1
|
Cainelli E, Stramucci G, Bisiacchi P. A light in the darkness: Early phases of development and the emergence of cognition. Dev Cogn Neurosci 2025; 72:101527. [PMID: 39933251 PMCID: PMC11869870 DOI: 10.1016/j.dcn.2025.101527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 01/18/2025] [Accepted: 02/04/2025] [Indexed: 02/13/2025] Open
Abstract
During the prenatal period, the major brain development milestones are posed and calibrated through different mechanisms, among which endogenous activity, that prepares the "system" to face the external environment. However, the specific nature of the human nervous system, intended for brain plasticity that is varied by brain area and prolonged over time, requires much time for environmental experiences to shape the cerebral circuitries. Therefore, the neonate completely depends on the caregiver, and during the first months of postnatal life, it exhibits a transitory and limited repertoire of behaviors and skills that favors the mother in her new role. This transitory condition will gradually give way to more mature competencies, the milestones of which are posed within 2 years of age. This review takes a new perspective on early development and attempts to trace the remarkable changes from in-utero period to the second year of postnatal life, posing a bridge between the neurobiological substrate and behavioral development. We based our work on the "normal" development, pointing out the risks inherent in any development process.
Collapse
Affiliation(s)
- Elisa Cainelli
- Department of General Psychology, University of Padova, Padova 35131, Italy.
| | - Giulia Stramucci
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Italy; School of Advanced Studies, Center of Neuroscience, University of Camerino, Camerino, MC, Italy; Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, Camerino, MC, Italy.
| | - Patrizia Bisiacchi
- Department of General Psychology, University of Padova, Padova 35131, Italy; Padova Neuroscience Center, PNC, Padova 35131, Italy.
| |
Collapse
|
2
|
Meggiolaro L, Moschino L, Stocchero M, Giordano G, Vida V, Di Salvo G, Baraldi E. Metabolomic profiling of infants undergoing cardiopulmonary bypass and association with clinical outcomes: a systematic review. Front Cardiovasc Med 2024; 11:1491046. [PMID: 39610977 PMCID: PMC11602462 DOI: 10.3389/fcvm.2024.1491046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/21/2024] [Indexed: 11/30/2024] Open
Abstract
Introduction The incidence of adverse short-term outcomes for infants who undergo complex congenital heart disease (CHD) surgery with cardiopulmonary bypass (CPB) is still high. Early identification and treatment of high-risk patients remain challenging, especially because clinical risk factors often fail to explain the different outcomes of this vulnerable population. Metabolomics offers insight into the phenotype of the patient and the complex interplay between the genetic substrate and the environmental influences at the time of sampling. For these reasons, it may be helpful to identify the mechanisms of physio-pathological disruptions experienced in neonates undergoing congenital heart surgery and to identify potential therapeutic targets. Methods We conducted a systematic review (PROSPERO: ID 565112) of studies investigating the association between targeted or untargeted metabolomic analysis of infants undergoing elective surgery with CPB for CHD and clinical outcomes. The PRISMA guidelines were followed. We searched MEDLINE via PubMed, EMBASE via Ovid, the Cochrane Central Register of Controlled Trials, the Cochrane Library, ClinicalTrials.gov and the World Health Organization's International Trials Registry and Platform. Results Seven studies involving 509 children (aged 1 day to 21.3 months), all of whom underwent cardiac surgery requiring CPB, were included for qualitative analysis. We found associations between metabolomic profiles and various clinical outcomes, such as mortality, acute kidney injury (AKI), and neurological outcomes. Specific metabolites (mainly amino acids, their metabolic products and fatty acids) were identified as potential biomarkers for these outcomes, demonstrating the utility of metabolomics in predicting certain postoperative complications. Conclusion The quality of the evidence was limited due to heterogeneity in study designs and small sample sizes, but the findings are promising and suggest that further research is warranted to confirm these associations. Systematic Review Registration https://www.crd.york.ac.uk/prospero/, PROSPERO ID 565112.
Collapse
Affiliation(s)
- Leonardo Meggiolaro
- Neonatal Intensive Care Unit, Department of Women’s and Children’s Health, University of Padova, Padova, Italy
| | - Laura Moschino
- Neonatal Intensive Care Unit, Department of Women’s and Children’s Health, University of Padova, Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica Città Della Speranza, Padova, Italy
| | - Matteo Stocchero
- Fondazione Istituto di Ricerca Pediatrica Città Della Speranza, Padova, Italy
| | - Giuseppe Giordano
- Fondazione Istituto di Ricerca Pediatrica Città Della Speranza, Padova, Italy
| | - Vladimiro Vida
- Paediatric Cardiac Surgery, Padova University Hospital, Padova, Italy
| | - Giovanni Di Salvo
- Paediatric Cardiology Unit, Department of Women’s and Children’s Health, Padova University Hospital, Padova, Italy
| | - Eugenio Baraldi
- Neonatal Intensive Care Unit, Department of Women’s and Children’s Health, University of Padova, Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica Città Della Speranza, Padova, Italy
| |
Collapse
|
3
|
Yang F, Zhong J, Liu P, Yu W, Liu Y, Zhu M, Yang M, Mo X. Radiomics with structural magnetic resonance imaging, surface morphometry features, neurology scales, and clinical metrics to evaluate the neurodevelopment of preschool children with corrected tetralogy of Fallot. Transl Pediatr 2024; 13:1571-1587. [PMID: 39399711 PMCID: PMC11467234 DOI: 10.21037/tp-24-219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/03/2024] [Indexed: 10/15/2024] Open
Abstract
Background Despite the improved survival rates of children with tetralogy of Fallot (TOF), various degrees of neurodevelopmental disorders persist. Currently, there is a lack of quantitative and objective imaging markers to assess the neurodevelopment of individuals with TOF. This study aimed to noninvasively examine potential quantitative imaging markers of TOF neurodevelopment by combining radiomics signatures and morphological features and to further clarify the relationship between imaging markers and clinical neurodevelopment metrics. Methods This study included 33 preschool children who had undergone surgical correction for TOF and 29 healthy controls (36 in the training cohort and 26 in the testing cohort), all of whom underwent three-dimensional T1-weighted high-resolution (T1-3D) head magnetic resonance imaging (MRI). Radiomics features were extracted by Pyradiomics to construct radiomics models, while surface morphometry (surface and volumetric) features were analyzed to build morphometry models. Merged models integrating radiomics and morphometry features were subsequently developed. The optimal discriminative radiomics signatures were identified via least absolute shrinkage and selection operator (LASSO). Machine learning classification models include support vector machine (SVM) with radial basis function (RBF) and multivariable logistic regression (MLR) models, both of which were used to evaluate the potential imaging biomarkers. Performances of models were evaluated based on their calibration and classification metrics. The area under the receiver operating characteristic curves (AUCs) of the models were evaluated using the Delong test. Neurodevelopmental assessments for children with corrected TOF were conducted with the Wechsler Preschool and Primary Scale of Intelligence-Fourth Edition (WPPSI-IV). Furthermore, the correlation of the significant discriminative indicators with clinical metrics and neurodevelopmental scales was evaluated. Results Twelve discriminative radiomics signatures, optimized for classification, were identified. The performance of the merged model (AUCs of 0.922 and 0.917 for the training set and test set with SVM, respectively) was superior to that of the single radiomics model (AUCs of 0.915 and 0.917 for the training set and test set with SVM, respectively) and that of the single morphometric models (AUCs of 0.803 and 0.756 for the training set and test set with SVM, respectively). The radiomics model demonstrated higher significance than did the morphometric models in training set with SVM (AUC: 0.915 vs. 0.803; P<0.001). Additionally, the significant indicators showed a correlation with clinical indicators and neurodevelopmental scales. Conclusions MRI-based radiomics features combined with morphometry features can provide complementary information to identify neurodevelopmental abnormalities in children with corrected TOF, which will provide potential evidence for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Feng Yang
- Department of Radiology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Jingjing Zhong
- Department of Radiology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Peng Liu
- Department of Radiology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Yu
- Department of Radiology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | | | - Meijiao Zhu
- Department of Radiology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Ming Yang
- Department of Radiology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Xuming Mo
- Department of Cardiothoracic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
AlKattan W, Sabbah BN, Alghafees MA, Sabbah AN, Alsaleem A, Alqahtani MA, Almadani A, Alrashid A, Alshabanat FB, Ali Omar MS, Ouban A, Aleem MU, Barbour A, Abuzubida A, Osman NA, Ali SS, Abbara Z, Alfuwais MA. Pediatric Anesthesia Exposure: Decoding Its Neurodevelopmental Implications and Navigating the Nuances. Cureus 2024; 16:e55952. [PMID: 38601369 PMCID: PMC11005881 DOI: 10.7759/cureus.55952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2024] [Indexed: 04/12/2024] Open
Abstract
General anesthesia is fundamental in pediatric medical interventions, but its potential neurodevelopmental impact on children has raised concerns, necessitating a thorough investigation. This systematic review aimed to assess the association between pediatric anesthesia exposure and neurodevelopmental outcomes, focusing on dosage effects and identifying high-risk groups. The study involved an extensive literature search across PubMed, Medline, and Google Scholar, selecting 40 relevant studies from an initial pool of 2,000, based on inclusion criteria that focused on children under 18 years exposed to anesthesia, excluding those with major comorbidities or perioperative physiological insults. It was observed that while a single exposure to anesthesia had minimal impact on general neurodevelopment, repeated or prolonged exposures posed greater concerns. Despite these findings, the study identified gaps in certain areas like adaptive behavior and sensory cognition due to limited data. The conclusion drawn is that although the evidence on anesthesia-induced neurotoxicity in children remains inconclusive, the implications of pediatric anesthesia exposure are significant enough to warrant careful consideration by healthcare professionals, who should balance the procedural benefits against the risks. This study also calls for future research to standardize methodologies and employ consistent, validated neurodevelopmental measurement tools.
Collapse
Affiliation(s)
- Wael AlKattan
- Surgery, Alfaisal University College of Medicine, Riyadh, SAU
| | - Belal N Sabbah
- College of Medicine, Alfaisal University College of Medicine, Riyadh, SAU
| | - Mohammad A Alghafees
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, SAU
| | - Ahmad N Sabbah
- College of Medicine, Alfaisal University College of Medicine, Riyadh, SAU
| | - Alanood Alsaleem
- Anesthesiology, King Faisal Specialist Hospital and Research Centre, Riyadh, SAU
| | - Meshari A Alqahtani
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, SAU
| | - Alshaima Almadani
- Anesthesiology, King Faisal Specialist Hospital and Research Centre, Riyadh, SAU
| | - Aljazi Alrashid
- Anesthesiology, King Faisal Specialist Hospital and Research Centre, Riyadh, SAU
| | - Faris B Alshabanat
- College of Medicine, Imam Mohammed Ibn Saud Islamic University, Riyadh, SAU
| | | | | | | | - Aladeen Barbour
- College of Medicine, Alfaisal University College of Medicine, Riyadh, SAU
| | | | - Nadine A Osman
- College of Medicine, Alfaisal University College of Medicine, Riyadh, SAU
| | - Saad S Ali
- College of Medicine, Alfaisal University College of Medicine, Riyadh, SAU
| | - Zain Abbara
- College of Medicine, Alfaisal University College of Medicine, Riyadh, SAU
| | | |
Collapse
|
5
|
Grunert M, Dorn C, Dopazo A, Sánchez-Cabo F, Vázquez J, Rickert-Sperling S, Lara-Pezzi E. Technologies to Study Genetics and Molecular Pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:435-458. [PMID: 38884724 DOI: 10.1007/978-3-031-44087-8_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Over the last few decades, the study of congenital heart disease (CHD) has benefited from various model systems and the development of molecular biological techniques enabling the analysis of single gene as well as global effects. In this chapter, we first describe different models including CHD patients and their families, animal models ranging from invertebrates to mammals, and various cell culture systems. Moreover, techniques to experimentally manipulate these models are discussed. Second, we introduce cardiac phenotyping technologies comprising the analysis of mouse and cell culture models, live imaging of cardiogenesis, and histological methods for fixed hearts. Finally, the most important and latest molecular biotechniques are described. These include genotyping technologies, different applications of next-generation sequencing, and the analysis of transcriptome, epigenome, proteome, and metabolome. In summary, the models and technologies presented in this chapter are essential to study the function and development of the heart and to understand the molecular pathways underlying CHD.
Collapse
Affiliation(s)
- Marcel Grunert
- Cardiovascular Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
- DiNAQOR AG, Schlieren, Switzerland
| | - Cornelia Dorn
- Cardiovascular Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ana Dopazo
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Fátima Sánchez-Cabo
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Jésus Vázquez
- Proteomics Unit, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | | | - Enrique Lara-Pezzi
- Myocardial Homeostasis and Cardiac Injury Programme, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain.
| |
Collapse
|
6
|
Marino LV, Paulson S, Ashton JJ, Weeks C, Young A, Pappachan JVP, Swann JR, Johnson MJ, Beattie RM. A scoping review: urinary markers of metabolic maturation in infants with CHD and the relationship to growth. Cardiol Young 2023; 33:1879-1888. [PMID: 36325968 DOI: 10.1017/s1047951122003262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Growth failure in infants born with CHD is a persistent problem, even in those provided with adequate nutrition. OBJECTIVE To summarise the published data describing the change in urinary metabolites during metabolic maturation in infants with CHD and identify pathways amenable to therapeutic intervention. DESIGN Scoping review. ELIGIBILITY CRITERIA Studies using qualitative or quantitative methods to describe urinary metabolites pre- and post-cardiac surgery and the relationship with growth in infants with CHD. SOURCES OF EVIDENCE NICE Healthcare Databases website was used as a tool for multiple searches. RESULTS 347 records were identified, of which 37 were duplicates. Following the removal of duplicate records, 310 record abstracts and titles were screened for inclusion. The full texts of eight articles were reviewed for eligibility, of which only two related to infants with CHD. The studies included in the scoping review described urinary metabolites in 42 infants. A content analysis identified two overarching themes of metabolic variation predictive of neurodevelopmental abnormalities associated with anaerobic metabolism and metabolic signature associated with the impact on gut microbiota, inflammation, energy, and lipid digestion. CONCLUSION The results of this scoping review suggest that there are considerable gaps in our knowledge relating to metabolic maturation of infants with CHD, especially with respect to growth. Surgery is a key early life feature for CHD infants and has an impact on the developing biochemical phenotype with implications for metabolic pathways involved in immunomodulation, energy, gut microbial, and lipid metabolism. These early life fingerprints may predict those individuals at risk for neurodevelopmental abnormalities.
Collapse
Affiliation(s)
- Luise V Marino
- Paediatric Intensive Care Unit, Southampton Children's Hospital, NIHR Southampton Biomedical Research Centre University Hospital Southampton NHS Foundation Trust; Faculty of Health Science, University of Southampton, Southampton, UK
| | - Simone Paulson
- Paediatric Intensive Care Unit, Southampton Children's Hospital, NIHR Southampton, UK
| | - James J Ashton
- Paediatric Gastroenterology, Southampton Children's Hospital, NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust; Faculty of Human Genetics and Genomic Medicine, University of Southampton, Southampton, UK
| | - Charlotte Weeks
- Paediatric Intensive Care Unit, Southampton Children's Hospital, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Aneurin Young
- Department of Neonatal Medicine, Southampton Children's Hospital, University Hospital Southampton NHS Foundation Trust and NIHR Southampton Biomedical Research Centre, UK
| | - John V P Pappachan
- Paediatric Intensive Care Unit, Southampton Children's Hospital, NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust; Faculty of Medicine, University of Southampton, Southampton, UK
| | - John R Swann
- Biomolecular Medicine, School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Mark J Johnson
- Neonatal Medicine, Southampton Children's Hospital, NIHR Southampton Biomedical Research Centre University Hospital Southampton NHS Foundation Trust; Faculty of Medicine, University of Southampton, Southampton, UK
| | - R Mark Beattie
- Paediatric Gastroenterology, Southampton Children's Hospital, NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust; Faculty of Human Genetics and Genomic Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
7
|
Wang W, Cui H, Ran G, Du C, Chen X, Dong S, Huang S, Yan J, Chu J, Song J. Plasma metabolic profiling of patients with tetralogy of fallot. Clin Chim Acta 2023; 548:117522. [PMID: 37598740 DOI: 10.1016/j.cca.2023.117522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/08/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND Tetralogy of Fallot (TOF) is a common congenital heart disease with high mortality. However, the medical imageology and liquidbiopsy techniques present certain limitations. Thus, this study investigated the plasma metabolic profiles to distinguish key metabolites for early diagnosis of TOF. METHODS In total, 69 patients with TOF and 43 normal controls were enrolled for targeted metabolomics based on liquid chromatography-tandem mass spectroscopy (LC-MS/MS). Absolute quantification of metabolites was performed using our standard database. The differentially expressed metabolites (DEMs) were screened by fold change (FC), VIP value and pearson correlation coefficient of OPLS-DA model. Receiver operating characteristic curve (ROC) was used to evaluate predictive ability of DEMs. RESULTS Different metabolic profiles were presented between TOF and Normal.The pathway analysis showed that significantly changed metabolites were enriched in nicotinamide and purine metabolism. Many intermediatesproductof purine and amido acid were higher in TOF than in Normal group, while energy substrates and electron carriers were lower in TOF than in Normal group. ROC analysis revealed a high diagnostic value of plasma FAD for differentiating TOF from Normal (AUC = 1). CONCLUSION Our study quantitatively characterized plasma metabolites in patients with TOF and may help to develop reliable biomarkers that contribute to the early TOF screening.
Collapse
Affiliation(s)
- Wei Wang
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, China
| | - Hao Cui
- The Cardiomyopathy Research Group, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, China
| | - Gao Ran
- Department of General Surgery, Strategic Support Force Characteristic Medical Center, Beijing, China
| | - Chuhao Du
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, China
| | - Xiao Chen
- The Cardiomyopathy Research Group, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, China
| | - Shuo Dong
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, China
| | - Siyuan Huang
- The Cardiomyopathy Research Group, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, China
| | - Jun Yan
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, China
| | - Junmin Chu
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, China.
| | - Jiangping Song
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, China; The Cardiomyopathy Research Group, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, China; Beijing Key Laboratory of Pre-clinical Research and Evaluation for Cardiovascular Implant Materials, Center for Cardiovascular Experimental Study and Evaluation, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, China.
| |
Collapse
|
8
|
Patt E, Singhania A, Roberts AE, Morton SU. The Genetics of Neurodevelopment in Congenital Heart Disease. Can J Cardiol 2023; 39:97-114. [PMID: 36183910 DOI: 10.1016/j.cjca.2022.09.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/23/2022] [Accepted: 09/25/2022] [Indexed: 02/07/2023] Open
Abstract
Congenital heart disease (CHD) is the most common birth anomaly, affecting almost 1% of infants. Neurodevelopmental delay is the most common extracardiac feature in people with CHD. Many factors may contribute to neurodevelopmental risk, including genetic factors, CHD physiology, and the prenatal/postnatal environment. Damaging variants are most highly enriched among individuals with extracardiac anomalies or neurodevelopmental delay in addition to CHD, indicating that genetic factors have an impact beyond cardiac tissues in people with CHD. Potential sources of genetic risk include large deletions or duplications that affect multiple genes, such as 22q11 deletion syndrome, single genes that alter both heart and brain development, such as CHD7, and common variants that affect neurodevelopmental resiliency, such as APOE. Increased use of genome-sequencing technologies in studies of neurodevelopmental outcomes in people with CHD will improve our ability to detect relevant genes and variants. Ultimately, such knowledge can lead to improved and more timely intervention of learning support for affected children.
Collapse
Affiliation(s)
- Eli Patt
- Harvard Medical School, Boston, Massachusetts, USA
| | - Asmita Singhania
- School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Amy E Roberts
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts, USA; Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA; Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Sarah U Morton
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA; Division of Newborn Medicine, Boston Children's Hospital, Boston, Massachusetts, USA.
| |
Collapse
|
9
|
Neurodevelopmental Disorders: Past, Present, and Future. CHILDREN (BASEL, SWITZERLAND) 2022; 10:children10010031. [PMID: 36670582 PMCID: PMC9856894 DOI: 10.3390/children10010031] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/11/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
Recent decades have seen a dramatic increase in neurodevelopmental disorders and the attention paid to them. Since their emergence in the not-so-distant past, some neurodevelopmental disorders have undergone considerable redefinition and, beginning in the 21st century, there has been a massive increase in research. In this paper, we briefly review the history of some of them, address some of the issues that characterize their current management and relationship with neurological pathologies, and share some insights for the future.
Collapse
|
10
|
Metabolomics: A New Tool in Our Understanding of Congenital Heart Disease. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9121803. [PMID: 36553246 PMCID: PMC9776621 DOI: 10.3390/children9121803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/12/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022]
Abstract
Although the genetic origins underpinning congenital heart disease (CHD) have been extensively studied, genes, by themselves, do not entirely predict phenotypes, which result from the complex interplay between genes and the environment. Consequently, genes merely suggest the potential occurrence of a specific phenotype, but they cannot predict what will happen in reality. This task can be revealed by metabolomics, the most promising of the "omics sciences". Though metabolomics applied to CHD is still in its infant phase, it has already been applied to CHD prenatal diagnosis, as well as to predict outcomes after cardiac surgery. Particular metabolomic fingerprints have been identified for some of the specific CHD subtypes. The hallmarks of CHD-related pulmonary arterial hypertension have also been discovered. This review, which is presented in a narrative format, due to the heterogeneity of the selected papers, aims to provide the readers with a synopsis of the literature on metabolomics in the CHD setting.
Collapse
|
11
|
Reighard C, Junaid S, Jackson WM, Arif A, Waddington H, Whitehouse AJO, Ing C. Anesthetic Exposure During Childhood and Neurodevelopmental Outcomes: A Systematic Review and Meta-analysis. JAMA Netw Open 2022; 5:e2217427. [PMID: 35708687 PMCID: PMC9204549 DOI: 10.1001/jamanetworkopen.2022.17427] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/29/2022] [Indexed: 01/05/2023] Open
Abstract
Importance Clinical studies of neurodevelopmental outcomes after anesthetic exposure have evaluated a range of outcomes with mixed results. Objective To examine via meta-analyses the associations between exposure to general anesthesia and domain-specific neurodevelopmental outcomes in children. Data Sources PubMed/MEDLINE, Embase, CINAHL, Web of Science and the Cochrane Library were searched from inception to August 31, 2021. Study Selection Inclusion criteria were exposures to procedures requiring general anesthesia at younger than 18 years and evaluation of long-term neurodevelopmental function after exposure. Studies lacking unexposed controls or focused on children with major underlying comorbidities were excluded. Data Extraction and Synthesis Extracted variables included effect size; hazard, risk, or odds ratio; number of exposures; procedure type; major comorbidities; age of exposure and assessment; presence of unexposed controls; and study design. Studies were independently reviewed by 2 coders, and review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Data were pooled using a random-effects model. Main Outcomes and Measures The main outcomes were standardized mean differences (SMD) for scores in the neurodevelopmental domains of academics, behavioral problems, cognition, executive function, general development, language, motor function, nonverbal reasoning, social cognition, and hazard and risk of neurodevelopmental disorder diagnoses. Results A total of 31 studies contributed data for meta-analysis. For each of the assessed neurodevelopmental domains, the numbers of children evaluated ranged from 571 to 63 315 exposed and 802 to 311 610 unexposed. Children with any exposure (single or multiple) had significantly worse behavioral problems scores, indicating more behavioral problems (SMD, -0.10; 95% CI, -0.18 to -0.02; P = .02), and worse scores in academics (SMD, -0.07; 95% CI -0.12 to -0.01; P = .02), cognition (SMD, -0.03; 95% CI, -0.05 to 0.00; P = .03), executive function (SMD, -0.20; 95% CI, -0.32 to -0.09; P < .001), general development (SMD, -0.08; 95% CI, -0.13 to -0.02; P = .01), language (SMD, -0.08; 95% CI, -0.14 to -0.02; P = .01), motor function (SMD, -0.11; 95% CI, -0.21 to -0.02; P = .02), and nonverbal reasoning (SMD, -0.15; 95% CI, -0.27 to -0.02; P = .02). Higher incidences of neurodevelopmental disorder diagnoses were also reported (hazard ratio, 1.19; 95% CI, 1.09 to 1.30; P < .001; risk ratio, 1.81; 95% CI, 1.25 to 2.61; P = .002). Conclusions and Relevance These findings support the hypothesis that associations between anesthetic exposure during childhood and subsequent neurodevelopmental deficits differ based on neurodevelopmental domain.
Collapse
Affiliation(s)
- Charles Reighard
- Department of Anesthesiology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York
| | - Shaqif Junaid
- Department of Anesthesiology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York
| | - William M. Jackson
- Department of Anesthesiology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York
| | - Ayesha Arif
- Department of Anesthesiology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York
| | - Hannah Waddington
- Faculty of Education, Victoria University of Wellington, Wellington, New Zealand
| | | | - Caleb Ing
- Department of Anesthesiology and Epidemiology, Columbia University Vagelos College of Physicians and Surgeons and Mailman School of Public Health, New York, New York
| |
Collapse
|
12
|
Cainelli E, Vedovelli L, Gregori D, Suppiej A, Padalino M, Cogo P, Bisiacchi P. Embrace the Complexity: Agnostic Evaluation of Children’s Neuropsychological Performances Reveals Hidden Neurodevelopment Patterns. CHILDREN 2022; 9:children9060775. [PMID: 35740712 PMCID: PMC9221792 DOI: 10.3390/children9060775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/02/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022]
Abstract
The most common adverse pre/perinatal events have a great impact on neurodevelopment, with avalanche effects on academic performance, occupational status, and quality of life. Although the injury process starts early, the effects may become evident much later, when life starts to pose more challenging demands. In the present work, we want to address the impact of early insults from an evolutionary perspective by performing unsupervised cluster analysis. We fed all available data, but not the group identification, into the algorithm for 114 children aged 5–10 years, with different adverse medical conditions: healthy (n = 30), premature (n = 28), neonatal hypoxic-ischemic encephalopathy (n = 28), and congenital heart disease (n = 28). We measured general intelligence and many neuropsychological domains (language, attention, memory, executive functions, and social skills). We found three emerging groups that identify children with multiple impairments (cluster 3), children with variable neuropsychological profiles but in the normal range (cluster 2), and children with adequate profiles and good performance in IQ and executive functions (cluster 1). Our analysis divided our patients by severity levels rather than by identifying specific neuropsychological phenotypes, suggesting different developmental trajectories that are characterized by good resilience to early stressful events with adequate development or by pervasive vulnerability to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Elisa Cainelli
- Department of General Psychology, University of Padova, 35131 Padova, Italy;
- Correspondence:
| | - Luca Vedovelli
- Unit of Biostatistics, Epidemiology, and Public Health, Department of Cardiac, Thoracic, Vascular and Public Health Sciences, University of Padova, 35131 Padova, Italy; (L.V.); (D.G.)
| | - Dario Gregori
- Unit of Biostatistics, Epidemiology, and Public Health, Department of Cardiac, Thoracic, Vascular and Public Health Sciences, University of Padova, 35131 Padova, Italy; (L.V.); (D.G.)
| | - Agnese Suppiej
- Department of Medical Sciences, Pediatric Section, University of Ferrara, 44121 Ferrara, Italy;
| | - Massimo Padalino
- Pediatric and Congenital Cardiovascular Surgery Unit, Department of Cardiac, Thoracic, and Vascular Sciences, Padova University Hospital, 35128 Padova, Italy;
| | - Paola Cogo
- Clinica Pediatrica, Department of Medicine, University Hospital Santa Maria della Misericordia, University of Udine, 33100 Udine, Italy;
| | - Patrizia Bisiacchi
- Department of General Psychology, University of Padova, 35131 Padova, Italy;
- Padova Neuroscience Center (PNC), University of Padova, 35129 Padova, Italy
| |
Collapse
|
13
|
Marx W, Thomson S, O'Hely M, Symeonides C, Collier F, Tang MLK, Loughman A, Burgner D, Saffery R, Pham C, Mansell T, Sly PD, Vuillermin P, Ranganathan S, Ponsonby AL. Maternal inflammatory and omega-3 fatty acid pathways mediate the association between socioeconomic disadvantage and childhood cognition. Brain Behav Immun 2022; 100:211-218. [PMID: 34896180 DOI: 10.1016/j.bbi.2021.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/28/2021] [Accepted: 12/03/2021] [Indexed: 10/19/2022] Open
Abstract
Poor cognitive outcomes in early childhood predict poor educational outcomes and diminished health over the life course. We sought to investigate (i) whether maternal metabolites predict child cognition, and (ii) if maternal metabolomic profile mediates the relationship between environmental exposures and child cognition. Metabolites were measured using nuclear magnetic resonance-based metabolomics in pregnant women from a population-derived birth cohort. Child cognition was measured at age 2 years. In 662 mother-child pairs, elevated inflammatory markers (β = -2.62; 95% CI -4.10, -1.15; P = 0.0005) and lower omega-3 fatty acid-related metabolites (β = 0.49; 95% CI 0.09, 0.88; P = 0.02) in the mother were associated with lower child cognition and partially mediated the association between lower child cognition and multiple risk factors common to socioeconomic disadvantage. Modifying maternal prenatal metabolic pathways related to inflammation and omega-3 fatty acids may offset the adverse associations between prenatal risk factors related to socioeconomic disadvantage and low child cognition.
Collapse
Affiliation(s)
- Wolfgang Marx
- Florey Institute for Neuroscience and Mental Health, 30 Royal Parade, Parkville, VIC 3052, Australia; Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, 299 Ryrie Street, Geelong, VIC 3220, Australia
| | - Sarah Thomson
- Florey Institute for Neuroscience and Mental Health, 30 Royal Parade, Parkville, VIC 3052, Australia
| | - Martin O'Hely
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, 299 Ryrie Street, Geelong, VIC 3220, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville, VIC 3052, Australia
| | - Christos Symeonides
- Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville, VIC 3052, Australia; Minderoo Foundation, Perth, VIC 6000, Australia; Royal Children's Hospital, 50 Flemington Rd, Parkville, VIC 3052, Australia
| | - Fiona Collier
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, 299 Ryrie Street, Geelong, VIC 3220, Australia
| | - Mimi L K Tang
- Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville, VIC 3052, Australia; Royal Children's Hospital, 50 Flemington Rd, Parkville, VIC 3052, Australia; University of Melbourne, Grattan Street, Parkville, VIC 3010, Australia
| | - Amy Loughman
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, 299 Ryrie Street, Geelong, VIC 3220, Australia
| | - David Burgner
- Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Grattan Street, Parkville, VIC 3010, Australia
| | - Richard Saffery
- Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Grattan Street, Parkville, VIC 3010, Australia
| | - Cindy Pham
- Florey Institute for Neuroscience and Mental Health, 30 Royal Parade, Parkville, VIC 3052, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville, VIC 3052, Australia
| | - Toby Mansell
- Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Grattan Street, Parkville, VIC 3010, Australia
| | - Peter D Sly
- Child Health Research Centre, The University of Queensland, 62 Graham St, South Brisbane, QLD 4101, Australia
| | - Peter Vuillermin
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, 299 Ryrie Street, Geelong, VIC 3220, Australia; Barwon Health, Bellerine St, Geelong, VIC 3220, Australia
| | - Sarath Ranganathan
- Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville, VIC 3052, Australia
| | - Anne-Louise Ponsonby
- Florey Institute for Neuroscience and Mental Health, 30 Royal Parade, Parkville, VIC 3052, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville, VIC 3052, Australia.
| | | |
Collapse
|
14
|
Cainelli E, Vedovelli L. Over-specialization versus synergy in neuroscience: professionals' integration is more than the sum of its parts. Neural Regen Res 2021; 16:2232-2233. [PMID: 33818506 PMCID: PMC8354120 DOI: 10.4103/1673-5374.310676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/31/2020] [Accepted: 01/26/2021] [Indexed: 11/30/2022] Open
Affiliation(s)
- Elisa Cainelli
- Department of General Psychology, University of Padova, Padova, Italy
| | - Luca Vedovelli
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padova, Padova, Italy
| |
Collapse
|
15
|
Zheng BH, Liu XM, Zhao P, Li P. A review on neurodevelopmental abnormalities in congenital heart disease: focus on minimizing the deleterious effects on patients. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1899992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Bai-hong Zheng
- Department of Pediatrics, the Second Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Xiu-min Liu
- Department of Clinical Laboratory, the Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Peng Zhao
- Department of Anesthesiology, the Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Ping Li
- Department of Developmental Pediatrics, the Second Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| |
Collapse
|
16
|
Cainelli E, Bisiacchi PS, Cogo P, Padalino M, Simonato M, Vergine M, Lanera C, Vedovelli L. Detecting neurodevelopmental trajectories in congenital heart diseases with a machine-learning approach. Sci Rep 2021; 11:2574. [PMID: 33510389 PMCID: PMC7843636 DOI: 10.1038/s41598-021-82328-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/12/2021] [Indexed: 01/03/2023] Open
Abstract
We aimed to delineate the neuropsychological and psychopathological profiles of children with congenital heart disease (CHD) and look for associations with clinical parameters. We conducted a prospective observational study in children with CHD who underwent cardiac surgery within five years of age. At least 18 months after cardiac surgery, we performed an extensive neuropsychological (intelligence, language, attention, executive function, memory, social skills) and psychopathological assessment, implementing a machine-learning approach for clustering and influencing variable classification. We examined 74 children (37 with CHD and 37 age-matched controls). Group comparisons have shown differences in many domains: intelligence, language, executive skills, and memory. From CHD questionnaires, we identified two clinical subtypes of psychopathological profiles: a small subgroup with high symptoms of psychopathology and a wider subgroup of patients with ADHD-like profiles. No associations with the considered clinical parameters were found. CHD patients are prone to high interindividual variability in neuropsychological and psychological outcomes, depending on many factors that are difficult to control and study. Unfortunately, these dysfunctions are under-recognized by clinicians. Given that brain maturation continues through childhood, providing a significant window for recovery, there is a need for a lifespan approach to optimize the outcome trajectory for patients with CHD.
Collapse
Affiliation(s)
- Elisa Cainelli
- Department of General Psychology, University of Padova, Padua, Italy.
| | - Patrizia S Bisiacchi
- Department of General Psychology, University of Padova, Padua, Italy. .,Padova Neuroscience Centre, PNC, Padua, Italy.
| | - Paola Cogo
- Department of Medicine, Clinica Pediatrica, University Hospital S Maria Della Misericordia, University of Udine, Udine, Italy
| | - Massimo Padalino
- Pediatric and Congenital Cardiovascular Surgery Unit, Department of Cardiac, Thoracic and Vascular Sciences, Padova University Hospital, Padua, Italy
| | - Manuela Simonato
- PCare Laboratory, Fondazione Istituto Di Ricerca Pediatrica "Citta Della Speranza", Padua, Italy
| | - Michela Vergine
- Department of Medicine, Clinica Pediatrica, University Hospital S Maria Della Misericordia, University of Udine, Udine, Italy
| | - Corrado Lanera
- Unit of Biostatistics, Epidemiology, and Public Health, Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padova, Padua, Italy
| | - Luca Vedovelli
- Unit of Biostatistics, Epidemiology, and Public Health, Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padova, Padua, Italy
| |
Collapse
|
17
|
White matter injury and neurodevelopmental disabilities: A cross-disease (dis)connection. Prog Neurobiol 2020; 193:101845. [PMID: 32505757 DOI: 10.1016/j.pneurobio.2020.101845] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 05/19/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022]
Abstract
White matter (WM) injury, once known primarily in preterm newborns, is emerging in its non-focal (diffused), non-necrotic form as a critical component of subtle brain injuries in many early-life diseases like prematurity, intrauterine growth restriction, congenital heart defects, and hypoxic-ischemic encephalopathy. While advances in medical techniques have reduced the number of severe outcomes, the incidence of tardive impairments in complex cognitive functions or psychopathology remains high, with lifelong detrimental effects. The importance of WM in coordinating neuronal assemblies firing and neural groups synchronizing within multiple frequency bands through myelination, even mild alterations in WM structure, may interfere with the cognitive performance that increasing social and learning demands would exploit tardively during children growth. This phenomenon may contribute to explaining longitudinally the high incidence of late-appearing impairments that affect children with a history of perinatal insults. Furthermore, WM abnormalities have been highlighted in several neuropsychiatric disorders, such as autism and schizophrenia. In this review, we gather and organize evidence on how diffused WM injuries contribute to neurodevelopmental disorders through different perinatal diseases and insults. An insight into a possible common, cross-disease, mechanism, neuroimaging and monitoring, biomarkers, and neuroprotective strategies will also be presented.
Collapse
|