1
|
Chattopadhyay D, Das S, Mondal PS, Mondal T, Samanta S, Mondal A, Goswami AM, Saha T. PPI network identifies interacting pathogenic signaling pathways in Candida albicans. Mol Omics 2025. [PMID: 40391893 DOI: 10.1039/d5mo00042d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Candida albicans, an opportunistic and systemic infection causing fungus, causes skin, nail, and mucosal layer lesions in healthy individuals and hospital borne catheter-related and nosocomial infections. This particular fungus exists in two distinct stages in its life cycle: yeast and hyphae. In this study, 20 signaling pathways associated with 177 proteins from C. albicans were identified to construct a PPI network. The core part of the network consisted of 165 proteins. Network topology analyses revealed that the formed PPI network is biologically robust and scale-free, with significant interactions between proteins through 19 252 shortest pathways. In this network, the top 10 hub proteins (RAS1, CDC42, HOG1, CPH1, STE11, EFG1, CEK1, HSP90, TEC1 and CST20) were identified using network analysis, which seem to be the most important proteins involved in different pathways for the development of pathogenesis and virulence. Modular analysis of the network resulted in top six sub-networks, three of which shared eight hub proteins. Ontology and functional enrichment analyses revealed that the majority of the proteins were associated with regulation of transcription by RNA polymerase II, plasma membrane and nucleic acid binding in biological processes, and cellular components and molecular functions, respectively. Enrichment analysis indicated that the proteins were mostly involved in oxidative phosphorylation and purine metabolism signaling pathways. We determined the complex web of signaling pathway involving proteins via PPI network analysis to unravel and decipher protein interactions within C. albicans to understand the complex pathogenesis processes for targeted therapeutic interferences using novel bioinformatics strategies.
Collapse
Affiliation(s)
- Deepanjan Chattopadhyay
- Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani 741235, Nadia, West Bengal, India.
| | - Sanjib Das
- Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani 741235, Nadia, West Bengal, India.
| | - Paromita Saha Mondal
- Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani 741235, Nadia, West Bengal, India.
| | - Tanushree Mondal
- Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani 741235, Nadia, West Bengal, India.
| | - Subhasree Samanta
- Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani 741235, Nadia, West Bengal, India.
| | - Amalesh Mondal
- Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani 741235, Nadia, West Bengal, India.
- Department of Physiology, Katwa College, Katwa, Purba Bardhaman, West Bengal 713130, India
| | - Achintya Mohan Goswami
- Department of Physiology, Krishnagar Govt. College, Krishnagar, Nadia, West Bengal 741101, India.
| | - Tanima Saha
- Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani 741235, Nadia, West Bengal, India.
| |
Collapse
|
2
|
do Socorro Costa M, da Silva ARP, Santos Araújo J, Dos Santos ATL, Fonseca VJA, Gonçalves Alencar G, Moura TF, Gonçalves SA, Filho JMB, Morais-Braga MFB, Andrade-Pinheiro JC, Coutinho HDM. In vitro Evaluation of Fungal Susceptibility and Inhibition of Virulence by Diosgenin. Chem Biodivers 2024; 21:e202400444. [PMID: 38670923 DOI: 10.1002/cbdv.202400444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/12/2024] [Accepted: 04/26/2024] [Indexed: 04/28/2024]
Abstract
Fungal infections are a public health problem that mainly affects immunosuppressed people, Candida spp. have been responsible for most sources of contamination and invasive fungal infections described around the world. The need arises to find new therapeutic approaches to combat growing infections. Plants and natural products have been considered a valuable source for discovering new molecules with active ingredients. Diosgenin is a sapogenin found in the families of Leguminosae and Dioscoreaceae, it is obtained mainly from the dioscin saponin through the hydrolysis method, it is a phytochemical that has been highlighted in the treatment of various diseases, as well as in combating microbial resistance. The present study aimed to evaluate the susceptibility of fungal strains to diosgenin, as well as verify the association with the reference drug and evaluate the inhibition of the virulence factor through morphological changes in the yeast state to the filamentous form of hyphae and pseudohyphae in strains of Candida albicans, Candida tropicalis and Candida krusei using the broth microdilution method and microculture technique. Antifungal assays revealed that diosgenin was not able to inhibit the growth of the tested strains. However, it was able to inhibit the fungal dimorphism of the strains evaluated, however further studies are recommended to verify its effectiveness against other virulence factors.
Collapse
Affiliation(s)
- Maria do Socorro Costa
- Graduate Program in Biotechnology, State University of Ceará, Fortaleza, Ceará, Brazil
- Laboratory of Microbiology and Molecular Biology- LMBM, Regional University of Cariri, Crato, Ceará, Brazil
| | - Ana Raquel Pereira da Silva
- Graduate Program in Biotechnology, State University of Ceará, Fortaleza, Ceará, Brazil
- Laboratory of Microbiology and Molecular Biology- LMBM, Regional University of Cariri, Crato, Ceará, Brazil
| | - Juliana Santos Araújo
- Laboratory of Applied Microbiology -, LAMAP, Federal University of Cariri, Barbalha, Ceará, Brazil
| | | | | | - Gabriel Gonçalves Alencar
- Laboratory of Microbiology and Molecular Biology- LMBM, Regional University of Cariri, Crato, Ceará, Brazil
| | - Talysson Felismino Moura
- Laboratory of Microbiology and Molecular Biology- LMBM, Regional University of Cariri, Crato, Ceará, Brazil
| | - Sheila Alves Gonçalves
- Laboratory of Microbiology and Molecular Biology- LMBM, Regional University of Cariri, Crato, Ceará, Brazil
| | - José Maria Barbosa Filho
- Laboratory Technology Pharmaceutical, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | | | - Jacqueline Cosmo Andrade-Pinheiro
- Laboratory of Microbiology and Molecular Biology- LMBM, Regional University of Cariri, Crato, Ceará, Brazil
- Laboratory of Applied Microbiology -, LAMAP, Federal University of Cariri, Barbalha, Ceará, Brazil
| | | |
Collapse
|
3
|
Liu Y, Wang R, Liu J, Fan M, Ye Z, Hao Y, Xie F, Wang T, Jiang Y, Liu N, Cui X, Lv Q, Yan L. The vacuolar fusion regulated by HOPS complex promotes hyphal initiation and penetration in Candida albicans. Nat Commun 2024; 15:4131. [PMID: 38755250 PMCID: PMC11099166 DOI: 10.1038/s41467-024-48525-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 05/02/2024] [Indexed: 05/18/2024] Open
Abstract
The transition between yeast and hyphae is crucial for regulating the commensalism and pathogenicity in Candida albicans. The mechanisms that affect the invasion of hyphae in solid media, whose deficiency is more related to the pathogenicity of C. albicans, have not been elucidated. Here, we found that the disruption of VAM6 or VPS41 which are components of the homotypic vacuolar fusion and protein sorting (HOPS) complex, or the Rab GTPase YPT72, all responsible for vacuole fusion, led to defects in hyphal growth in both liquid and solid media, but more pronounced on solid agar. The phenotypes of vac8Δ/Δ and GTR1OE-vam6Δ/Δ mutants indicated that these deficiencies are mainly caused by the reduced mechanical forces that drive agar and organs penetration, and confirmed that large vacuoles are required for hyphal mechanical penetration. In summary, our study revealed that large vacuoles generated by vacuolar fusion support hyphal penetration and provided a perspective to refocus attention on the role of solid agar in evaluating C. albicans invasion.
Collapse
Affiliation(s)
- Yu Liu
- Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai, 200433, PR China
| | - Ruina Wang
- Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai, 200433, PR China
| | - Jiacun Liu
- Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai, 200433, PR China
| | - Mengting Fan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, PR China
| | - Zi Ye
- Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai, 200433, PR China
| | - Yumeng Hao
- Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai, 200433, PR China
| | - Fei Xie
- Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai, 200433, PR China
| | - Ting Wang
- Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai, 200433, PR China
| | - Yuanying Jiang
- School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Ningning Liu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China.
| | - Xiaoyan Cui
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, PR China.
| | - Quanzhen Lv
- Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai, 200433, PR China.
| | - Lan Yan
- Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai, 200433, PR China.
| |
Collapse
|
4
|
Silva VBD, Almeida-Bezerra JW, Novais MHG, Farias NS, Coelho JJ, Ribeiro PRV, Canuto KM, Coutinho HDM, Morais-Braga MFB, Oliveira AFMD. Chemical composition, antifungal, and anti-virulence action of the stem bark of Hancornia speciosa Gomes (Apocynaceae) against Candida spp. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117506. [PMID: 38012976 DOI: 10.1016/j.jep.2023.117506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 11/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hancornia speciosa Gomes is a fruit and medicinal species used for treating infectious diseases of the genitourinary system. However, its mechanism of action against microbes is still not fully understood. Infections in the genitourinary system caused by Candida spp. are associated with its fungal resistance and pathogenicity. New plant-derived compounds are an alternative to fight these Candida infections. AIM OF THE STUDY The objective of this study was to evaluate the anti-Candida effects of extracts of the stem bark of H. speciosa. This research investigated the chemical composition of sulfuric ether (EEHS) and methanolic (MEHS) extracts, their drug-modifying action on fluconazole, and their anti-virulence action on the morphological transition of Candida species. MATERIALS AND METHODS The extracts (EEHS and MEHS) of the stem bark of H. speciosa were chemically characterized via qualitative phytochemical screening and by liquid chromatography coupled with mass spectrometry (UPLC-MS-ESI-QTOF). The extracts were evaluated regarding their antifungal effects and fluconazole-modifying activity against Candida albicans, Candida krusei, and Candida tropicalis using the broth microdilution method. Additionally, the study evaluated the inhibition of fungal virulence in Candida species through morphological transition assays. RESULTS The phytochemical screening revealed the presence of anthocyanidins, anthocyanins, aurones, catechins, chalcones, flavones, flavonols, flavanones, leucoanthocyanidins, tannins (condensed and pyrogallic), and xanthones in both extracts of the stem bark of H. speciosa. The UPLC-MS-ESI-QTOF analysis identified the same compounds in both extracts, predominating phenolic compounds. Some compounds were first time recorded in this species: gluconic acid, cinchonain IIb, cinchonain Ib isomer, and lariciresinol hexoside isomers. Most of the intrinsic antifungal activity was observed for the MEHS against C. krusei (IC50: 58.41 μg/mL). At subinhibitory concentrations (MC/8), the EEHS enhanced the action of fluconazole against all Candida strains. The MEHS exhibited greater efficacy than fluconazole inhibiting C. krusei growth. The EEHS completely inhibited hyphae appearance and reduced pseudohyphae formation in C. albicans. CONCLUSION The stem bark of H. speciosa is a rich source of bioactive compounds, especially phenolic. Phenolic compounds can have important roles in fighting infectious diseases of the genitourinary system, such as candidiasis. The extracts of H. speciosa improved the action of the drug fluconazole against Candida species, inhibited hyphae appearance, and reduced pseudohyphae formation. The results of this study can support the development of new therapeutics against resistant strains of Candida.
Collapse
Affiliation(s)
- Viviane Bezerra da Silva
- Department of Botany, Universidade Federal de Pernambuco - UFPE, Rua Professor Moraes Rego, s/n, Recife, Pernambuco, 50.670-901, Brazil.
| | - José Weverton Almeida-Bezerra
- Department of Botany, Universidade Federal de Pernambuco - UFPE, Rua Professor Moraes Rego, s/n, Recife, Pernambuco, 50.670-901, Brazil
| | - Maria Hellena Garcia Novais
- Department of Biological Sciences, Universidade Regional do Cariri - URCA, Rua Cel. Antônio Luiz, 1161, Crato, Ceará, 63.105-000, Brazil
| | - Naiza Saraiva Farias
- Department of Biological Sciences, Universidade Regional do Cariri - URCA, Rua Cel. Antônio Luiz, 1161, Crato, Ceará, 63.105-000, Brazil
| | - Janerson José Coelho
- Animal Science Department, Universidade Estadual do Maranhão - UEMA, São Luís, Maranhão, Brazil
| | - Paulo Riceli Vasconcelos Ribeiro
- Multi-User Natural Products Chemistry Laboratory - LMQPN, Embrapa Agroindustria Tropical, Rua Dra. Sara Mesquita, 2270, Fortaleza, Ceará, 60511-110, Brazil
| | - Kirley Marques Canuto
- Multi-User Natural Products Chemistry Laboratory - LMQPN, Embrapa Agroindustria Tropical, Rua Dra. Sara Mesquita, 2270, Fortaleza, Ceará, 60511-110, Brazil
| | - Henrique Douglas Melo Coutinho
- Department of Biological Chemistry, Universidade Regional do Cariri - URCA, Rua Cel. Antônio Luiz, 1161, Crato, Ceará, 63.105-000, Brazil
| | | | | |
Collapse
|
5
|
Peixoto-Rodrigues MC, da Costa GL, Pinto TN, Adesse D, Oliveira MME, Hauser-Davis RA. A novel report on the emerging and zoonotic neurotropic fungus Trichosporon japonicum in the brain tissue of the endangered Brazilian guitarfish (Pseudobatos horkelii) off the southeastern coast of Brazil. BMC Microbiol 2023; 23:367. [PMID: 38017412 PMCID: PMC10685615 DOI: 10.1186/s12866-023-03128-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/17/2023] [Indexed: 11/30/2023] Open
Abstract
Yeast infections have gained significant attention in the field of marine biology in recent years. Among the broad diversity of marine organisms affected by these infections, elasmobranchs (sharks and rays) have emerged as highly susceptible, due to climate change effects, such as increasing water temperatures and pollution, which can alter the composition and abundance of fungal communities. Additionally, injuries, or compromised immune systems resulting from pollution or disease may increase the likelihood of fungal infections in elasmobranchs. Studies are, however, still lacking for this taxonomic group. In this context, this study aimed to screen yeast species in cell cultures obtained from the brain of artisanally captured Pseudobatos horkelii, a cartilaginous fish that, although endangered, is highly captured and consumed worldwide. Fungi were isolated during an attempt to establish primary cultures of elasmobranch neural cells. Culture flasks were swabbed and investigated using morphological, phenotypic, and molecular techniques. Two isolates of the emerging opportunistic pathogen Trichosporon japonicum were identified, with high scores (1.80 and 1.85, respectively) by the MALDI-ToF technique. This is the first report of the basidiomycetous yeast T. japonicum in Pseudobatos horkelii in Brazil. This finding highlights the need for further research to determine the potential impact on elasmobranch health, ecology, as well as on commercial fisheries.
Collapse
Affiliation(s)
- Maria Carolina Peixoto-Rodrigues
- Laboratório de Avaliação e Promoção da Saúde Ambiental, IInstituto Oswaldo Cruz, Rio de Janeiro, Brazil
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Gisela Lara da Costa
- Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Tatiane Nobre Pinto
- Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Daniel Adesse
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Rachel Ann Hauser-Davis
- Laboratório de Avaliação e Promoção da Saúde Ambiental, IInstituto Oswaldo Cruz, Rio de Janeiro, Brazil.
| |
Collapse
|
6
|
Thakur M, Kumar P, Rajput D, Yadav V, Dhaka N, Shukla R, Kumar Dubey K. Genome-guided approaches and evaluation of the strategies to influence bioprocessing assisted morphological engineering of Streptomyces cell factories. BIORESOURCE TECHNOLOGY 2023; 376:128836. [PMID: 36898554 DOI: 10.1016/j.biortech.2023.128836] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Streptomyces genera serve as adaptable cell factories for secondary metabolites with various and distinctive chemical structures that are relevant to the pharmaceutical industry. Streptomyces' complex life cycle necessitated a variety of tactics to enhance metabolite production. Identification of metabolic pathways, secondary metabolite clusters, and their controls have all been accomplished using genomic methods. Besides this, bioprocess parameters were also optimized for the regulation of morphology. Kinase families were identified as key checkpoints in the metabolic manipulation (DivIVA, Scy, FilP, matAB, and AfsK) and morphology engineering of Streptomyces. This review illustrates the role of different physiological variables during fermentation in the bioeconomy coupled with genome-based molecular characterization of biomolecules responsible for secondary metabolite production at different developmental stages of the Streptomyces life cycle.
Collapse
Affiliation(s)
- Mony Thakur
- Department of Microbiology, Central University of Haryana, Mahendergarh 123031, India
| | - Punit Kumar
- Department of Morphology and Physiology, Karaganda Medical University, Karaganda 100008 Kazakhstan
| | - Deepanshi Rajput
- Bioprocess Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Vinod Yadav
- Department of Microbiology, Central University of Haryana, Mahendergarh 123031, India
| | - Namrata Dhaka
- Department of Biotechnology, Central University of Haryana, Mahendergarh 123031, India
| | - Rishikesh Shukla
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Mathura- 281406, U.P., India
| | - Kashyap Kumar Dubey
- Bioprocess Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
7
|
Talapko J, Meštrović T, Škrlec I. Growing importance of urogenital candidiasis in individuals with diabetes: A narrative review. World J Diabetes 2022; 13:809-821. [PMID: 36311997 PMCID: PMC9606786 DOI: 10.4239/wjd.v13.i10.809] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/06/2022] [Accepted: 09/07/2022] [Indexed: 02/05/2023] Open
Abstract
Both diabetes and fungal infections contribute significantly to the global disease burden, with increasing trends seen in most developed and developing countries during recent decades. This is reflected in urogenital infections caused by Candida species that are becoming ever more pervasive in diabetic patients, particularly those that present with unsatisfactory glycemic control. In addition, a relatively new group of anti-hyperglycemic drugs, known as sodium glucose cotransporter 2 inhibitors, has been linked with an increased risk for colonization of the urogenital region with Candida spp., which can subsequently lead to an infectious process. In this review paper, we have highlighted notable virulence factors of Candida species (with an emphasis on Candida albicans) and shown how the interplay of many pathophysiological factors can give rise to vulvovaginal candidiasis, potentially complicated with recurrences and dire pregnancy outcomes. We have also addressed an increased risk of candiduria and urinary tract infections caused by species of Candida in females and males with diabetes, further highlighting possible complications such as emphysematous cystitis as well as the risk for the development of balanitis and balanoposthitis in (primarily uncircumcised) males. With a steadily increasing global burden of diabetes, urogenital mycotic infections will undoubtedly become more prevalent in the future; hence, there is a need for an evidence-based approach from both clinical and public health perspectives.
Collapse
Affiliation(s)
- Jasminka Talapko
- Laboratory for Microbiology, Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Osijek 31000, Croatia
| | - Tomislav Meštrović
- University North, University Centre Varaždin, Varaždin 42000, Croatia
- Institute for Health Metrics and Evaluation, Department for Health Metrics Sciences, University of Washington School of Medicine, Seattle, Washington 98195, United States
| | - Ivana Škrlec
- Department of Biophysics, Biology, and Chemistry, Faculty of Dental Medicine and Health, J. J. Strossmayer University of Osijek, Osijek 31000, Croatia
| |
Collapse
|
8
|
Feng Y, Bian S, Pang Z, Wen Y, Calderone R, Li D, Shi D. Deletion of Non-histidine Domains of Histidine Kinase CHK1 Diminishes the Infectivity of Candida albicans in an Oral Mucosal Model. Front Microbiol 2022; 13:855651. [PMID: 35531278 PMCID: PMC9069115 DOI: 10.3389/fmicb.2022.855651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/11/2022] [Indexed: 11/20/2022] Open
Abstract
Objectives The histidine kinase (HK) CHK1 and other protein kinases in Candida albicans are key players in the development of hyphae. This study is designed to determine the functional roles of the S_Tkc domain (protein kinase) and the GAF domain of C. albicans CHK1 in hyphal formation and mucosal invasion. Methods The domain mutants CHK25 (ΔS_TkcCHK1/Δchk1) and CHK26 (ΔS_TkcΔgafCHK1/Δchk1) were first constructed by the his1-URA3-his1 method and confirmed by sequencing and Southern blots. A mouse tongue infection model was used to evaluate the hyphal invasion and fungal loads in each domain mutant, full-gene deletion mutant CHK21 (chk1Δ/chk1Δ), re-constituted strain CHK23 (chk1Δ/CHK1), and wild type (WT) from day 1 to day 5. The degree of invasion and damage to the oral mucosa of mice in each strain-infected group was evaluated in vivo and compared with germ tube rate and hyphal formation in vitro. Result When compared with severe mucosal damage and massive hyphal formation in WT- or CHK23-infected mouse tongues, the deletion of S_Tkc domain (CHK25) caused mild mucosal damage, and fungal invasion was eliminated as we observed in full-gene mutant CHK21. However, the deletion of S_Tkc and GAF (CHK26) partially restored the hyphal invasion and mucosal tissue damage that were exhibited in WT and CHK23. Regardless of the in vivo results, the decreased hyphal formation and germ tube in vitro were less apparent and quite similar between CHK25 and CHK26, especially at the late stage of the log phase where CHK26 was closer to WT and CHK23. However, growth defect and hyphal impairment of both domain mutants were similar to CHK21 in the early stages. Conclusion Our data suggest that both protein kinase (S_Tkc) and GAF domains in C. albicans CHK1 are required for hyphal invasiveness in mucosal tissue. The appropriate initiation of cell growth and hyphal formation at the lag phase is likely mediated by these two functional domains of CHK1 to maintain in vivo infectivity of C. albicans.
Collapse
Affiliation(s)
- Yahui Feng
- College of Clinical Medicine, Jining Medical University, Jining, China
| | - Shaodong Bian
- Laboratory of Medical Mycology, Jining No. 1 People’s Hospital, Jining, China
| | - Zhiping Pang
- Laboratory of Medical Mycology, Jining No. 1 People’s Hospital, Jining, China
| | - Yiyang Wen
- Department of Pathology, Jining No. 1 People’s Hospital, Jining, China
| | - Richard Calderone
- Department of Microbiology/Immunology, Georgetown University Medical Center, Washington, DC, United States
| | - Dongmei Li
- Department of Microbiology/Immunology, Georgetown University Medical Center, Washington, DC, United States
- *Correspondence: Dongmei Li,
| | - Dongmei Shi
- Laboratory of Medical Mycology, Jining No. 1 People’s Hospital, Jining, China
- Department of Dermatology, Jining No.1 People’s Hospital, Jining, China
- Dongmei Shi,
| |
Collapse
|
9
|
Yaakoub H, Sanchez NS, Ongay-Larios L, Courdavault V, Calenda A, Bouchara JP, Coria R, Papon N. The high osmolarity glycerol (HOG) pathway in fungi †. Crit Rev Microbiol 2021; 48:657-695. [PMID: 34893006 DOI: 10.1080/1040841x.2021.2011834] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
While fungi are widely occupying nature, many species are responsible for devastating mycosis in humans. Such niche diversity explains how quick fungal adaptation is necessary to endow the capacity of withstanding fluctuating environments and to cope with host-imposed conditions. Among all the molecular mechanisms evolved by fungi, the most studied one is the activation of the phosphorelay signalling pathways, of which the high osmolarity glycerol (HOG) pathway constitutes one of the key molecular apparatus underpinning fungal adaptation and virulence. In this review, we summarize the seminal knowledge of the HOG pathway with its more recent developments. We specifically described the HOG-mediated stress adaptation, with a particular focus on osmotic and oxidative stress, and point out some lags in our understanding of its involvement in the virulence of pathogenic species including, the medically important fungi Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus, compared to the model yeast Saccharomyces cerevisiae. Finally, we also highlighted some possible applications of the HOG pathway modifications to improve the fungal-based production of natural products in the industry.
Collapse
Affiliation(s)
- Hajar Yaakoub
- Univ Angers, Univ Brest, GEIHP, SFR ICAT, Angers, France
| | - Norma Silvia Sanchez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Laura Ongay-Larios
- Unidad de Biología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Vincent Courdavault
- EA2106 "Biomolécules et Biotechnologies Végétales", Université de Tours, Tours, France
| | | | | | - Roberto Coria
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Nicolas Papon
- Univ Angers, Univ Brest, GEIHP, SFR ICAT, Angers, France
| |
Collapse
|
10
|
Das S, Bhuyan R, Goswami AM, Saha T. Kinome analyses of Candida albicans, C. parapsilosis and C. tropicalis enable novel kinases as therapeutic drug targets in candidiasis. Gene 2021; 780:145530. [PMID: 33631248 DOI: 10.1016/j.gene.2021.145530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/20/2020] [Accepted: 02/09/2021] [Indexed: 01/12/2023]
Abstract
Candida spp. have attracted considerable attention as they cause serious human diseases in immunocompromised individuals. The genomes of the pathogenic Candida spp. have been sequenced, but systemic characterizations of their kinomes are yet to be reported. As in various eukaryotes, the protein kinases play crucial regulatory roles in pathogenicity of Candida. Increased frequency of antifungal resistance in Candida spp. requires significant attention to explore novel therapeutic molecules for their control. The present in-silico study involves novel bioinformatics strategies to identify the kinase proteins and their potential drug targets with the purpose to combat fungal infections. The study reports 103, 107 and 106 kinase proteins from 3 Candida spp., C. albicans, C. parapsilosis and C. tropicalis, respectively. Moreover, 79 common kinase proteins were identified, of which 54 proteins play essential roles in Candida spp. and 42 proteins were human non-homologues. Among the essential and human non-homologous protein kinases, 9 were found to be common essential human non-homologues, of which 6 are uniquely present in Candida. These 6 protein kinases namely, Hsl1, Npr1, Ptk2, Kin2, Ksp1 and orf19.3854 (CAALFM_CR06040WA) are involved in various molecular and cellular processes regulating virulence or pathogenicity. Further, these 6 kinases are prioritized as potential drug targets and explored for discovering new lead compounds against candidiasis. The drug repurposing approach for these 6 kinases show 13 approved drugs and investigational compounds that might play substantial inhibitory roles during combating candidiasis.
Collapse
Affiliation(s)
- Sanjib Das
- Department of Molecular Biology & Biotechnology, University of Kalyani, West Bengal 741235, India
| | - Rajabrata Bhuyan
- Department of Bioscience & Biotechnology, Banasthali Vidyapith, Rajasthan 304022, India
| | - Achintya Mohan Goswami
- Department of Physiology, Krishnagar Govt. College, Krishnagar, Nadia, West Bengal 741101, India.
| | - Tanima Saha
- Department of Molecular Biology & Biotechnology, University of Kalyani, West Bengal 741235, India.
| |
Collapse
|
11
|
Engku Nasrullah Satiman EAF, Ahmad H, Ramzi AB, Abdul Wahab R, Kaderi MA, Wan Harun WHA, Dashper S, McCullough M, Arzmi MH. The role of Candida albicans candidalysin ECE1 gene in oral carcinogenesis. J Oral Pathol Med 2020; 49:835-841. [PMID: 32170981 DOI: 10.1111/jop.13014] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 03/10/2020] [Indexed: 02/06/2023]
Abstract
Oral squamous cell carcinoma is associated with many known risk factors including tobacco smoking, chronic alcoholism, poor oral hygiene, unhealthy dietary habits and microbial infection. Previous studies have highlighted Candida albicans host tissue infection as a risk factor in the initiation and progression of oral cancer. C albicans invasion induces several cancerous hallmarks, such as activation of proto-oncogenes, induction of DNA damage and overexpression of inflammatory signalling pathways. However, the molecular mechanisms behind these responses remain unclear. A recently discovered fungal toxin peptide, candidalysin, has been reported as an essential molecule in epithelial damage and host recognition of C albicans infection. Candidalysin has a clear role in inflammasome activation and induction of cell damage. Several inflammatory molecules such as IL-6, IL-17, NLRP3 and GM-CSF have been linked to carcinogenesis. Candidalysin is encoded by the ECE1 gene, which has been linked to virulence factors of C albicans such as adhesion, biofilm formation and filamentation properties. This review discusses the recent epidemiological burden of oral cancer and highlights the significance of the ECE1 gene and the ECE1 protein breakdown product, candidalysin in oral malignancy. The immunological and molecular mechanisms behind oral malignancy induced by inflammation and the role of the toxic fungal peptide candidalysin in oral carcinogenesis are explored. With increasing evidence associating C albicans with oral carcinoma, identifying the possible fungal pathogenicity factors including the role of candidalysin can assist in efforts to understand the link between C albicans infection and carcinogenesis, and pave the way for research into therapeutic potentials.
Collapse
Affiliation(s)
- Engku Anis Fariha Engku Nasrullah Satiman
- Department of Biomedical Science, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Kuantan, Malaysia.,Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Hasna Ahmad
- Department of Biomedical Science, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Kuantan, Malaysia.,Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Ahmad Bazli Ramzi
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Ridhwan Abdul Wahab
- Department of Biomedical Science, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Kuantan, Malaysia
| | - Mohd Arifin Kaderi
- Department of Biomedical Science, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Kuantan, Malaysia
| | | | - Stuart Dashper
- Melbourne Dental School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Michael McCullough
- Melbourne Dental School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Mohd Hafiz Arzmi
- Department of Fundamental Dental & Medical Sciences, Kulliyyah of Dentistry, International Islamic University Malaysia, Kuantan, Malaysia
| |
Collapse
|
12
|
Schoeters F, Van Dijck P. Protein-Protein Interactions in Candida albicans. Front Microbiol 2019; 10:1792. [PMID: 31440220 PMCID: PMC6693483 DOI: 10.3389/fmicb.2019.01792] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 07/19/2019] [Indexed: 12/27/2022] Open
Abstract
Despite being one of the most important human fungal pathogens, Candida albicans has not been studied extensively at the level of protein-protein interactions (PPIs) and data on PPIs are not readily available in online databases. In January 2018, the database called "Biological General Repository for Interaction Datasets (BioGRID)" that contains the most PPIs for C. albicans, only documented 188 physical or direct PPIs (release 3.4.156) while several more can be found in the literature. Other databases such as the String database, the Molecular INTeraction Database (MINT), and the Database for Interacting Proteins (DIP) database contain even fewer interactions or do not even include C. albicans as a searchable term. Because of the non-canonical codon usage of C. albicans where CUG is translated as serine rather than leucine, it is often problematic to use the yeast two-hybrid system in Saccharomyces cerevisiae to study C. albicans PPIs. However, studying PPIs is crucial to gain a thorough understanding of the function of proteins, biological processes and pathways. PPIs can also be potential drug targets. To aid in creating PPI networks and updating the BioGRID, we performed an exhaustive literature search in order to provide, in an accessible format, a more extensive list of known PPIs in C. albicans.
Collapse
Affiliation(s)
- Floris Schoeters
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
| | - Patrick Van Dijck
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
| |
Collapse
|