1
|
Xu B, Wang C, Zhu X, Zhu L, Han G, Cui C. Comprehensive Analysis of Metabolic Changes in Mice Exposed to Corilagin Based on GC-MS Analysis. Drug Des Devel Ther 2025; 19:389-404. [PMID: 39867865 PMCID: PMC11762444 DOI: 10.2147/dddt.s482510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 01/14/2025] [Indexed: 01/28/2025] Open
Abstract
Background Corilagin is widely distributed in various medicinal plants. In recent years, numerous pharmacological activities of Corilagin have been reported, including anti-inflammatory, antiviral, hepatoprotective, anti-tumor, and anti-fibrosis effects. However, there is still a need for systematic metabolomics analysis to further elucidate its mechanisms of action. The aim of this study was to explore the pharmacological mechanism of Corilagin. Methods This study utilized gas chromatography-mass spectrometry (GC-MS) to analyze central target tissues, comprehensively exploring the pharmacological mechanism of Corilagin in mouse models. We identified the differential metabolites by multivariate analyses, which include principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA). Using MetaboAnalyst 5.0 and the KEGG database was used to depict the 12 key metabolic pathways. Results Compared with the control group, the Corilagin induced 20, 9, 11, 7, 16, 19, 14, 15, and 16 differential metabolites in the intestine, lung, kidney, stomach, heart, liver, hippocampus, cerebral cortex, and serum, respectively. And 12 key pathways involving glucose metabolism, lipid metabolism, and amino acid metabolism were identified following Corilagin treatment. Conclusion This research provides insight into the action mechanism of Corilagin's anti-oxidative, anti-inflammatory, anti-atherosclerotic, hepatoprotective, anti-tumor, and neuroprotective properties.
Collapse
Affiliation(s)
- Biao Xu
- Clinical Medical School, Jining Medical University, Jining, 272067, People’s Republic of China
| | - Changshui Wang
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272000, People’s Republic of China
| | - Xiaodong Zhu
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272000, People’s Republic of China
| | - Li Zhu
- Translational Pharmaceutical Laboratory, Jining No. 1 People’s Hospital, Shandong First Medical University, Jining, 272000, People’s Republic of China
| | - Guangkui Han
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272000, People’s Republic of China
| | - Changmeng Cui
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272000, People’s Republic of China
| |
Collapse
|
2
|
Edo GI, Onoharigho FO, Jikah AN, Agbo JJ. The ameliorative effect of methanol extract of Ricinodendron heudelotii (Baill.) leaves on paracetamol-induced hepatotoxicity in Wistar rats. Drug Chem Toxicol 2025; 48:98-106. [PMID: 38839563 DOI: 10.1080/01480545.2024.2362891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024]
Abstract
Plants are a rich source of antioxidants that are produced naturally. Therefore, this study was aimed to evaluate the effect of the plant Ricinodendron heudelotii (Baill.) in the attenuation of paracetamol (PCM) hepatotoxicity in Wistar rats. Twenty-four male albino Wistar rats weighing between 200 and 250 g were divided into four groups, with six rats each. Group 1 served as the control group, receiving just distilled water. Groups 2 and 3 received orally 250 mg/kg bwt/day PCM and 300 mg/kg bwt/day methanol extract of Ricinodendron heudelotii (Baill.) leaves for two weeks, respectively. For group 4, the Ricinodendron heudelotii (Baill.) leaf extract was pre-administered for 1 week before receiving 300 mg/kg bwt/day Ricinodendron heudelotii (Baill.) leaves extract and 250 mg/kg bwt/day PCM for 2 weeks. As a marker of liver damage, serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were measured. Liver tissue reduced glutathione (GSH) concentration, superoxide dismutase (SOD), glutathione-S-transferase (GST), and catalase activities were utilized to determine antioxidant state, while malondialdehyde (MDA) concentration was employed as a lipid peroxidation indicator. When compared to the control group, the activities of serum AST, ALT, SOD, and MDA levels were considerably (p < 0.05) higher in the PCM group, although GSH level and GST and catalase activities were significantly lower. In comparison to the PCM group, co-administration of PCM with Ricinodendron heudelotii (Baill.) extract decreased serum AST and ALT activities. This study shows that the leaf extracts of Ricinodendron heudelotii (Baill.) protects Wistar rats' livers from PCM-induced oxidative stress by increasing antioxidant enzymes.
Collapse
Affiliation(s)
- Great Iruoghene Edo
- Department of Chemistry, Faculty of Science, Delta State University of Science & Technology, Ozoro, Nigeria
| | | | | | - Joy Johnson Agbo
- Department of Nursing, Faculty of Health Sciences, Cyprus International University, Nicosia, Cyprus
| |
Collapse
|
3
|
Endalew SA, Abebaw BT. Exploring the Anti-Inflammatory Potential of Ajuga integrifolia Leaves Extract: In Vitro Dual Inhibition of Cyclooxygenase and Lipoxygenase Enzymes. Adv Pharmacol Pharm Sci 2024; 2024:2938314. [PMID: 39502576 PMCID: PMC11535186 DOI: 10.1155/2024/2938314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/17/2024] [Indexed: 11/08/2024] Open
Abstract
This study investigated the anti-inflammatory properties of Ajuga integrifolia, an herbal preparation. Qualitative and quantitative phytochemical analyses were conducted to identify active compounds in the preparation. The researchers also assessed its ability to inhibit the production of pro-inflammatory enzymes, cyclooxygenases (COX-1, COX-2), and lipoxygenase (5-LOX) in vitro. The extracts demonstrated dose-dependent inhibition of these enzymes, with some extracts showing IC50 values comparable to standard anti-inflammatory drugs. The ethanol extract exhibited significant inhibition of 5-LOX (52.99 μg/mL), compared to the standard drug zileuton (32.41 μg/mL), while the inhibition of COX-1 (66.00 μg/mL) and COX-2 (71.62 μg/mL) was comparable to the standard drug indomethacin (40.57 and 54.39 μg/mL, respectively). These findings suggest that A. integrifolia has the potential to be used as a herbal remedy for treating inflammatory conditions. By inhibiting pro-inflammatory enzymes, the extracts may effectively reduce inflammation and promote tissue healing or repair. The inhibition potential of extract of this plant can be taken as a good candidate of anti-inflammatory agent.
Collapse
Affiliation(s)
- Sisay Awoke Endalew
- Department of Chemistry, College of Natural Science, Wollo University, P.O. Box 1145, Dessie, Ethiopia
| | - Belete Tesfaw Abebaw
- Department of Chemistry, College of Natural Science, Wollo University, P.O. Box 1145, Dessie, Ethiopia
| |
Collapse
|
4
|
Kojom JJW, Bogning CZ, Lappa EL, Sonfack CS, Kuinze AN, Etamé-Loé G, Dongmo AB. Antioxidant Properties and Vasorelaxant Mechanism of Aqueous Extract of Ricinodendron heudelotii (Euphorbiaceae). BIOMED RESEARCH INTERNATIONAL 2024; 2024:3435974. [PMID: 39314543 PMCID: PMC11419840 DOI: 10.1155/2024/3435974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/19/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024]
Abstract
Ricinodendron heudelotii is a plant of the Euphorbiaceae family, used in traditional medicine to treat numerous diseases, including high blood pressure. The aim of this study is to evaluate the antioxidant and vasorelaxant effects of the aqueous extract of the stem bark of R. heudelotii. The pharmacological studies were carried out using the aqueous extract obtained by infusion. The antioxidant capacity of R. heudelotii was assessed by in vitro tests with DPPH (2,2-diphenyl-1-picryl-hydrazyl), ABTS (2,2'-azino-bis (3-ethylbenz-thiazoline-6-sulfonic acid), iron-reducing capacity (FRAP), and inhibition of nitric oxide (NO) release. In vitro studies, the aortic rings obtained from adult Wistar albino rats of both sexes were used to determine the vasorelaxant effects of the extract of R. heudelotii on the NO and prostacyclin (PGI2) pathways as well as its involvement on various potassium channels were determined on intact or naked fragments of rat aorta precontracted with phenylephrine (10-6 M) or KCl (60 mM). The aqueous extract of R. heudelotii exhibited a remarkable DPPH (EC50: 1.68 μg/mL) and ABTS (EC50: 106.30 μg/mL) and nitric oxide (53.71% inhibition at 1000 μg/mL) radical scavenging activities as well as reducing power (absorbance of 1.56 at 1000 μg/mL). The nitric oxide inhibitor, NG-nitro-L-arginine methyl ester (L-NAME), and prostacyclin inhibitor, indomethacin, significantly attenuated the vasodilatory effect of R. heudelotii. Tetraethylammonium could not inhibit the vasodilatory effect of the extract, unlike glibenclamide and barium chloride. Ricinodendron heudelotii extract possesses antioxidant properties and vasorelaxing effect linked to endothelium-related factors, and this relaxation was partially mediated mainly through the inhibition of Kir and KATP channels.
Collapse
Affiliation(s)
- Jacquy Joyce Wanche Kojom
- Department of Animal Biology and PhysiologyFaculty of SciencesUniversity of Douala, PO Box 24157, Douala, Cameroon
| | - Calvin Zangueu Bogning
- Department of Animal Biology and PhysiologyFaculty of SciencesUniversity of Douala, PO Box 24157, Douala, Cameroon
| | - Edwige Laure Lappa
- Department of Animal Biology and PhysiologyFaculty of SciencesUniversity of Douala, PO Box 24157, Douala, Cameroon
| | - Christelle Stéphanie Sonfack
- Department of Animal Biology and PhysiologyFaculty of SciencesUniversity of Douala, PO Box 24157, Douala, Cameroon
| | - Augustine Nkojap Kuinze
- Department of Animal Biology and PhysiologyFaculty of SciencesUniversity of Douala, PO Box 24157, Douala, Cameroon
| | - Gisèle Etamé-Loé
- Department of Biological SciencesFaculty of Medicine and Pharmaceutical ScienceUniversity of Douala, PO Box 2701, Douala, Cameroon
| | - Alain Bertrand Dongmo
- Department of Animal Biology and PhysiologyFaculty of SciencesUniversity of Douala, PO Box 24157, Douala, Cameroon
| |
Collapse
|
5
|
Li S, Li X, Yang X, Lei Y, He M, Xiang X, Wu Q, Liu H, Wang J, Wang Q. Corilagin enhances the anti-tumor activity of 5-FU by downregulating the expression of GRP 78. Sci Rep 2023; 13:22661. [PMID: 38114593 PMCID: PMC10730900 DOI: 10.1038/s41598-023-49604-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 12/10/2023] [Indexed: 12/21/2023] Open
Abstract
Colorectal cancer is one of the most common malignancies worldwide. Although initially effective, patients who receive chemotherapy ultimately experience various complications and develop chemo-resistance, leading to cancer recurrence. Therefore, we aimed to find a drug with good efficacy and low toxicity that could enhance the treatment with 5-Fluorouracil (a commonly used clinical drug) and reduce its dosing. Corilagin, an anti-tumor natural product, has received widespread attention. Glucose regulated protein 78 (GRP78) is overexpressed in colorectal cancer cells and plays a key role in the proliferation, migration and drug resistance of cancer cells. Importantly, GRP78 can affect the apoptosis induced by 5-fluorouracil in CRC cells. In the present study, we determined the synergistic anti-tumor activity of the combination treatment by cell proliferation assay, apoptosis assay, fluorescent staining, cell cycle analysis, WB and PCR assays. This synergistic effect was associated with S-phase blockade, intracellular reactive oxygen species production and downregulation of GRP78. Taken together, our results indicate that Corilagin acts as a potentiator of 5-fluorouracil and may have therapeutic potential for patients with CRC.
Collapse
Grants
- 2022KYCX1-A04 the Scientific Research and Innovation Fund of Wuhan Asia General Hospital
- 2022KYCX1-A04 the Scientific Research and Innovation Fund of Wuhan Asia General Hospital
- 2022KYCX1-A04 the Scientific Research and Innovation Fund of Wuhan Asia General Hospital
- 2022KYCX1-A04 the Scientific Research and Innovation Fund of Wuhan Asia General Hospital
- 2022KYCX1-A04 the Scientific Research and Innovation Fund of Wuhan Asia General Hospital
- 2022KYCX1-A04 the Scientific Research and Innovation Fund of Wuhan Asia General Hospital
- 2022KYCX1-A04 the Scientific Research and Innovation Fund of Wuhan Asia General Hospital
- 2022KYCX1-A04 the Scientific Research and Innovation Fund of Wuhan Asia General Hospital
- 2022KYCX1-A04 the Scientific Research and Innovation Fund of Wuhan Asia General Hospital
- 2022KYCX1-A04 the Scientific Research and Innovation Fund of Wuhan Asia General Hospital
- 20YJA880053 2020 General Planning Fund Project for Humanities and Social Sciences of the Ministry of Education, China
- 20YJA880053 2020 General Planning Fund Project for Humanities and Social Sciences of the Ministry of Education, China
- 20YJA880053 2020 General Planning Fund Project for Humanities and Social Sciences of the Ministry of Education, China
- 20YJA880053 2020 General Planning Fund Project for Humanities and Social Sciences of the Ministry of Education, China
- 20YJA880053 2020 General Planning Fund Project for Humanities and Social Sciences of the Ministry of Education, China
- 20YJA880053 2020 General Planning Fund Project for Humanities and Social Sciences of the Ministry of Education, China
- 20YJA880053 2020 General Planning Fund Project for Humanities and Social Sciences of the Ministry of Education, China
- 20YJA880053 2020 General Planning Fund Project for Humanities and Social Sciences of the Ministry of Education, China
- 20YJA880053 2020 General Planning Fund Project for Humanities and Social Sciences of the Ministry of Education, China
- 20YJA880053 2020 General Planning Fund Project for Humanities and Social Sciences of the Ministry of Education, China
- 20D026 Key research project of philosophy and social sciences of Hubei Provincial Department of Education in 2020
- 20D026 Key research project of philosophy and social sciences of Hubei Provincial Department of Education in 2020
- 20D026 Key research project of philosophy and social sciences of Hubei Provincial Department of Education in 2020
- 20D026 Key research project of philosophy and social sciences of Hubei Provincial Department of Education in 2020
- 20D026 Key research project of philosophy and social sciences of Hubei Provincial Department of Education in 2020
- 20D026 Key research project of philosophy and social sciences of Hubei Provincial Department of Education in 2020
- 20D026 Key research project of philosophy and social sciences of Hubei Provincial Department of Education in 2020
- 20D026 Key research project of philosophy and social sciences of Hubei Provincial Department of Education in 2020
- 20D026 Key research project of philosophy and social sciences of Hubei Provincial Department of Education in 2020
- 20D026 Key research project of philosophy and social sciences of Hubei Provincial Department of Education in 2020
- OHIC2022G05 Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology
- OHIC2022G05 Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology
- OHIC2022G05 Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology
- OHIC2022G05 Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology
- OHIC2022G05 Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology
- OHIC2022G05 Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology
- OHIC2022G05 Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology
- OHIC2022G05 Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology
- OHIC2022G05 Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology
- OHIC2022G05 Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology
Collapse
Affiliation(s)
- Simin Li
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan Asia General Hospital, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Xinquan Li
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan Asia General Hospital, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Xiliang Yang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan Asia General Hospital, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Yumeng Lei
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan Asia General Hospital, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Mingxin He
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan Asia General Hospital, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Xiaochen Xiang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan Asia General Hospital, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Qingming Wu
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan Asia General Hospital, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Hongyun Liu
- School of Basic Medicine, Hubei University of Science and Technology, Wuhan, 437100, China.
| | - Jiadun Wang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan Asia General Hospital, Wuhan University of Science and Technology, Wuhan, 430065, China.
| | - Qiang Wang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan Asia General Hospital, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
6
|
Nguyen AT, Akanbi TO, Tawiah NA, Aryee AN. Valorization of seed and kernel marcs and evaluation of their antioxidant potential. Food Chem 2022; 390:133168. [DOI: 10.1016/j.foodchem.2022.133168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/10/2022] [Accepted: 05/04/2022] [Indexed: 11/04/2022]
|
7
|
Widowati W, Kusuma HSW, Arumwardana S, Afifah E, Wahyuni CD, Wijayanti CR, Maulana MA, Rizal R. Corilagin potential in inhibiting oxidative and inflammatory stress in LPS-induced murine macrophage cell lines (RAW 264.7). IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1656-1665. [PMID: 35432805 PMCID: PMC8976907 DOI: 10.22038/ijbms.2021.59348.13174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/25/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Inflammation is thought to be the common pathophysiological basis for several disorders. Corilagin is one of the major active compounds which showed broad-spectrum biological and therapeutic activities, such as antitumor, hepatoprotective, anti-oxidant, and anti-inflammatory. This study aimed to evaluate the anti-oxidant and anti-inflammatory activities of corilagin in LPS-induced RAW264.7 cells. MATERIALS AND METHODS Anti-oxidant activities were examined by free radical scavenging of H2O2, NO, and *OH. The safe concentrations of corilagin on RAW264.7 were determined by MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] assay on RAW264.7 cell lines. The inflammation cells model was induced with LPS. The anti-inflammatory activities measured IL-6, TNF-α, NO, IL-1β, PGE-2, iNOS, and COX-2 levels using ELISA assay. RESULTS The results showed that corilagin had a significant inhibition activity dose-dependently in scavenging activities toward H2O2, *OH, and NO with IC50 values 76.85 µg/ml, 26.68 µg/ml, and 66.64 µg/ml, respectively. The anti-inflammatory activity of corilagin also showed a significant decrease toward IL-6, TNF-α, NO, IL-1β, PGE-2, iNOS, and COX-2 levels at the highest concentration (75 µM) compared with others concentration (50 and 25 µM) with the highest inhibition activities being 48.09%, 42.37%, 65.69%, 26.47%, 46.88%, 56.22%, 59.99%, respectively (P<0.05). CONCLUSION Corilagin has potential as anti-oxidant and anti-inflammatory in LPS-induced RAW 264.7 cell lines by its ability to scavenge free radical NO, *OH, and H2O2 and also suppress the production of proinflammatory mediators including COX-2, IL-6, IL-1β, and TNF-α in RAW 264.7 murine macrophage cell lines.
Collapse
Affiliation(s)
- Wahyu Widowati
- Faculty of Medicine, Maranatha Christian University, Jl. Surya Sumantri No. 65, Bandung 40164, West Java, Indonesia,Corresponding author: Wahyu Widowati. Medical Research Center, Faculty of Medicine, Maranatha Christian University, Prof. Drg. Suria Sumantri 65, Bandung, 40164, West Java, Indonesia. Tel: +6281910040010;
| | - Hanna Sari Widya Kusuma
- Biomolecular and Biomedical Research Center, Aretha Medika Utama, Jl Babakan Jeruk II No. 9, Bandung 40163, West Java, Indonesia
| | - Seila Arumwardana
- Biomolecular and Biomedical Research Center, Aretha Medika Utama, Jl Babakan Jeruk II No. 9, Bandung 40163, West Java, Indonesia
| | - Ervi Afifah
- Biomolecular and Biomedical Research Center, Aretha Medika Utama, Jl Babakan Jeruk II No. 9, Bandung 40163, West Java, Indonesia
| | - Cintani Dewi Wahyuni
- Biomolecular and Biomedical Research Center, Aretha Medika Utama, Jl Babakan Jeruk II No. 9, Bandung 40163, West Java, Indonesia
| | - Cahyaning Riski Wijayanti
- Biomolecular and Biomedical Research Center, Aretha Medika Utama, Jl Babakan Jeruk II No. 9, Bandung 40163, West Java, Indonesia
| | - Muhamad Aldi Maulana
- Biomolecular and Biomedical Research Center, Aretha Medika Utama, Jl Babakan Jeruk II No. 9, Bandung 40163, West Java, Indonesia
| | - Rizal Rizal
- Biomolecular and Biomedical Research Center, Aretha Medika Utama, Jl Babakan Jeruk II No. 9, Bandung 40163, West Java, Indonesia,Biomedical Engineering, Department of Electrical Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16426, West Java, Indonesia
| |
Collapse
|
8
|
Djouwoug CN, Gounoue RK, Ngueguim FT, NankapTsakem JM, Gouni CD, Kandeda AC, Ngouela S, Lenta BN, Sewald N, Fekam FB, Dimo T. In vitro and in vivo antiplasmodial activity of hydroethanolic bark extract of Bridelia atroviridis müll. Arg. (Euphorbiaceae) and lc-ms-based phytochemical analysis. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113424. [PMID: 33010404 DOI: 10.1016/j.jep.2020.113424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/03/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Malaria is a life-threatening health problem worldwide and treatment remains a major challenge. Natural products from medicinal plants are credible sources for better anti-malarial drugs. AIM OF THE STUDY This study aimed at assessing the in vitro and in vivo antiplasmodial activities of the hydroethanolic extract of Bridelia atroviridis bark. MATERIALS AND METHODS The phytochemical characterization of Bridelia atroviridis extract was carried out by High-Performance Liquid Chromatography-Mass spectrometry (HPLC-MS). The cytotoxicity test on Vero cells was carried out using the resazurin-based assay while the in vitro antiplasmodial activity was determined on Plasmodium falciparum (Dd2 strain, chloroquine resistant) using the SYBR green I-based fluorescence assay. The in vivo assay was performed on Plasmodium berghei-infected rats daily treated for 5 days with distilled water (10 mL/kg) for malaria control, 25 mg/kg of chloroquine sulfate for positive control and 50, 100 and 200 mg/kg of B. atroviridis extract for the three test groups. Parasitaemia was daily monitored using 10% giemsa-staining thin blood smears. At the end of the treatment, animals were sacrificed, blood was collected for hematological and biochemical analysis while organs were removed for biochemical and histopathological analyses. RESULTS The HPLC-MS analysis data of B. atroviridis revealed the presence of bridelionoside D, isomyricitrin, corilagin, myricetin and 5 others compounds not yet identified. Bridelia atroviridis exhibited good in vitro antiplasmodial activity with the IC50 evaluated at 8.08 μg/mL and low cytotoxicity with the median cytotoxic concentration (CC50) higher than 100 μg/mL. B. atroviridis extract significantly reduced the parasitemia (p < 0.05) with an effective dose-50 (ED-50) of 89 mg/kg. B. atroviridis also prevented anemia, leukocytosis and liver and kidneys impairment by decrease of transaminases, ALP, creatinine, uric acid, and triglycerides concentrations. As well, B. atroviridis extract decreased some pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) levels and significantly improved the anti-inflammatory status (P < 0.01) of infected animals marked by a decrease of IL-10 concentration. These results were further confirmed by the improved of antioxidant status and the quasi-normal microarchitecture of the liver, kidneys and spleen in test groups. Overall, the hydroethanolic bark extract of Bridelia atroviridis demonstrated antimalarial property and justified its use in traditional medicine to manage malaria disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Silvere Ngouela
- Laboratory of Natural Substances, Faculty of Science, University of Yaoundé I, Cameroon
| | - Bruno Ndjakou Lenta
- Laboratory of Natural Substances, High Teaching Training College, University of Yaounde I, Cameroon
| | - Nobert Sewald
- Laboratory of Organic and Bioorganic Chemistry, University of Bielefeld, Germany
| | - Fabrice Boyom Fekam
- Laboratory for Phytobiochemistry and Medicinal Plants Studies, Antimicrobial and Biocontrol Agents Unit, Faculty of Science, University of Yaounde I, Cameroon
| | - Théophile Dimo
- Laboratory of Animal Physiology, Faculty of Science, University of Yaoundé I, Cameroon.
| |
Collapse
|
9
|
Hydroethanolic Extract from Bridelia atroviridis Müll. Arg. Bark Improves Haematological and Biochemical Parameters in Nicotinamide-/Streptozotocin-Induced Diabetic Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3160834. [PMID: 33293987 PMCID: PMC7714572 DOI: 10.1155/2020/3160834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 11/23/2022]
Abstract
Bridelia atroviridis Müll. Arg. (B. atroviridis) is a plant used in Cameroonian traditional medicine to manage diabetes. The effects of hydroethanolic barks extract from B. atroviridis were evaluated on diabetes disorders including hematology, inflammatory, and oxidative stress parameters. The in vitro antioxidant capacity of the hydroethanolic bark extract (70 : 30) was evaluated. Nicotinamide-/streptozotocin-induced diabetic rats were daily treated with the B. atroviridis extract for fifteen days. Glycemia were evaluated every 5 days, insulin sensibility test was performed, and haematological, inflammatory, and oxidative stress parameters were analysed. Histomorphometry of the pancreas was realized. The extract was able to scavenge free radicals in vitro and decrease significantly the blood glucose levels. The treatment resulted in a significant alleviation of insulin resistance, anemia, leukocytopenia, and thrombocytopenia observed in untreated diabetic rats. The extract significantly decreased proinflammatory cytokines TNF-α, IL-1β, and IL-10. The rate of reduced glutathione was increased in the pancreas, whereas the catalase activity and nitrite concentration were decreased. Diabetic control showed a reduced size of Langerhans islet, whereas the size of islets was large in treated groups. The hydroethanolic extract of B. atroviridis was able to improve glycemia and alleviate haematological and inflammatory parameters disorders observed in diabetic conditions, probably due to its antidiabetic, anti-inflammatory, and antioxidant capacities.
Collapse
|
10
|
Yang F, Yaseen A, Chen B, Li F, Wang L, Hu W, Wang M. Chemical constituents from the fruits of Phyllanthus emblica L. BIOCHEM SYST ECOL 2020. [DOI: 10.1016/j.bse.2020.104122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|