadC regulates acid tolerance response to enhance bacterial motility and cytotoxicity. JOURNAL OF FISH DISEASES 2021; 44:1155-1168. [PMID: 33831221 PMCID: PMC8359830 DOI: 10.1111/jfd.13376] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/26/2021] [Indexed: 05/15/2023]
Abstract
Pathogens adapted to sub-lethal acidic conditions could increase the virulence and survival ability under lethal conditions. In the aquaculture industry, feed acidifiers have been used to increase the growth of aquatic animals. However, there is limited study on the effects of acidic condition on the virulence and survival of pathogens in aquaculture. In this study, we investigated the survival ability of Vibrio parahaemolyticus at lethal acidic pH (4.0) after adapted the bacteria to sub-lethal acidic pH (5.5) for 1 hr. Our results indicated that the adapted strain increased the survival ability at lethal acidic pH invoked by an inorganic (HCl) or organic (citric) acid. RNA-sequencing (RNA-seq) results revealed that 321 genes were differentially expressed at the sub-lethal acidic pH including cadC, cadBA and groES/groEL relating to acid tolerance response (ATR), as well as genes relating to outer membrane, heat-shock proteins, phosphotransferase system and flagella system. Quantitative real-time polymerase chain reaction (qRT-PCR) confirmed that cadC and cadBA were upregulated under sub-lethal acidic conditions. The CadC protein could directly regulate the expression of cadBA to modulate the ATR in V. parahaemolyticus. RNA-seq data also indicated that 113 genes in the CadC-dependent way and 208 genes in the CadC-independent way were differentially expressed, which were related to the regulation of ATR. Finally, the motility and cytotoxicity of the sub-lethal acidic adapted wild type (WT) were significantly increased compared with the unadapted strain. Our results demonstrated that the dietary acidifiers may increase the virulence and survival of V. parahaemolyticus in aquaculture.
Collapse
Affiliation(s)
- Dan Gu
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou UniversityJiangsuChina
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and QualityMinistry of Agriculture of ChinaYangzhou UniversityYangzhouChina
- Joint International Research Laboratory of Agriculture and Agri‐product Safety of the Ministry of EducationYangzhou UniversityJiangsuChina
| | - Kangru Wang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou UniversityJiangsuChina
| | - Tianyu Lu
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou UniversityJiangsuChina
| | - Lingzhi Li
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou UniversityJiangsuChina
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou UniversityJiangsuChina
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and QualityMinistry of Agriculture of ChinaYangzhou UniversityYangzhouChina
- Joint International Research Laboratory of Agriculture and Agri‐product Safety of the Ministry of EducationYangzhou UniversityJiangsuChina
| |
Collapse
|
16
|
Nguyen HT, Van TN, Ngoc TT, Boonyawiwat V, Rukkwamsuk T, Yawongsa A. Risk factors associated with acute hepatopancreatic necrosis disease at shrimp farm level in Bac Lieu Province, Vietnam. Vet World 2021; 14:1050-1058. [PMID: 34083959 PMCID: PMC8167526 DOI: 10.14202/vetworld.2021.1050-1058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/17/2021] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Acute hepatopancreatic necrosis disease (AHPND) is a severe disease in shrimp farms and adversely affected the shrimp industry of Vietnam. So far, the study on risk factors associated with AHPND outbreaks is limited. The objective of this study was to determine the potential risk factors of AHPND at the shrimp farm level in Bac Lieu Province, Vietnam. Materials and Methods: Real-time-Polymerase chain reaction was used to analyze data collected from an active surveillance program of shrimp farms in 2017 in the Vinh Tien and Vinh Lac villages, Vinh Thinh commune, Hoa Binh district in Bac Lieu Province, Vietnam. The matched case-control study selected 20 cases and 20 control farms from 134 shrimp farms. In 2018, face-to-face interviews using structured questionnaires were conducted with the farmers of these selected farms. Results: Of the 59 studied variables, seven had p≤0.2 based on bivariate analyses. The results of multivariable analysis showed that the presence of fish-eating birds on shrimp farms was a significant association with AHPND (odds ratio=8, p=0.049). Conclusion: To reduce the effect of AHPND, farmers should apply effective methods to manage wild animals such as using a grid or net to cover the pond, combined with improved biosecurity.
Collapse
Affiliation(s)
- Hien The Nguyen
- Department of Animal Health of Vietnam, No. 15 lane 78, Giai Phong Street, Phuong Mai Ward, Dong Da District, Hanoi, Vietnam.,Faculty of Veterinary Medicine, Kasetsart University, No. 50, Phahonyothin Road, Ladyao, Chatuchak, Bangkok, Thailand
| | - Toan Nguyen Van
- Sub-Department of Livestock Production and Animal Health of Bac Lieu Province, No. 217, 23/8 Road, 8 Ward, Bac Lieu City, Bac Lieu province, Vietnam
| | - Tien Tien Ngoc
- Regional Animal Health Office number VII, No. 88 Cach Mang Thang 8 Street, Cai Khe Ward, Binh Thuy District, Can Tho City, Vietnam
| | - Visanu Boonyawiwat
- Faculty of Veterinary Medicine, Kasetsart University, No. 50, Phahonyothin Road, Ladyao, Chatuchak, Bangkok, Thailand
| | - Theera Rukkwamsuk
- Faculty of Veterinary Medicine, Kasetsart University, No. 50, Phahonyothin Road, Ladyao, Chatuchak, Bangkok, Thailand
| | - Adisorn Yawongsa
- Faculty of Veterinary Medicine, Kasetsart University, No. 50, Phahonyothin Road, Ladyao, Chatuchak, Bangkok, Thailand
| |
Collapse
|
17
|
Wang W, Liu J, Guo S, Liu L, Yuan Q, Guo L, Pan S. Identification of Vibrio parahaemolyticus and Vibrio spp. Specific Outer Membrane Proteins by Reverse Vaccinology and Surface Proteome. Front Microbiol 2021; 11:625315. [PMID: 33633699 PMCID: PMC7901925 DOI: 10.3389/fmicb.2020.625315] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022] Open
Abstract
The discovery of outer membrane proteins (OMPs) with desirable specificity and surface availability is a fundamental challenge to develop accurate immunodiagnostic assay and multivalent vaccine of pathogenic Vibrio species in food and aquaculture. Herein 101 OMPs were systemically screened from 4,831 non-redundant proteins of Vibrio parahaemolyticus by bioinformatical predication of signaling peptides, transmembrane (TM) α-helix, and subcellular location. The sequence homology analysis with 32 species of Vibrio spp. and all the non-Vibrio strains revealed that 15 OMPs were conserved in at least 23 Vibrio species, including BamA (VP2310), GspD (VP0133), Tolc (VP0425), OmpK (VP2362), OmpW (VPA0096), LptD (VP0339), Pal (VP1061), flagellar L-ring protein (VP0782), flagellar protein MotY (VP2111), hypothetical protein (VP1713), fimbrial assembly protein (VP2746), VacJ lipoprotein (VP2214), agglutination protein (VP1634), and lipoprotein (VP1267), Chitobiase (VP0755); high adhesion probability of flgH, LptD, OmpK, and OmpW indicated they were potential multivalent Vibrio vaccine candidates. V. parahaemolyticus OMPs were found to share high homology with at least one or two Vibrio species, 19 OMPs including OmpA like protein (VPA073), CsuD (VPA1504), and MtrC (VP1220) were found relatively specific to V. parahaemolyticus. The surface proteomic study by enzymatical shaving the cells showed the capsular polysaccharides most likely limited the protease action, while the glycosidases improved the availability of OMPs to trypsin. The OmpA (VPA1186, VPA0248, VP0764), Omp (VPA0166), OmpU (VP2467), BamA (VP2310), TolC (VP0425), GspD (VP0133), OmpK (VP2362), lpp (VPA1469), Pal (VP1061), agglutination protein (VP1634), and putative iron (III) compound receptor (VPA1435) have better availability on the cell surface.
Collapse
Affiliation(s)
- Wenbin Wang
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China.,Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
| | - Jianxin Liu
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Shanshan Guo
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Lei Liu
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Qianyun Yuan
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Lei Guo
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China.,Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
| | - Saikun Pan
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China.,Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
| |
Collapse
|
18
|
Chen X, Zhao H, Jiang G, Tang J, Xu Q, Huang L, Chen S, Zou S, Dong K, Li N. Responses of Free-Living Vibrio Community to Seasonal Environmental Variation in a Subtropical Inland Bay. Front Microbiol 2020; 11:610974. [PMID: 33381102 PMCID: PMC7767907 DOI: 10.3389/fmicb.2020.610974] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/11/2020] [Indexed: 01/02/2023] Open
Abstract
Vibrio are widely distributed in aquatic environments and strongly associated with eutrophic environments and human health through the consumption of contaminated seafood. However, the response of the Vibrio community to seasonal variation in eutrophic environments is poorly understood. In this study, we used a Vibrio-specific 16S rRNA sequencing approach to reveal the seasonal distribution pattern and diversity of the Vibrio community in the Maowei Sea, Beibu Gulf of China. The Shannon diversity of the Vibrio community was highest in the summer, while β-diversity analysis showed that Vibrio community structures were significantly different between seasons. Distance-based redundancy analysis (dbRDA) and Mantel test analysis suggested that total dissolved nitrogen (TDN), total dissolved phosphorus (TDP), dissolved inorganic nitrogen (DIN), salinity, and temperature were the key environmental factors shaping the Vibrio community structure, indicating a strong filtering effect of trophic condition on Vibrio communities. Furthermore, through random forest analysis, V. fluvialis, V. alginolyticus, V. proteolyticus, V. splendidus, and the other eight Vibrio species were more sensitive to eutrophic changes. This study revealed seasonal changes in Vibrio communities and the influence of environmental variation on Vibrio community composition, contributing to a better understanding of their potential ecological roles in a subtropical inland bay.
Collapse
Affiliation(s)
- Xing Chen
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Huaxian Zhao
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning, China
| | - Gonglingxia Jiang
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning, China
| | - Jinli Tang
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning, China
| | - Qiangsheng Xu
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning, China
| | - Lengjinghua Huang
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning, China
| | - Si Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Shuqi Zou
- Department of Biological Sciences, Kyonggi University, Suwon-si, South Korea
| | - Ke Dong
- Department of Biological Sciences, Kyonggi University, Suwon-si, South Korea
| | - Nan Li
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning, China
| |
Collapse
|
19
|
Limsuwan S, Jarukitsakul S, Issuriya A, Chusri S, Joycharat N, Jaisamut P, Saising J, Jetwanna KWN, Voravuthikunchai SP. Thai herbal formulation 'Ya-Pit-Samut-Noi': Its antibacterial activities, effects on bacterial virulence factors and in vivo acute toxicity. JOURNAL OF ETHNOPHARMACOLOGY 2020; 259:112975. [PMID: 32417424 DOI: 10.1016/j.jep.2020.112975] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/29/2020] [Accepted: 05/10/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE A Thai herbal formulation 'Ya-Pit-Samut-Noi' containing Nigella sativa (seed), Piper retrofractum (fruit), Punica granatum (pericarp), and Quercus infectoria (nutgall) has long been traditionally used to treat diarrhea or bloody mucous diarrhea. Scientific information is very important to support its therapeutic effects and traditional drug development. AIM OF THE STUDY This study aimed to evaluate the antibacterial activities of Ya-Pit-Samut-Noi against diarrhea-causing bacteria and determine its effects on bacterial virulence factors and in vivo acute toxicity. MATERIALS AND METHODS Ethanol and water extracts of Ya-Pit-Samut-Noi and its plant components were prepared. The agar diffusion method was used for preliminary screening of antibacterial activity of the extracts against diarrhea-causing bacteria including Staphylococcus aureus, Vibrio cholerae, and Vibrio parahaemolyticus. The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were assessed using broth microdilution method. The effects on bactericidal activity, bacterial cell wall, and cell membrane were examined by time-kill, lysis, and leakage assays, respectively. The effects on bacterial virulence factors including quorum-sensing system, biofilm production, and swarming motility were determined. Phytochemical screening was carried out to identify the group of chemical compounds present in the formulation extracts. Acute toxicity study was conducted by a single oral dose of 2000 mg/kg body weight in Wistar albino rats. RESULTS Ethanol and water extracts of Ya-Pit-Samut-Noi and Quercus infectoria demonstrated antibacterial efficacy against all bacterial strains as revealed by zones of inhibition ranging from 7.0 to 24.5 mm. The ethanol and water extracts of Ya-Pit-Samut-Noi and Quercus infectoria produced strong bacteriostatic activity against V. parahaemolyticus (n = 11) with an MIC range of 7.81-250 μg/ml. Only the ethanol extract of Ya-Pit-Samut-Noi produced MBC values less than or equal to 1000 μg/ml against all V. parahaemolyticus. Based on time-kill study, no surviving V. parahaemolyticus (ATCC 17802 and 5268) cells were detected within 6-12 h after treatment with the ethanol extract of Ya-Pit-Samut-Noi at MBC-4MBC concentrations. Vibrioparahaemolyticus ATCC 17802 cells treated with the ethanol extract of Ya-Pit-Samut-Noi demonstrated no lysis or leakage through the bacterial membrane was not observed. At low concentrations (0.125-0.25 μg/ml) the ethanol extract of Ya-Pit-Samut-Noi inhibited violacein production by Chromobacterium violaceum DMST 21761 without affecting the bacterial growth. The ethanol (31.25-62.5 μg/ml) and water (31.25-250 μg/ml) extracts of Ya-Pit-Samut-Noi inhibited biofilm production by S. aureus. The ethanol and water extracts of Ya-Pit-Samut-Noi at 1000 μg/ml reduced the swarming motility of Escherichia coli O157: H7 by 74.98% and 52.65%, respectively. Tannins and terpenoids were detected in both the ethanol and water extracts. Flavonoids were present only in the ethanol extract. Alkaloids and antraquinones were not noticed in either extract. In the acute toxicity study, there were no significant changes in hematological and biochemical parameters nor were adverse effects on mortality, general behaviors, body weight, or organ weights detected. CONCLUSIONS The scientific evidence from this study supported the therapeutic effects and safety of the traditional Thai herbal formulation 'Ya-Pit-Samut-Noi' which has been used as an alternative treatment for gastrointestinal infections in Thailand.
Collapse
Affiliation(s)
- Surasak Limsuwan
- Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Excellence Research Laboratory on Natural Products, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
| | - Siriporn Jarukitsakul
- Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Acharaporn Issuriya
- Department of Physiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Sasitorn Chusri
- Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Excellence Research Laboratory on Natural Products, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Nantiya Joycharat
- Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Excellence Research Laboratory on Natural Products, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Patcharawalai Jaisamut
- Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Jongkon Saising
- School of Health Science, Mae Fah Luang University, Muang, Chiang Rai, 57100, Thailand
| | - Korakot Wichitsa-Nguan Jetwanna
- Department of Mathematics and Statistics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Supayang Piyawan Voravuthikunchai
- Excellence Research Laboratory on Natural Products, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| |
Collapse
|
20
|
Lei S, Gu X, Xue W, Rong Z, Wang Z, Chen S, Zhong Q. A 4-plex Droplet Digital PCR Method for Simultaneous Quantification and Differentiation of Pathogenic and Non-pathogenic Vibrio parahaemolyticus Based on Single Intact Cells. Front Microbiol 2020; 11:1727. [PMID: 32903334 PMCID: PMC7434843 DOI: 10.3389/fmicb.2020.01727] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/01/2020] [Indexed: 01/17/2023] Open
Abstract
Vibrio parahaemolyticus is a significant seafood-borne pathogen, leading to serious acute gastrointestinal diseases worldwide. In this study, a reliable 4-plex droplet digital PCR (ddPCR) was successfully established and evaluated for the simultaneous detection of V. parahaemolyticus based on tlh, tdh, ureR, and orf8 in food samples using single intact cells. The targets tlh and ureR were labeled with 6-Carboxyfluorescein (FAM), and the targets tdh and orf8 were labeled with 5’-Hexachlorofluorescein (HEX). Due to reasonable proration of primers and probes corresponding into the two fluorescence channels of the ddPCR detecting platforms, the clearly separated 16 (24) clusters based on fluorescence amplitude were obtained. For better results, the sample hot lysis time and the cycle number were optimized. The results showed that the minimum number of “rain” and maximum fluorescence amplification were presented for precise detection in the condition of 25 min of the sample hot lysis time and 55 cycles. The sensitivity of this 4-plex ddPCR assay was 39 CFU/mL, which was in accordance with that of the conventional plate counting and was 10-fold sensitive than that of qPCR. In conclusion, the 4-plex ddPCR assay presented in this paper was a rapid, specific, sensitive, and accurate tool for the detection of V. parahaemolyticus including pandemic group strains and could be applied in the differentiation of V. parahaemolyticus in a wide variety of samples.
Collapse
Affiliation(s)
- Shuwen Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Xiaokui Gu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, China.,Guangdong Shunde Innovative Design Institute, Foshan, China
| | - Wei Xue
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, China
| | - Zhangquan Rong
- Guangdong Shunde Innovative Design Institute, Foshan, China
| | - Zhe Wang
- Guangdong Shunde Innovative Design Institute, Foshan, China
| | - Song Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Qingping Zhong
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
21
|
Li Y, Xie T, Pang R, Wu Q, Zhang J, Lei T, Xue L, Wu H, Wang J, Ding Y, Chen M, Wu S, Zeng H, Zhang Y, Wei X. Food-Borne Vibrio parahaemolyticus in China: Prevalence, Antibiotic Susceptibility, and Genetic Characterization. Front Microbiol 2020; 11:1670. [PMID: 32765472 PMCID: PMC7378779 DOI: 10.3389/fmicb.2020.01670] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/25/2020] [Indexed: 12/16/2022] Open
Abstract
Vibrio parahaemolyticus is a marine and estuarine bacterium that leads to damage of aquatic industry by foodborne outbreaks and possesses an enormous threat to food safety as well as human health worldwide. In the current study, we investigated 905 food samples (ready-to-eat foods, fish, and shrimp) from 15 provinces in China, and aimed to determine prevalence, biological characteristics and genetic diversity of presumptive V. parahaemolyticus isolates. Firstly, 14.17% of 240 fish samples, 15.34% of 365 shrimp samples and 3.67% of 300 RTE food samples were positive for potential V. parahaemolyticus. Secondly, 69 food samples (14.87%) collected in summer were positive for target isolates, while the rate of positive sample of 441 food samples in winter reached 7.26%. Thirdly, we purified 202 V. parahaemolyticus strains for further research. And antimicrobial susceptibility results of strains tested revealed that the highest resistance rate was observed for ampicillin (79.20%). At the same time, 148 (73.27%) of all isolates were classified and defined as multi-drug resistant foodborne bacteria. The results of PCR assay showed that the isolates being positive for the tdh, trh or both genes, were up to 9.90%, 19.80% or 3.96%. Besides, multiplex PCR test showed that the isolates carrying O2 serogroup were the most prevalent. Furthermore, sequence types (STs) of 108 isolates were obtained via multi-locus sequence typing. Not only 82 STs were detected, but also 41 of which were updated in the MLST database. Thus, our findings significantly demonstrated the high contamination rates of V. parahaemolyticus in fish and shrimp and it may possess potential threat for consumer health. We also provided up-to-date dissemination of antibiotic-resistant V. parahaemolyticus which is important to ensure the high efficacy in the treatment of human and aquatic products infections. Lastly, with the identification of 82 STs including 41 novel STs, this study significantly revealed the high genetic diversity among V. parahaemolyticus. All of our research improved our understanding on microbiological risk assessment in ready-to-eat foods, fish, and shrimp.
Collapse
Affiliation(s)
- Yanping Li
- College of Food Science, South China Agricultural University, Guangzhou, China.,Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Academy of Sciences, Guangzhou, China
| | - Tengfei Xie
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Academy of Sciences, Guangzhou, China
| | - Rui Pang
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Academy of Sciences, Guangzhou, China
| | - Qingping Wu
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Academy of Sciences, Guangzhou, China
| | - Jumei Zhang
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Academy of Sciences, Guangzhou, China
| | - Tao Lei
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Academy of Sciences, Guangzhou, China
| | - Liang Xue
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Academy of Sciences, Guangzhou, China
| | - Haoming Wu
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Academy of Sciences, Guangzhou, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yu Ding
- Department of Food Science and Technology, Jinan University, Guangzhou, China
| | - Moutong Chen
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Academy of Sciences, Guangzhou, China
| | - Shi Wu
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Academy of Sciences, Guangzhou, China
| | - Haiyan Zeng
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Academy of Sciences, Guangzhou, China
| | - Youxiong Zhang
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Academy of Sciences, Guangzhou, China
| | - Xianhu Wei
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|