1
|
Attia MS, Hasan AA, Ghazy FES, Gomaa E. Mesoporous silica nanoparticles-embedded hydrogel: A potential approach for transdermal delivery of carvedilol to pediatric population. Int J Pharm 2025; 676:125605. [PMID: 40268210 DOI: 10.1016/j.ijpharm.2025.125605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/07/2025] [Accepted: 04/14/2025] [Indexed: 04/25/2025]
Abstract
Age-appropriate drug formulations, especially for children, are often limited. A beta-blocker, Carvedilol (CRV) has recently been reported as an off-label option for the management of cardiovascular disorders in pediatric patients. CRV exhibits a pH-dependent solubility and undergoes extensive hepatic metabolism, resulting in low oral bioavailability. Mesoporous silica nanoparticles (MSNs) of two types (MCM-41 and SBA-15) were loaded with CRV at three saturation levels to improve its dissolution rate. At high saturation level, CRV-loaded SBA-15 showed superior dissolution with a dissolution efficiency of 72.42 % and significant dissimilarity (f1 = 211.80, f2 = 16.89) compared to pure CRV, demonstrating enhanced solubility and dissolution rate due to its amorphous transformation and large pore diameter. Thermal and diffractometry analysis revealed the adsorption of CRV to MSNs in an amorphous state. CRV-loaded SBA-15 was incorporated into gel bases, and the amount of CRV released from triple-layer loaded gels was found to be higher than monolayer-loaded formulations. The ex vivo skin permeation study revealed a significant enhancement of drug release and permeation for CRV-loaded SBA-15 gel formulations (714.49 ± 38.49 µg/cm2) after 24 h, compared to the control (236.19 ± 18.93 µg/cm2), with flux increased by 62 %. Improving pediatric compliance by providing a convenient, non-invasive, and palatable drug delivery option that minimizes dosing errors and enhances treatment adherence. Our study suggests CRV-loaded SBA-15 transdermal gel as a pediatric-friendly alternative to oral delivery, addressing bitter taste, bypassing hepatic metabolism, and improving bioavailability while reducing side effects.
Collapse
Affiliation(s)
- Mohamed S Attia
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Azza A Hasan
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Fakhr-Eldin S Ghazy
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Eman Gomaa
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; Nanotechnology Research Center (NTRC), The British University in Egypt (BUE), Cairo 11837, Egypt.
| |
Collapse
|
2
|
Ghasemi Shayan R, Jalaei D, Dobakhti F. Modified diatom-based ocular suspension for sustained diclofenac sodium delivery: a novel drug carrier approach. BMC Pharmacol Toxicol 2025; 26:77. [PMID: 40205488 PMCID: PMC11983991 DOI: 10.1186/s40360-025-00917-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/31/2025] [Indexed: 04/11/2025] Open
Abstract
PURPOSE Ophthalmic drugs typically last only around 15 minutes due to rapid elimination from tear flow, with only about 2% absorption, while the rest may enter the nasal mucosa, potentially causing systemic side effects. Diatoms, with properties like unique structure, abundance, low cost, heat resistance, non-toxicity, and easy access, present a promising solution for sustained drug delivery. This study aimed to prepare and evaluate an ocular suspension of diclofenac sodium loaded onto modified diatoms. METHODS Diatoms were modified with aluminum sulfate solution, followed by loading of diclofenac sodium. Characteristics of diatoms before and after modification-particle size, surface charge, and drug loading-were analyzed using electron microscopy, FTIR (Fourier Transform Infrared Spectroscopy), XRD (X-ray Diffraction), and elemental mapping. BET (Brunauer-Emmett-Teller (Surface Area Analysis) testing provided adsorption data, while DSC (Differential Scanning Calorimetry) assessed thermal properties. An in vitro release study using a dialysis bag in artificial tear fluid examined drug release over 8 hours. Drug content was determined by spectrophotometry, and cytotoxicity on MDA-MB-231 and HEP-G2 cell lines was evaluated at different diatom concentrations. RESULTS SEM (Scanning Electron Microscopy) imaging showed no topographic changes post-modification. BET and XRD analyses confirmed drug loading and structural stability, while FTIR indicated involvement of carboxylate groups. TGA and DSC showed stable thermal properties. Elemental mapping confirmed increased surface elements and high drug loading. Modified diatoms showed sustained drug release and no significant cytotoxicity differences. CONCLUSION Modified diatoms demonstrated higher drug loading and sustained release, indicating their potential for safe and effective ocular drug delivery. Further studies are recommended to confirm these findings.
Collapse
Affiliation(s)
- Ramin Ghasemi Shayan
- Radiology Department, Paramedical Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dorsa Jalaei
- School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Faramarz Dobakhti
- School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
3
|
Liu W, Wu J, Jiang Z, Zhang X, Wang Z, Meng F, Liu Z, Zhang T. Application of Ordered Porous Silica Materials in Drug Delivery: A Review. Molecules 2024; 29:5713. [PMID: 39683872 DOI: 10.3390/molecules29235713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/29/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Nanotechnology has significantly advanced various fields, including therapeutic delivery, through the use of nanomaterials as drug carriers. The biocompatibility of ordered porous silica materials makes them promising candidates for drug delivery systems, particularly in the treatment of cancer and other diseases. This review summarizes the use of microporous zeolites and mesoporous silica materials in drug delivery, focusing on their physicochemical properties and applications as drug carriers. Special emphasis is placed on strategies for encapsulation and functionalization, highlighting their role in enhancing drug loading and enabling targeted delivery. In conclusion, while ordered porous silica materials hold great potential for drug delivery systems, certain challenges remain.
Collapse
Affiliation(s)
- Wenwen Liu
- Nanjing University of Science and Technology Hospital, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Junlin Wu
- School of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Zehao Jiang
- School of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Xinyu Zhang
- School of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Zhenxiang Wang
- School of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Fanjun Meng
- School of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Zidi Liu
- Big Data and Intelligence Engineering School, Chongqing College of International Business and Economics, Chongqing 401520, China
| | - Teng Zhang
- Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Jinan 250307, China
| |
Collapse
|
4
|
Klara J, Onak S, Kowalczyk A, Wójcik K, Lewandowska-Łańcucka J. Photocrosslinked gelatin/chondroitin sulfate/chitosan-based composites with tunable multifunctionality for bone tissue regeneration. Int J Biol Macromol 2024; 271:132675. [PMID: 38845259 DOI: 10.1016/j.ijbiomac.2024.132675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/20/2024]
Abstract
Novel hydrogel-based multifunctional systems prepared utilizing photocrosslinking and freeze-drying processes (PhotoCross/Freeze-dried) dedicated for bone tissue regeneration are presented. Fabricated materials, composed of methacrylated gelatin, chitosan, and chondroitin sulfate, possess interesting features including bioactivity, biocompatibility, as well as antibacterial activity. Importantly, their degradation and swellability might be easily tuned by playing with the biopolymeric content in the photocrosllinked systems. To broaden the potential application and deliver the therapeutic features, mesoporous silica particles functionalized with methacrylate moieties decorated with hydroxyapatite and loaded with the antiosteoporotic drug, alendronate, (MSP-MA-HAp-ALN) were dispersed within the biopolymeric sol and photocrosslinked. It was demonstrated that the obtained composites are characterized by a significantly extended degradation time, ensuring optimal conditions for balancing hybrids removal with the deposition of fresh bone. We have shown that attachment of MSP-MA-HAp-ALN to the polymeric matrix minimizes the initial burst effect and provides a prolonged release of ALN (up to 22 days). Moreover, the biological evaluation in vitro suggested the capability of the resulted systems to promote bone remodeling. Developed materials might potentially serve as scaffolds that after implantation will fill up bone defects of various origin (osteoporosis, tumour resection, accidents) providing the favourable conditions for bone regeneration and supporting the infections' treatment.
Collapse
Affiliation(s)
- Joanna Klara
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Sylwia Onak
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Andrzej Kowalczyk
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Kinga Wójcik
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | | |
Collapse
|
5
|
Giannakas AE, Baikousi M, Karabagias VK, Karageorgou I, Iordanidis G, Emmanouil-Konstantinos C, Leontiou A, Karydis-Messinis A, Zafeiropoulos NE, Kehayias G, Proestos C, Salmas CE. Low-Density Polyethylene-Based Novel Active Packaging Film for Food Shelf-Life Extension via Thyme-Oil Control Release from SBA-15 Nanocarrier. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:423. [PMID: 38470754 DOI: 10.3390/nano14050423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
The use of natural raw substances for food preservation could provide a great contribution to food waste reduction, circular economy enhancement, and green process application widening. Recent studies indicated that the use of porous materials as adsorbents for natural essential oils provided nanohybrids with excellent antioxidant and antimicrobial properties. Following this trend in this work, a thymol oil (TEO) rich SBA-15 nanohybrid was prepared and characterized physiochemically with various techniques. This TEO@SBA-15 nanohybrid, along with the pure SBA-15, was extruded with low-density polyethylene (LDPE) to develop novel active packaging films. Results indicated that TEO loading was higher than other porous materials reported recently, and the addition of both pure SBA-15 and TEO@SBA-15 to the LDPE increased the water/oxygen barrier. The film with the higher thyme-oil@SBA-15 nanohybrid content exhibited a slower release kinetic. The antioxidant activity of the final films ignited after 48 h, was in the range of 60-70%, and was almost constant for 7 days. Finally, all tests indicated a sufficient improvement by the addition of thyme-oil@SBA-15 nanohybrids in the pure LDPE matrix and the concentration of wt. 10% of such nanocarriers provided the optimum final LDPE/10TEO@SBE-15 active packaging film. This material could be a potential future product for active packaging applications.
Collapse
Affiliation(s)
- Aris E Giannakas
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece
| | - Maria Baikousi
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece
| | | | - Ioanna Karageorgou
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece
| | - George Iordanidis
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece
| | | | - Areti Leontiou
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece
| | | | | | - George Kehayias
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece
| | - Charalampos Proestos
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Zografou, 15771 Athens, Greece
| | - Constantinos E Salmas
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
6
|
Klara J, Onak S, Kowalczyk A, Horak W, Wójcik K, Lewandowska-Łańcucka J. Towards Controlling the Local Bone Tissue Remodeling-Multifunctional Injectable Composites for Osteoporosis Treatment. Int J Mol Sci 2023; 24:ijms24054959. [PMID: 36902390 PMCID: PMC10002562 DOI: 10.3390/ijms24054959] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Alendronate (ALN) is the most commonly prescribed oral nitrogen-containing bisphosphonate for osteoporosis therapy. However, its administration is associated with serious side effects. Therefore, the drug delivery systems (DDS) enabling local administration and localized action of that drug are still of great importance. Herein, a novel multifunctional DDS system based on the hydroxyapatite-decorated mesoporous silica particles (MSP-NH2-HAp-ALN) embedded into collagen/chitosan/chondroitin sulfate hydrogel for simultaneous osteoporosis treatment and bone regeneration is proposed. In such a system, the hydrogel serves as a carrier for the controlled delivery of ALN at the site of implantation, thus limiting potential adverse effects. The involvement of MSP-NH2-HAp-ALN in the crosslinking process was established, as well as the ability of hybrids to be used as injectable systems. We have shown that the attachment of MSP-NH2-HAp-ALN to the polymeric matrix provides a prolonged ALN release (up to 20 days) and minimizes the initial burst effect. It was revealed that obtained composites are effective osteoconductive materials capable of supporting the osteoblast-like cell (MG-63) functions and inhibiting osteoclast-like cell (J7741.A) proliferation in vitro. The purposely selected biomimetic composition of these materials (biopolymer hydrogel enriched with the mineral phase) allows their biointegration (in vitro study in the simulated body fluid) and delivers the desired physicochemical features (mechanical, wettability, swellability). Furthermore, the antibacterial activity of the composites in in vitro experiments was also demonstrated.
Collapse
Affiliation(s)
- Joanna Klara
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Sylwia Onak
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Andrzej Kowalczyk
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Wojciech Horak
- Department of Machine Design and Technology, Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Kinga Wójcik
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | | |
Collapse
|
7
|
Aina T, Salifu AA, Kizhakkepura S, Danyuo Y, Obayemi JD, Oparah JC, Ezenwafor TC, Onwudiwe KC, Ani CJ, Biswas SS, Onyekanne C, Odusanya OS, Madukwe J, Soboyejo WO. Sustained release of alpha-methylacyl-CoA racemase (AMACR) antibody-conjugated and free doxorubicin from silica nanoparticles for prostate cancer cell growth inhibition. J Biomed Mater Res B Appl Biomater 2023; 111:665-683. [PMID: 36314600 DOI: 10.1002/jbm.b.35185] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 09/02/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022]
Abstract
This article presents silica nanoparticles for the sustained release of AMACR antibody-conjugated and free doxorubicin (DOX) for the inhibition of prostate cancer cell growth. Inorganic MCM-41 silica nanoparticles were synthesized, functionalized with phenylboronic acid groups (MCM-B), and capped with dextran (MCM-B-D). The nanoparticles were then characterized using Fourier-transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, zeta potential analysis, nitrogen sorption, X-ray diffraction, and thermogravimetric analysis, before exploring their potential for drug loading and controlled drug release. This was done using a model prostate cancer drug, DOX, and a targeted prostate cancer drug, α-Methyl Acyl-CoA racemase (AMACR) antibody-conjugated DOX, which attaches specifically to AMACR proteins that are overexpressed on the surfaces of prostate cancer cells. The kinetics of sustained drug release over 30 days was then studied using zeroth order, first order, second order, Higuchi, and the Korsmeyer-Peppas models, while the thermodynamics of drug release was elucidated by determining the entropy and enthalpy changes. The flux of the released DOX was also simulated using the COMSOL Multiphysics software package. Generally, the AMACR antibody-conjugated DOX drug-loaded nanoparticles were more effective than the free DOX drug-loaded formulations in inhibiting the growth of prostate cancer cells in vitro over a 96 h period. The implications of the results are then discussed for the development of drug-eluting structures for the localized and targeted treatment of prostate cancer.
Collapse
Affiliation(s)
- Toyin Aina
- Department of Materials Science and Engineering, African University of Science and Technology, Abuja, Nigeria.,Department of Mechanical and Materials Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA.,Department of Biomedical Engineering, Worcester Polytechnic Institute, Life Sciences and Bioengineering Center, Worcester, Massachusetts, USA
| | - Ali A Salifu
- Department of Mechanical and Materials Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA.,Department of Biomedical Engineering, Worcester Polytechnic Institute, Life Sciences and Bioengineering Center, Worcester, Massachusetts, USA
| | - Sonu Kizhakkepura
- Chemistry and Physics of Materials Unit (CPMU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur, Bengaluru, India
| | - Yiporo Danyuo
- Department of Mechanical and Materials Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA.,Department of Mechanical Engineering, Ashesi University, Accra, Ghana
| | - John D Obayemi
- Department of Mechanical and Materials Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA.,Department of Biomedical Engineering, Worcester Polytechnic Institute, Life Sciences and Bioengineering Center, Worcester, Massachusetts, USA
| | - Josephine C Oparah
- Department of Materials Science and Engineering, African University of Science and Technology, Abuja, Nigeria.,Department of Mechanical and Materials Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA.,Department of Biomedical Engineering, Worcester Polytechnic Institute, Life Sciences and Bioengineering Center, Worcester, Massachusetts, USA
| | - Theresa C Ezenwafor
- Department of Materials Science and Engineering, African University of Science and Technology, Abuja, Nigeria.,Department of Mechanical and Materials Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Killian C Onwudiwe
- Department of Materials Science and Engineering, African University of Science and Technology, Abuja, Nigeria.,Department of Mechanical and Materials Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA.,Department of Biomedical Engineering, Worcester Polytechnic Institute, Life Sciences and Bioengineering Center, Worcester, Massachusetts, USA
| | - Chukwuemeka J Ani
- Department of Civil Engineering, Nile University of Nigeria, Abuja, Nigeria
| | - Suchi S Biswas
- Chemistry and Physics of Materials Unit (CPMU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur, Bengaluru, India
| | - Chinyerem Onyekanne
- Department of Materials Science and Engineering, African University of Science and Technology, Abuja, Nigeria.,Department of Mechanical and Materials Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA.,Department of Biomedical Engineering, Worcester Polytechnic Institute, Life Sciences and Bioengineering Center, Worcester, Massachusetts, USA
| | - Olushola S Odusanya
- Biotechnology and Genetic Engineering Advanced Laboratory, Sheda Science and Technology Complex (SHESTCO), Abuja, Nigeria
| | - Jonathan Madukwe
- Department of Histopathology, National Hospital Abuja, Abuja, Nigeria
| | - Winston O Soboyejo
- Department of Materials Science and Engineering, African University of Science and Technology, Abuja, Nigeria.,Department of Mechanical and Materials Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA.,Department of Biomedical Engineering, Worcester Polytechnic Institute, Life Sciences and Bioengineering Center, Worcester, Massachusetts, USA
| |
Collapse
|
8
|
Van Nguyen K, Dang TK, Vu LTD, Ha NT, Truong HD, Tran TH. Orodispersible film incorporating nanoparticulate loratadine for an enhanced oral bioavailability. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2023. [DOI: 10.1007/s40005-023-00613-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
9
|
Amutha T, Jacinth Mispa K. Ion exchange behavior of novel Pani -Ti(IV) phosphosulphosalicylate hybrid cation exchange material for the selective separation of Pb(II) in environmental remediation. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2022.2089583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- T. Amutha
- Research Scholar (Register Number: 18122022032001) Department of Chemistry, Aditanar College of Arts and Science, Affiliating to Manonmaniam Sundaranar University, Abishekapatti, India
| | - K. Jacinth Mispa
- Department of Chemistry, Aditanar College of Arts and Science, Tiruchendur, Affiliating to Manonmaniam Sundaranar University, Abishekapatti, India
| |
Collapse
|
10
|
Safitri WN, Habiddin H, Ulfa M, Trisunaryanti W, Bahruji H, Holilah H, Rohmah AA, Sholeha NA, Jalil AA, Santoso E, Prasetyoko D. Dual Template using P123-Gelatin for synthesized Large Mesoporous Silica for Enhanced Adsorption of Dyes. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1016/j.sajce.2022.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
11
|
The effect of gelatin as pore expander in green synthesis mesoporous silica for methylene blue adsorption. Sci Rep 2022; 12:15271. [PMID: 36088488 PMCID: PMC9464223 DOI: 10.1038/s41598-022-19615-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/31/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractMesoporous silica NSG had been synthesized while employing gelatin as a natural template to successfully increase the particle size and expand the pore diameter of NSG. All silica samples exhibited a similar XRD pattern with a broad peak centred at 2θ = 22.9°, as the characteristic of amorphous silica. FTIR results showed that the reduction of Si–O–Si symmetric stretching vibrations at 1075 cm−1 was due to the use of a high percentage of gelatin. Moreover, TEM analysis displayed the mesoporous channels in the form of a honeycomb structure with a diameter of ± 6 nm. Gelatin enhanced the surface area of silica from 467 to 510 m2/g, the pore volume from 0.64 to 0.72 cc/g and expanded the pore diameter from 3.5 nm to 6.0 nm. The expansion of the ordered mesopores with the increase of P123: gelatin ratios was elucidated by the pore size distribution. The adsorption capacity of methylene blue (MB) was improved on mesoporous silica with an expanded pore dimension to give 168 mg/g adsorption capacity within 70 min.
Collapse
|
12
|
Recent Trends in Drug Delivery and Emerging Biomedical Applications of Gelatin for Ophthalmic Indications. Macromol Res 2022. [DOI: 10.1007/s13233-022-0078-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
13
|
Vélez-Peña E, Morales R, Reyes-Escobar C, Torres CC, Avello M, Marrugo KP, Manzo-Merino J, Alderete JB, Campos CH. Mesoporous mixed oxides prepared by hard template methodology as novel drug delivery carriers for methotrexate. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Adsorptive colorimetric determination of chromium(VI) ions at ultratrace levels using amine functionalized mesoporous silica. Sci Rep 2022; 12:5673. [PMID: 35383234 PMCID: PMC8983689 DOI: 10.1038/s41598-022-09689-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 02/15/2022] [Indexed: 11/08/2022] Open
Abstract
There is an urgent need for a rapid, affordable and sensitive analytical method for periodic monitoring of heavy metals in water bodies. Herein, we report for the first time a versatile method for ultratrace level metal detection based on colorimetric sensing. The method integrates preconcentration using a nanomaterial with a colorimetric assay performed directly on the metal-enriched nanomaterial surface. This method circumvents the need for tedious sample pre-processing steps and the complex development of colorimetric probes, thereby reducing the complexity of the analytical procedure. The efficacy of the proposed method was demonstrated for chromium(VI) ions detection in water samples. Amine functionalized mesoporous silica (AMS) obtained from a one-pot synthesis was utilized as a pre-concentration material. The structural and chemical analysis of AMS was conducted to confirm its physico-chemical properties. The pre-concentration conditions were optimized to maximise the colorimetric signal. AMS exhibited a discernible colour change from white to purple (visible to the naked eye) for trace Cr(VI) ions concentration as low as 0.5 μg L-1. This method shows high selectivity for Cr(VI) ions with no colorimetric signal from other metal ions. We believe our method of analysis has a high scope for de-centralized monitoring of organic/inorganic pollutants in resource-constrained settings.
Collapse
|
15
|
Abstract
Due to the diseases that people face today, scientists dedicate a part of their research to the synthesis, characterization, and study of functional compounds for controlled drug delivery. On the one hand, resorcinarenes are macrocycles obtained by condensation reactions of resorcinol and aldehyde. They include an upper and a lower rim functioning with different groups that confer solubility to the macrocycle and favor interactions with other compounds, therefore the hydroxyl groups on the upper rim improve the formation of hydrogen bonds. Additionally, resorcinarenes feature a cavity studied for forming host-guest complexes. SBA-15, on the other hand, is a mesoporous silica characterized by ordered pores in its structure and a large surface area. As a result of its properties, it has been used for several purposes, including absorbents, drug delivery, catalysis, and environmental processes. This review shows the recent advances in synthesis methods, characterization, micelle formation, interaction with other compounds, and host-guest procedures, as well as techniques for evaluating toxicity, drug retention, and their preliminary uses in pharmacology for macrocycles, such as resorcin[4]arenes and SBA-15.
Collapse
|
16
|
Rathinavel S, Indrakumar J, Korrapati PS, Dharmalingam S. Synthesis and fabrication of amine functionalized SBA-15 incorporated PVA/Curcumin nanofiber for skin wound healing application. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Dadej A, Woźniak-Braszak A, Bilski P, Piotrowska-Kempisty H, Józkowiak M, Stawny M, Dadej D, Mrotek M, Jelińska A. APTES-Modified SBA-15 as a Non-Toxic Carrier for Phenylbutazone. MATERIALS 2022; 15:ma15030946. [PMID: 35160897 PMCID: PMC8838844 DOI: 10.3390/ma15030946] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/03/2022] [Accepted: 01/22/2022] [Indexed: 12/16/2022]
Abstract
Improvement of the bioavailability of poorly soluble medicinal substances is currently one of the major challenges for pharmaceutical industry. Enhancing the dissolution rate of those drugs using novel methods allows to increase their bioavailability. In recent years, silica-based mesoporous materials have been proposed as drug delivery systems that augment the dissolution rate. The aim of this study was to analyse the influence of phenylbutazone adsorption on SBA-15 on its dissolution rate. Moreover, we examined the cytotoxicity of the analyzed silica. The material was characterized by SEM, TEM, DSC, 1H-NMR, XRD, and FT-IR. The phenylbutazone did not adsorb on unmodified SBA-15, while the adsorption on APTES-modified SBA-15 resulted in 50.43 mg/g of loaded phenylbutazone. Phenylbutazone adsorbed on the APTES-modified SBA-15 was then released in the hydrochloric acidic medium (pH 1.2) and phosphate buffer (pH 7.4) and compared to the dissolution rate of the crystalline phenylbutazone. The release profiles of the amorphous form of adsorbed phenylbutazone are constant in different pH, while the dissolution rate of the crystalline phenylbutazone depends on the pH. The cytotoxicity assays were performed using the Caco-2 cell line. Our results indicate that the analyzed material ensured phenylbutazone adsorption in an amorphous state inside the mesopores and increased its dissolution rate in various pH levels. Furthermore, the cytotoxicity assay proved safety of studied material. Our study demonstrated that APTES-modified SBA-15 can serve as a non-toxic drug carrier that improves the bioavailability of phenylbutazone.
Collapse
Affiliation(s)
- Adrianna Dadej
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland; (M.S.); (M.M.); (A.J.)
- Correspondence:
| | - Aneta Woźniak-Braszak
- Functional Materials Physics Division, Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland;
| | - Paweł Bilski
- Medical Physics and Radiospectroscopy Division, Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland;
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Faculty of Pharmacy, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland; (H.P.-K.); (M.J.)
| | - Małgorzata Józkowiak
- Department of Toxicology, Faculty of Pharmacy, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland; (H.P.-K.); (M.J.)
| | - Maciej Stawny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland; (M.S.); (M.M.); (A.J.)
| | - Daniela Dadej
- Department of Endocrinology, Metabolism and Internal Diseases, Faculty of Medicine, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznań, Poland;
| | - Michał Mrotek
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland; (M.S.); (M.M.); (A.J.)
| | - Anna Jelińska
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland; (M.S.); (M.M.); (A.J.)
| |
Collapse
|
18
|
Functionalization of mesoporous MCM-41 for the delivery of curcumin as an anti-inflammatory therapy. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2021.103417] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Soltani S, Akhbari K. Facile and single-step entrapment of chloramphenicol in ZIF-8 and evaluation of its performance in killing infectious bacteria with high loading content and controlled release of the drug. CrystEngComm 2022. [DOI: 10.1039/d1ce01593a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
CLN@ZIF-8 was prepared by trapping chloramphenicol during ZIF-8 synthesis with high DLC and DLE. It showed H2O2-sensitive controlled release with higher drug release under the simulated infectious conditions and short-time antibacterial activity.
Collapse
Affiliation(s)
- Sajjad Soltani
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Kamran Akhbari
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
20
|
Um J, Cho S, Jin HJ. Amphiphilic-triblock-copolymer-derived protective layer for stable-cycling lithium metal anodes. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Mdlovu NV, Lin KS, Weng MT, Lin YS. Design of doxorubicin encapsulated pH-/thermo-responsive and cationic shell-crosslinked magnetic drug delivery system. Colloids Surf B Biointerfaces 2021; 209:112168. [PMID: 34715504 DOI: 10.1016/j.colsurfb.2021.112168] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/02/2021] [Accepted: 10/16/2021] [Indexed: 12/26/2022]
Abstract
The upsurge in cancer cases, such as liver cancer, has claimed millions of lives globally and has prompted the development of novel nanodrug delivery systems. These systems allow cancer drugs to be encapsulated in nanocarriers and delivered to tumor sites, and accordingly, help reduce side effects of the current chemotherapeutic treatments. Herein, we prepared nanocarriers comprising magnetic iron oxide (MIO) nanoparticles that were surface modified with crosslinked Pluronic F127 (PF127) and branched polyethylenimine (bPEI) to form MIOpoly nanocarriers. These nanocarriers were then loaded with doxorubicin (DOX) anticancer drug to form the MIOpoly-DOX complex. The nanocarriers were magnetite and possessed superparamagnetic properties. Small-angle neutron scattering (SANS) analysis indicated that the nanocarriers were thermoresponsive and spherically structured. The characteristic peaks at 1285, 1619, 2844, 2919, 2900, 2840, and 3426 cm-1, corresponding to those of CN, -NH2, -CH2, and OH-, confirmed the successful crosslinking, coating of PF127-bPEI polymers on the surface of MIO nanoparticles and DOX conjugation. The bioavailability of the nanocarriers indicated a more than 85% cell viability when using HepG2 liver cancer cells. A pH (54.8% release in 48 h; pH = 5.4) and temperature (51.0% release in 48 h; 42 °C)-dependent release of DOX was observed, displaying a Korsmeyer-Peppas kinetics model at low pH and Weibull model at high temperatures. The high DOX fluorescence observed for MIOpoly-DOX indicated a high cellular uptake enhanced by alternating magnetic field. These results suggest that MIOpoly synthesized using a combined approach of surface crosslinking and grafted with PF127-bPEI appear to offer promising properties as drug delivery system. Therefore, the nanocarriers developed in the study possess a great potential for targeted delivery and thereby circumventing the limitations of conventional chemotherapy.
Collapse
Affiliation(s)
- Ndumiso Vukile Mdlovu
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li District, Taoyuan City 32003, Taiwan
| | - Kuen-Song Lin
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li District, Taoyuan City 32003, Taiwan.
| | - Meng-Tzu Weng
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100233, Taiwan.
| | - You-Sheng Lin
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li District, Taoyuan City 32003, Taiwan
| |
Collapse
|
22
|
Huang W, Liu J, Rao N, Fan G, Yan J, Cheng Q, Song G. Influence of surfactant on CO 2 adsorption of amine-functionalized MCM-41. ENVIRONMENTAL TECHNOLOGY 2021; 43:1-9. [PMID: 34279187 DOI: 10.1080/09593330.2021.1958012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
Concerning the increasing greenhouse effect, the development of efficient CO2 adsorbents is very important. In this study, the influence of surfactant on the adsorption performance of amine-functionalized MCM-41 was analysed. The results showed that the residual amount of surfactant in MCM-41 was gradually decreased with the increase of calcination temperature which improved the pore structure. The maximum adsorption capacity (5.495 mmol/g) appeared at PEI-MCM-41-100°C indicated that the adsorption capacity could be improved under the function of surfactant. By calculating the diffusion coefficient of CO2 adsorption process in PEI-MCM-41-100/200/300/400/550°C, the diffusion resistance of CO2 was the lowest in PEI-MCM-41-100°C, which directly proved that the synergism of surfactant and organic amine could reduce the diffusion resistance of CO2 in the pore.
Collapse
Affiliation(s)
- Wenwen Huang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, People's Republic of China
| | - Jiacheng Liu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, People's Republic of China
| | - Na Rao
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, People's Republic of China
| | - Guozhi Fan
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, People's Republic of China
| | - Juntao Yan
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, People's Republic of China
| | - Qunpeng Cheng
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, People's Republic of China
| | - Guangsen Song
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, People's Republic of China
| |
Collapse
|
23
|
Yoo JM, Park SS, Yan YZ, Ha CS. Crown-Ether-Modified SBA-15 for the Adsorption of Cr(VI) and Zn(II) from Water. MATERIALS 2021; 14:ma14175060. [PMID: 34501150 PMCID: PMC8433633 DOI: 10.3390/ma14175060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/20/2021] [Accepted: 08/30/2021] [Indexed: 11/18/2022]
Abstract
Recently, the release of some metal ions to the environment has been observed to cause serious damages to human health and the environment. Herein, a chromium(VI)- and zinc(II)-selective adsorbent (CB18crown6/SBA-15) was successfully fabricated through the covalent attachment of 4′-carboxybenzo-18-crown-6 (CB18crown6) as a ligand on mesoporous silica support (SBA-15). The CB18crown6/SBA-15 adsorbent was characterized by Fourier-transform infrared (FTIR) spectrometry, X-ray diffraction (XRD), N2 adsorption–desorption, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). To evaluate its ability to selectively capture Cr(VI) and Zn(II), adsorption experiments were conducted. The influences of pH, initial concentration of metal ions, and coexisting metal ions on the adsorption process were examined. The CB18crown6/SBA-15 selectively adsorbed Cr(VI) at pH 2 and Zn(II) at pH 5, respectively, from the mixed aqueous solutions of chromium, zinc, lithium, cadmium, cobalt, strontium, and cesium ions. The data for the adsorption of Cr(VI) onto the CB18crown6/SBA-15 were well explained by the Langmuir adsorption isotherm. In addition, the recycling and reuse of CB18crown6/SBA-15 was successfully achieved, and 71 and 76% reuse efficiency of Cr(VI) and Zn(II), respectively, was obtained after five cycles. This study suggests that the use of the CB18crown6/SBA-15 can be a feasible approach for the selective remediation of Cr(VI) and Zn(II) contamination.
Collapse
|
24
|
Rodríguez-Estupiñan P, Correa-Navarro YM, Vargas DP, Giraldo L, Moreno-Piraján JC. Enthalpies of Immersion in Caffeine and Glyphosate Aqueous Solutions of SBA-15 and Amino-Functionalized SBA-15. ACS OMEGA 2021; 6:21339-21349. [PMID: 34471738 PMCID: PMC8388004 DOI: 10.1021/acsomega.1c01588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
Mesostructured silica SBA-15 and amino-functionalized silica SBA-15-NH2 were synthesized, and then, characterization, adsorption capacity, and immersion enthalpies in caffeine and glyphosate on SBA-15 and SBA-15-NH2 were evaluated. The enthalpy parameter was determined using a local construction Tian-type heat conduction calorimeter. Calorimetric studies in caffeine solutions exhibit negative enthalpy values; exothermic process characteristics for SBA-15 were between -13.90 and -194.06 J g-1 and those for SBA-15-NH2 were between -7.22 and -60.34 J g-1, and the adsorption capacity of caffeine was better in SBA-15 than that in SBA-15-NH2. In contrast, the enthalpies of immersion in glyphosate solutions were -5.06 to -56.2 J g-1 and the immersion of SBA-15-NH2 in each solution generated enthalpy values of -9.06 to -41.2 J g-1, but the adsorption capacity of glyphosate was better in the amino-functionalized SBA-15. The results show that functionalization of SBA-15 produced differences in physicochemical characteristics of solids, since energy and affinity for the calorimetric liquids are related to the surface properties of solids as well as the chemical nature of the target molecule, immersion enthalpy, was different.
Collapse
Affiliation(s)
- Paola Rodríguez-Estupiñan
- Departamento
de Química, Facultad de Ciencias,
Universidad de los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia
| | - Yaned Milena Correa-Navarro
- Departamento
de Química, Facultad de Ciencias,
Universidad de los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia
- Departamento
de Química, Facultad de Ciencias,
Universidad de Caldas, Calle 65 No. 26-10, 170002 Manizales, Colombia
| | - Diana P. Vargas
- Departamento
de Química, Grupo de Investigación en Materiales Porosos
con Aplicaciones Tecnológicas y Ambientales, Facultad de Ciencias, Universidad del Tolima, Calle 42 No. 1-02, 730006299 Ibagué, Colombia
| | - Liliana Giraldo
- Departamento
de Química, Facultad de Ciencias,
Universidad Nacional de Colombia, Carrera 30 No. 45-03, 111321 Bogotá, Colombia
| | - Juan Carlos Moreno-Piraján
- Departamento
de Química, Facultad de Ciencias,
Universidad de los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia
| |
Collapse
|
25
|
Trzeciak K, Chotera-Ouda A, Bak-Sypien II, Potrzebowski MJ. Mesoporous Silica Particles as Drug Delivery Systems-The State of the Art in Loading Methods and the Recent Progress in Analytical Techniques for Monitoring These Processes. Pharmaceutics 2021; 13:pharmaceutics13070950. [PMID: 34202794 PMCID: PMC8309060 DOI: 10.3390/pharmaceutics13070950] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/17/2022] Open
Abstract
Conventional administration of drugs is limited by poor water solubility, low permeability, and mediocre targeting. Safe and effective delivery of drugs and therapeutic agents remains a challenge, especially for complex therapies, such as cancer treatment, pain management, heart failure medication, among several others. Thus, delivery systems designed to improve the pharmacokinetics of loaded molecules, and allowing controlled release and target specific delivery, have received considerable attention in recent years. The last two decades have seen a growing interest among scientists and the pharmaceutical industry in mesoporous silica nanoparticles (MSNs) as drug delivery systems (DDS). This interest is due to the unique physicochemical properties, including high loading capacity, excellent biocompatibility, and easy functionalization. In this review, we discuss the current state of the art related to the preparation of drug-loaded MSNs and their analysis, focusing on the newest advancements, and highlighting the advantages and disadvantages of different methods. Finally, we provide a concise outlook for the remaining challenges in the field.
Collapse
|
26
|
Alazzawi HF, Salih IK, Albayati TM. Drug delivery of amoxicillin molecule as a suggested treatment for covid-19 implementing functionalized mesoporous SBA-15 with aminopropyl groups. Drug Deliv 2021; 28:856-864. [PMID: 33928831 PMCID: PMC8812583 DOI: 10.1080/10717544.2021.1914778] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
SARS-CoV-2 is a novel coronavirus that was isolated and identified for the first time in Wuhan, China in 2019. Nowadays, it is a worldwide danger and the WHO named it a pandemic. In this investigation, a functionalization post-synthesis method was used to assess the ability of an adapted SBA-15 surface as a sorbent to load the drug from an aqueous medium. Different characterization approaches were used to determine the characterization of the substance before and after functionalization such as X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), nitrogen adsorption–desorption porosimetry (Brunauer–Emmett–Teller) BET surface area analysis, and thermal gravimetric analysis (TGA). Batch adsorption testing was carried out in a single adsorption device to find the impact of multiple variables on the drug amoxicillin charge output. The following parameters were studied: 0–72 hr. contact time, 20–120 mg/l initial concentration, and 20–250 mg of NH2-SBA-15 dose. The outcomes from such experiments revealed the strong influence and behavior of the amino-functional group to increase the drug's load. Drug delivery outcomes studies found that amoxicillin loading was directly related to NH2-SBA-15 contact time and dose, but indirectly related to primary concentration. It was observed that 80% of amoxicillin was loaded while the best release test results were 1 hour and 51%.
Collapse
Affiliation(s)
- Haneen F Alazzawi
- Department of Chemical Engineering, University of Technology, Baghdad, Iraq
| | - Issam K Salih
- Department of Chemical and Petroleum Industries Engineering, Al-Mustaqbal University College, Babylon, Iraq
| | - Talib M Albayati
- Department of Chemical Engineering, University of Technology, Baghdad, Iraq
| |
Collapse
|
27
|
Li Z, He Y, Klausen LH, Yan N, Liu J, Chen F, Song W, Dong M, Zhang Y. Growing vertical aligned mesoporous silica thin film on nanoporous substrate for enhanced degradation, drug delivery and bioactivity. Bioact Mater 2021; 6:1452-1463. [PMID: 33251381 PMCID: PMC7670213 DOI: 10.1016/j.bioactmat.2020.10.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 12/18/2022] Open
Abstract
Mesoporous silica thin film has been widely used in various fields, particularly the medical implant coating for drug delivery. However, some drawbacks remain with the films produced by traditional method (evaporation-induced self-assembly, EISA), such as the poor permeability caused by their horizontal aligned mesochannels. In this study, the vertical aligned mesoporous silica thin film (VMSTF) is uniformly grown alongside the walls of titania nanotubes array via a biphase stratification growth method, resulting in a hierarchical two-layered nanotubular structure. Due to the exposure of opened mesopores, VMSTF exhibits more appealing performances, including rapid degradation, efficient small-molecular drug (dexamethasone) loading and release, enhanced early adhesion and osteogenic differentiation of MC3T3-E1 cells. This is the first time successfully depositing VMSTF on nanoporous substrate and our findings suggest that the VMSTF may be a promising candidate for bone implant surface coating to obtain bioactive performances.
Collapse
Key Words
- ALP, alkaline phosphatase
- DEX, dexamethasone
- Drug delivery
- HAP, hydroxylapatite nanoparticles
- HMSTF, hybrid organic-inorganic MSTF
- MSTF, mesoporous silica thin film
- Mesoporous silica film
- OCN, osteocalcin
- OPN, osteopontin
- Osteoblasts
- PMSTF, parallel aligned MSTF
- PT, polished titanium
- RUNX2, runt-related transcription factor 2
- TNN, titania nanonet
- TNT, titania nanotube
- Titania nanotubes array
- Ti–OH, hydroxylated titanium
- VMSTF, vertical aligned MSTF
- Vertical aligned mesochannels
Collapse
Affiliation(s)
- Zhe Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yide He
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | | | - Ning Yan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Jing Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Fanghao Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Wen Song
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, 8000, Denmark
| | - Yumei Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
28
|
Hajiaghababaei L, Eslambolipour M, Badiei A, Ganjali MR, Ziarani GM. Controlled release of anticancer drug using o-phenylenediamine functionalized SBA-15 as a novel nanocarrier. CHEMICAL PAPERS 2021; 75:1841-1850. [DOI: 10.1007/s11696-020-01422-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/05/2020] [Indexed: 10/22/2022]
|
29
|
Zhang X, Chen Z, Tao C, Zhang J, Zhang M, Zhang J, Liu Z, Lin J, Xu H, Zhang Q, Song H. Effect of Surface Property on the Release and Oral Absorption of Solid Sirolimus-Containing Self-microemulsifying Drug Delivery System. AAPS PharmSciTech 2021; 22:108. [PMID: 33718989 DOI: 10.1208/s12249-021-01978-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/27/2021] [Indexed: 11/30/2022] Open
Abstract
The combination of self-microemulsifying drug delivery system (SMEDDS) and mesoporous silica materials favors the oral delivery of poorly water-soluble drugs (PWSD). However, the influence of the surface property of the mesopores towards the drug release and in vivo pharmacokinetics is still unknown. In this study, SBA-15 with hydroxyl groups (SBA-15-H), methyl groups (SBA-15-M), amino groups (SBA-15-A), or carboxyl groups (SBA-15-C) was combined with SMEDDS containing sirolimus (SRL). The diffusion and self-emulsifying of SMEDDS greatly improved the drug release over the raw SRL and SRL-SBA-15-R (R referred to as the functional groups). Results of drug absorption and X-ray photoelectron spectroscopy (XPS) showed strong hydrogen binding between SRL and the amino groups of SBA-15-A, which hindered the drug release and oral bioavailability of SRL-SMEDDS-SBA-15-A. The favorable release of SRL-SMEDDS-SBA-15-C (91.31 ± 0.57%) and SRL-SMEDDS-SBA-15-M (91.76 ± 3.72%) contributed to enhancing the maximum blood concentration (Cmax) and the area under the concentration-time curve (AUC0→48). In conclusion, the release of SRL-SMEDDS-SBA-15-R was determined by the surface affinity of the SBA-15-R and the interaction between the SRL molecules and the surface of SBA-15-R. This study suggested that the SMEDDS-SBA-15 was a favorable carrier for PWSD, and the surface property of the mesopores should be considered for the optimization of the SMEDDS-SBA-15.
Collapse
|
30
|
Bayramoglu G, Arica MY. Modification of epoxy groups of poly(hydroxylmethyl methacrylate-co-glycidyl methacrylate) cryogel with H 3PO 4 as adsorbent for removal of hazardous pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:43340-43358. [PMID: 32737786 DOI: 10.1007/s11356-020-10170-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Poly(hydroxylmethyl methacrylate-co-glycidyl methacrylate) (p(HEMA-GMA)) macroporous cryogel with high density of epoxy groups was synthesized, and the epoxy groups of the cryogel were modified into phosphonate groups. The effects of dye concentrations, adsorption time, pH, salt concentration, and adsorption temperature on the adsorption of Direct Blue-53 (DB-53) and Reactive Blue-160 (RB-160) dyes were studied. The maximum adsorption capacity was found to be 245.3 and 155.8 mg/g (0.255 or 0.119 mmol/g) for the DB-53 and RB-160 dyes, respectively. The higher adsorption capacity achieved for the DB-53 compared with the RB-160 dye can result from the pendant primary amino groups of the DB-53 dye as well as the smaller size of the dye molecule. The Langmuir isotherm model and the pseudo-second-order kinetic model well described the experimental data. The p(HEMA-GMA)-PO42- adsorbent has many operational advantages for the removal of pollutants. It could be a promising adsorbent to be used in industrial wastewater treatment.
Collapse
Affiliation(s)
- Gulay Bayramoglu
- Biochemical Processing and Biomaterial Research Laboratory, Gazi University, Teknikokullar, 06500, Ankara, Turkey.
- Department of Chemistry, Faculty of Sciences, Gazi University, Teknikokullar, 06500, Ankara, Turkey.
| | - Mehmet Yakup Arica
- Biochemical Processing and Biomaterial Research Laboratory, Gazi University, Teknikokullar, 06500, Ankara, Turkey
| |
Collapse
|
31
|
Abdelbar MF, Shams RS, Morsy OM, Hady MA, Shoueir K, Abdelmonem R. Highly ordered functionalized mesoporous silicate nanoparticles reinforced poly (lactic acid) gatekeeper surface for infection treatment. Int J Biol Macromol 2020; 156:858-868. [PMID: 32330503 DOI: 10.1016/j.ijbiomac.2020.04.119] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/13/2020] [Accepted: 04/18/2020] [Indexed: 01/08/2023]
Abstract
The controlled release of a drug considers the key feature of the delivery carrier that enhances therapeutic efficacy. This study was aimed at design, synthesis of nano valve and capping systems onto caged functionalized mesoporous silica nanoparticles (SBA15) with nanoflowers polylactic acid (PLA-NF). Levofloxacin (LVX) as a specific model drug was encapsulated onto series; SBA15, SBA15@NH2, and SBA15@NH2/PLA. The examined nanocarriers released in a controlled fashion by external stimuli. The delivery vehicle based on PLA-NF coated SBA15@NH2, potent conjugated with LVX with experienced a high extent of trapping content with fast releasing by pH regulating mechanism. In vial LVX released profile and in vitro antifungal forceful of the selected microbes were detected. However, SBA15@NH2/PLA exhibited pore size, surface area and pore volume 5.4 nm, 163 and 0.011 respectively, but the significantly clear zone was obtained with Staphylococcus aureus ATCC 6538 (G+ve), Escherichia coli ATCC 25922 (G-ve), Candida albicans ATCC 10231 (yeast) and Aspergillus niger NRRL A-326 (fungus). Viability test avouch that rising functionality enhanced cytocompatibility and non-toxicity profile. Based on the aforementioned promising data, this type of nanocarriers offers when functionalized with targeting cells, the accessibility to deliver antibiotics onto nanosystem for increased potency against microbes and reduce side effects.
Collapse
Affiliation(s)
- Mostafa F Abdelbar
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt
| | - Raef S Shams
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Ossama M Morsy
- Department of Basic and Applied Science, Faculty of Engineering, Arab Academy for Science, Technology & Maritime Transport, Egypt
| | - Mayssa Adbel Hady
- Department of Pharmaceutical Technology, National Research Center, Dokki, Cairo, Egypt
| | - Kamel Shoueir
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt.
| | - Rehab Abdelmonem
- Department of Industrial Pharmacy, Faculty of Pharmacy, Misr University for Science & Technology, 6(th) October, Egypt
| |
Collapse
|
32
|
Almáši M, Beňová E, Zeleňák V, Madaj B, Huntošová V, Brus J, Urbanová M, Bednarčík J, Hornebecq V. Cytotoxicity study and influence of SBA-15 surface polarity and pH on adsorption and release properties of anticancer agent pemetrexed. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 109:110552. [PMID: 32228921 DOI: 10.1016/j.msec.2019.110552] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 12/04/2019] [Accepted: 12/12/2019] [Indexed: 02/06/2023]
Abstract
Mesoporous material SBA-15 was functionalized with different polar and nonpolar groups: 3-aminopropyl, (SBA-15-NH2), 3-isocyanatopropyl (SBA-15-NCO), 3-mercaptopropyl (SBA-15-SH), methyl (SBA-15-CH3) and phenyl (SBA-15-Ph). The resulting surface grafted materials were investigated as matrices for controlled drug delivery. Anticancer agent, pemetrexed (disodium pemetrexed heptahydrate) was selected as a model drug and loaded in the unmodified and functionalized SBA-15 materials. Materials were characterized by elemental analysis, infrared spectroscopy, transmission electron microscopy, nitrogen adsorption/desorption analysis, small angle X-ray scattering, powder X-ray diffraction, solid state NMR spectroscopy and thermogravimetry. It was shown that surface modification has an impact on both encapsulated drug amount and release properties. Release experiments were performed into two media with different pH: simulated body fluid (pH = 7.4) and simulated gastric fluid (pH = 2). In general, the effect of pH was reflected by the lower release of pemetrexed under acidic conditions (pH = 2) compared to slightly alkaline saline environment (pH = 7.4). The release rate of pemetrexed from propylamine-, propylisocyanate- and phenyl-modified SBA-15 was found to be effectively controlled by intermolecular interactions as compared to that from pure SBA-15, SBA-15-SH, and SBA-15-CH3, that evidenced a steady and similar release. The highest release was observed for methyl-functionalized material whose hydrophobic surface accelerates the pemetrexed release. The data obtained from release studies were fitted using various kinetic models to determine the pemetrexed release mechanism and its release rate. The best correlations were found for Korsmeyer-Peppas and Higuchi models. Moreover, the theoretical three-parameter model for drug release kinetic was applied to calculate the strength of drug-support interactions. The in vitro cell study was performed on SKBR3 cancer cells and obtained results demonstrated that the modification of the mesoporous silica material by grafted polar/nonpolar groups may significantly affect the compatibility of this material with cells, drug release from this material and subsequent biological activity of PEM.
Collapse
Affiliation(s)
- Miroslav Almáši
- Department of Inorganic Chemistry, Faculty of Science, P. J. Šafárik University, Moyzesova 11, SK-041 01 Košice, Slovak Republic.
| | - Eva Beňová
- Department of Inorganic Chemistry, Faculty of Science, P. J. Šafárik University, Moyzesova 11, SK-041 01 Košice, Slovak Republic; Aix-Marseille University, CNRS, MADIREL, F-133 97 Marseille, France
| | - Vladimír Zeleňák
- Department of Inorganic Chemistry, Faculty of Science, P. J. Šafárik University, Moyzesova 11, SK-041 01 Košice, Slovak Republic
| | - Branislav Madaj
- Department of Inorganic Chemistry, Faculty of Science, P. J. Šafárik University, Moyzesova 11, SK-041 01 Košice, Slovak Republic
| | - Veronika Huntošová
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P. J. Šafárik University, Jesenna 5, SK-041 54 Košice, Slovak Republic
| | - Jiří Brus
- Laboratory of Solid State NMR Spectroscopy, Department of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky square 2, CZ-162 06 Prague, Czech Republic
| | - Martina Urbanová
- Laboratory of Solid State NMR Spectroscopy, Department of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky square 2, CZ-162 06 Prague, Czech Republic
| | - Jozef Bednarčík
- Department of Physics, Faculty of Science, P. J. Šafárik University, Park Angelinum 9, SK-041 01 Košice, Slovak Republic; Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, SK-040 01 Košice, Slovak Republic
| | | |
Collapse
|