1
|
Farid AR, Comtesse S, Sagi HC, Frosch KH, Weaver MJ, Yoon RS, von Keudell A. Enabling Technology in Fracture Surgery: State of the Art. J Bone Joint Surg Am 2025:00004623-990000000-01468. [PMID: 40424369 DOI: 10.2106/jbjs.24.00938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
➢ Three-dimensional (3D) printing and virtual modeling, using computed tomographic (CT) scans as a base for the 3D-printed model, help surgeons to visualize relevant anatomy, may provide a better understanding of fracture planes, may help to plan surgical approaches, and can possibly simulate surgical fixation options.➢ Navigation systems create real-time 3D maps of patient anatomy intraoperatively, with most literature in orthopaedic trauma thus far demonstrating efficacy in percutaneous screw placement using preoperative imaging data or intraoperative markers.➢ Augmented reality and virtual reality are new applications in orthopaedic trauma, with the former in particular demonstrating the potential utility in intraoperative visualization of implant placement.➢ Use of 3D-printed metal implants has been studied in limited sample sizes thus far. However, early results have suggested that they may have good efficacy in improving intraoperative measures and postoperative outcomes.
Collapse
Affiliation(s)
- Alexander R Farid
- Harvard Combined Orthopaedic Residency Program, Boston, Massachusetts
| | - Simon Comtesse
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - H Claude Sagi
- Department of Orthopedic Surgery and Sports Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Karl-Heinz Frosch
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Trauma Surgery, Orthopedics and Sports Traumatology, BG Klinikum Hamburg, Hamburg, Germany
| | - Michael J Weaver
- Harvard Orthopaedic Trauma Initiative, Boston, Massachusetts
- Department of Orthopaedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Richard S Yoon
- Division of Orthopaedic Trauma and Adult Reconstruction, Department of Orthopaedic Surgery, Jersey City Medical Center/Saint Barnabas Medical Center-RWJBarnabas Health, Livingston/Jersey City, New Jersey
| | - Arvind von Keudell
- Harvard Orthopaedic Trauma Initiative, Boston, Massachusetts
- Department of Orthopaedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Orthopaedic Surgery, Bispebjerg Hospital, University of Copenhagen, Denmark
| |
Collapse
|
2
|
Kaya BM, Asici C. Analysis of Surface Roughness and Strain Durability of Eyeglasses Frames by the 3D Printing Technology. ACS OMEGA 2025; 10:12214-12223. [PMID: 40191320 PMCID: PMC11966310 DOI: 10.1021/acsomega.4c10592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/06/2025] [Accepted: 03/11/2025] [Indexed: 04/09/2025]
Abstract
Three-dimensional (3D) printer technology has developed rapidly in recent years and therefore has become the focus of attention in many areas. It has begun to be widely used in many areas in industry, medicine, biomedical, engineering, basic sciences, etc. Among these areas, the optician sector has also widely used 3D technology. Offering personalized eyeglass frame design, freedom of color, shape, and size in frames, 3D technology offers many advantages and conveniences for users and manufacturers. In this project, a 3D printer with high precision and consistency was developed, and eyeglass frames were designed and produced using acrylonitrile butadiene styrene (ABS) and polyethylene terephthalate glycol (PETG) filament types, different printing temperatures, and layer thicknesses. The surface roughness and the durability of the frames were analyzed by using an optical microscope and performing bending tests, respectively. It was observed that the lowest roughness occurred in the ABS-printed frame with 0.20 mm layer thickness at 240 °C temperature, and the highest durability of 54.7 mε obtained with the ABS-printed frames fabricated with 0.20 mm layer thickness at 235 °C temperature. Average roughness (R a), root-mean-square roughness (R q), and maximum height of profile (R z ) parameters were obtained to analyze surface roughness with respect to temperature change for fabricated frames using ABS and PETG filaments. Thus, the study proves that the production and optimization of customized eyeglass frames can be used not only for commercial and educational purposes in optical stores and optician programs at universities but also in industry, engineering, and daily life purposes.
Collapse
Affiliation(s)
- Burak Malik Kaya
- Vocational
School of Health Service, Eskisehir Osmangazi
University, Eskisehir, 26040, Turkiye
| | - Celal Asici
- Faculty
of Science, Department of Physics, Eskisehir
Osmangazi University, Eskisehir, 26040, Turkiye
| |
Collapse
|
3
|
Raza MA, Sharma MK, Nagori K, Jain P, Ghosh V, Gupta U, Ajazuddin. Recent trends on polycaprolactone as sustainable polymer-based drug delivery system in the treatment of cancer: Biomedical applications and nanomedicine. Int J Pharm 2024; 666:124734. [PMID: 39343332 DOI: 10.1016/j.ijpharm.2024.124734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/05/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
The unique properties-such as biocompatibility, biodegradability, bio-absorbability, low cost, easy fabrication, and high versatility-have made polycaprolactone (PCL) the center of attraction for researchers. The derived introduction in this manuscript gives a pretty detailed overview of PCL, so you can first brush up on it. Discussion on the various PCL-based derivatives involves, but is not limited to, poly(ε-caprolactone-co-lactide) (PCL-co-LA), PCL-g-PEG, PCL-g-PMMA, PCL-g-chitosan, PCL-b-PEO, and PCL-g-PU specific properties and their probable applications in biomedicine. This paper has considered examining the differences in the diverse disease subtypes and the therapeutic value of using PCL. Advanced strategies for PCL in delivery systems are also considered. In addition, this review discusses recently patented products to provide a snapshot of recent updates in this field. Furthermore, the text probes into recent advances in PCL-based DDS, for example, nanoparticles, liposomes, hydrogels, and microparticles, while giving special attention to comparing the esters in the delivery of bioactive compounds such as anticancer drugs. Finally, we review future perspectives on using PCL in biomedical applications and the hurdles of PCL-based drug delivery, including fine-tuning mechanical strength/degradation rate, biocompatibility, and long-term effects in living systems.
Collapse
Affiliation(s)
- Mohammad Adnan Raza
- Department of Pharmaceutics, Rungta College of Pharmaceutical Science and Research, Bhilai 490024, Chhattisgarh, India
| | - Mukesh Kumar Sharma
- Department of Pharmaceutics, Rungta College of Pharmaceutical Science and Research, Bhilai 490024, Chhattisgarh, India
| | - Kushagra Nagori
- Department of Pharmaceutics, Rungta College of Pharmaceutical Science and Research, Bhilai 490024, Chhattisgarh, India
| | - Parag Jain
- Department of Pharmaceutics, Rungta College of Pharmaceutical Science and Research, Bhilai 490024, Chhattisgarh, India
| | - Vijayalakshmi Ghosh
- Department of Biotechnology, GD Rungta College of Science & Technology, Bhilai 490024, Chhattisgarh, India
| | - Umesh Gupta
- Nanopolymeric Drug Delivery Lab, Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer 305817, Rajasthan, India
| | - Ajazuddin
- Department of Pharmaceutics, Rungta College of Pharmaceutical Science and Research, Bhilai 490024, Chhattisgarh, India; Rungta College of Engineering and Technology, Bhilai 490024, Chhattisgarh, India.
| |
Collapse
|
4
|
Kanumilli SLD, Kosuru BP, Shaukat F, Repalle UK. Advancements and Applications of Three-dimensional Printing Technology in Surgery. J Med Phys 2024; 49:319-325. [PMID: 39526161 PMCID: PMC11548071 DOI: 10.4103/jmp.jmp_89_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 11/16/2024] Open
Abstract
Three-dimensional (3D) printing technology has revolutionized surgical practices, offering precise solutions for planning, education, and patient care. Surgeons now wield tangible, patient-specific 3D models derived from imaging data, allowing for meticulous presurgical planning. These models enhance surgical precision, reduce operative times, and minimize complications, ultimately improving patient outcomes. The technology also serves as a powerful educational tool, providing hands-on learning experiences for medical professionals and clearer communication with patients and their families. Despite its advantages, challenges such as model accuracy and material selection exist. Ongoing advancements, including bioactive materials and artificial intelligence integration, promise to further enhance 3D printing's impact. The future of 3D printing in surgery holds potential for regenerative medicine, increased global accessibility, and collaboration through telemedicine. Interdisciplinary collaboration between medical and engineering fields is crucial for responsible and innovative use of this technology.
Collapse
Affiliation(s)
| | - Bhanu P. Kosuru
- Department of Internal Medicine, University of Pittsburgh Medical Center East, Monroeville, Pennsylvania, USA
| | - Faiza Shaukat
- Department of General Surgery, Akhtar Saeed Medical and Dental College, Lahore, Punjab, India
| | - Uday Kumar Repalle
- Department of General Medicine, Dr. Pinnamaneni Siddhartha Institute of Medical Sciences and Research Foundation, Vijayawada, Andhra Pradesh, India
| |
Collapse
|
5
|
Zahid MJ, Mavani P, Awuah WA, Alabdulrahman M, Punukollu R, Kundu A, Mago A, Maher K, Adebusoye FT, Khan TN. Sculpting the future: A narrative review of 3D printing in plastic surgery and prosthetic devices. Health Sci Rep 2024; 7:e2205. [PMID: 38915353 PMCID: PMC11194296 DOI: 10.1002/hsr2.2205] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/02/2024] [Accepted: 06/08/2024] [Indexed: 06/26/2024] Open
Abstract
Background and Aims The advent of 3D printing has revolutionized plastic surgery and prosthetic devices, providing personalized solutions for patients with traumatic injuries, deformities, and appearance-related conditions. This review offers a comprehensive overview of 3D printing's applications, advantages, limitations, and future prospects in these fields. Methods A literature search was conducted in PubMed, Google Scholar, and Scopus for studies on 3D printing in plastic surgery. Results 3D printing has significantly contributed to personalized medical interventions, with benefits like enhanced design flexibility, reduced production time, and improved patient outcomes. Using computer-aided design (CAD) software, precise models tailored to a patient's anatomy can be created, ensuring better fit, functionality, and comfort. 3D printing allows for intricate geometries, leading to improved aesthetic outcomes and patient-specific prosthetic limbs and orthoses. The historical development of 3D printing, key milestones, and breakthroughs are highlighted. Recent progress in bioprinting and tissue engineering shows promising applications in regenerative medicine and transplantation. The integration of AI and automation with 3D printing enhances surgical planning and outcomes. Emerging trends in patient-specific treatment planning and precision medicine are potential game-changers. However, challenges like technical considerations, economic implications, and ethical issues exist. Addressing these challenges and advancing research in materials, design processes, and long-term outcomes are crucial for widespread adoption. Conclusion The review underscores the increasing adoption of 3D printing in healthcare and its impact on plastic surgery and prosthetic devices. It emphasizes the importance of evaluating the current state and addressing knowledge gaps through future research to foster further advancements.
Collapse
Affiliation(s)
| | - Parit Mavani
- B. J. Medical CollegeAhmedabadIndia
- Department of SurgeryEmory University School of MedicineAtlantaGeorgiaUSA
| | | | | | | | - Arnab Kundu
- R.G. Kar Medical College and HospitalKolkataIndia
| | - Arpit Mago
- Jawaharlal Nehru medical CollegeBelgaumIndia
| | | | | | | |
Collapse
|
6
|
Alzhrani RF, Alyahya MY, Algahtani MS, Fitaihi RA, Tawfik EA. Trend of pharmaceuticals 3D printing in the Middle East and North Africa (MENA) region: An overview, regulatory perspective and future outlook. Saudi Pharm J 2024; 32:102098. [PMID: 38774811 PMCID: PMC11107368 DOI: 10.1016/j.jsps.2024.102098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024] Open
Abstract
The traditional method of producing medicine using the "one-size fits all" model is becoming a major issue for pharmaceutical manufacturers due to its inability to produce customizable medicines for individuals' needs. Three-dimensional (3D) printing is a new disruptive technology that offers many benefits to the pharmaceutical industry by revolutionizing the way pharmaceuticals are developed and manufactured. 3D printing technology enables the on-demand production of personalized medicine with tailored dosage, shape and release characteristics. Despite the lack of clear regulatory guidance, there is substantial interest in adopting 3D printing technology in the large-scale manufacturing of medicine. This review aims to evaluate the research efforts of 3D printing technology in the Middle East and North Africa (MENA) region, with a particular emphasis on pharmaceutical research and development. Our analysis indicates an upsurge in the overall research activity of 3D printing technology but there is limited progress in pharmaceuticals research and development. While the MENA region still lags, there is evidence of the regional interest in expanding the 3D printing technology applications in different sectors including pharmaceuticals. 3D printing holds great promise for pharmaceutical development within the MENA region and its advancement will require a strong collaboration between academic researchers and industry partners in parallel with drafting detailed guidelines from regulatory authorities.
Collapse
Affiliation(s)
- Riyad F. Alzhrani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Y. Alyahya
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed S. Algahtani
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia
| | - Rawan A. Fitaihi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Essam A. Tawfik
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| |
Collapse
|
7
|
Generalova AN, Vikhrov AA, Prostyakova AI, Apresyan SV, Stepanov AG, Myasoedov MS, Oleinikov VA. Polymers in 3D printing of external maxillofacial prostheses and in their retention systems. Int J Pharm 2024; 657:124181. [PMID: 38697583 DOI: 10.1016/j.ijpharm.2024.124181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/12/2024] [Accepted: 04/28/2024] [Indexed: 05/05/2024]
Abstract
Maxillofacial defects, arising from trauma, oncological disease or congenital abnormalities, detrimentally affect daily life. Prosthetic repair offers the aesthetic and functional reconstruction with the help of materials mimicking natural tissues. 3D polymer printing enables the design of patient-specific prostheses with high structural complexity, as well as rapid and low-cost fabrication on-demand. However, 3D printing for prosthetics is still in the early stage of development and faces various challenges for widespread use. This is because the most suitable polymers for maxillofacial restoration are soft materials that do not have the required printability, mechanical strength of the printed parts, as well as functionality. This review focuses on the challenges and opportunities of 3D printing techniques for production of polymer maxillofacial prostheses using computer-aided design and modeling software. Review discusses the widely used polymers, as well as their blends and composites, which meet the most important assessment criteria, such as the physicochemical, biological, aesthetic properties and processability in 3D printing. In addition, strategies for improving the polymer properties, such as their printability, mechanical strength, and their ability to print multimaterial and architectural structures are highlighted. The current state of the prosthetic retention system is presented with a focus on actively used polymer adhesives and the recently implemented prosthesis-supporting osseointegrated implants, with an emphasis on their creation from 3D-printed polymers. The successful prosthetics is discussed in terms of the specificity of polymer materials at the restoration site. The approaches and technological prospects are also explored through the examples of the nasal, auricle and ocular prostheses, ranging from prototypes to end-use products.
Collapse
Affiliation(s)
- Alla N Generalova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; Federal Scientific Research Center "Crystallography and Photonics" of the Russian Academy of Sciences, 119333 Moscow, Russia.
| | - Alexander A Vikhrov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Anna I Prostyakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Samvel V Apresyan
- Institute of Digital Dentistry, Medical Institute, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya 6, 117198 Moscow, Russia
| | - Alexander G Stepanov
- Institute of Digital Dentistry, Medical Institute, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya 6, 117198 Moscow, Russia
| | - Maxim S Myasoedov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Vladimir A Oleinikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| |
Collapse
|
8
|
Kumar P, Shamim, Muztaba M, Ali T, Bala J, Sidhu HS, Bhatia A. Fused Deposition Modeling 3D-Printed Scaffolds for Bone Tissue Engineering Applications: A Review. Ann Biomed Eng 2024; 52:1184-1194. [PMID: 38418691 DOI: 10.1007/s10439-024-03479-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
The emergence of bone tissue engineering as a trend in regenerative medicine is forcing scientists to create highly functional materials and scaffold construction techniques. Bone tissue engineering uses 3D bio-printed scaffolds that allow and stimulate the attachment and proliferation of osteoinductive cells on their surfaces. Bone grafting is necessary to expedite the patient's condition because the natural healing process of bones is slow. Fused deposition modeling (FDM) is therefore suggested as a technique for the production process due to its simplicity, ability to create intricate components and movable forms, and low running costs. 3D-printed scaffolds can repair bone defects in vivo and in vitro. For 3D printing, various materials including metals, polymers, and ceramics are often employed but polymeric biofilaments are promising candidates for replacing non-biodegradable materials due to their adaptability and environment friendliness. This review paper majorly focuses on the fused deposition modeling approach for the fabrication of 3D scaffolds. In addition, it also provides information on biofilaments used in FDM 3D printing, applications, and commercial aspects of scaffolds in bone tissue engineering.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, India.
| | - Shamim
- IIMT College of Medical Sciences, IIMT University, Ganga Nagar, Meerut, Uttar Pradesh, 250001, India
| | - Mohammad Muztaba
- Department of Pharmacology, Praduman Singh Sikshan Prasikshan Sansthan Pharmacy College, Phutahiya Sansarpur, Basti, Uttar Pradesh, 272001, India
| | - Tarmeen Ali
- Department of Pharmacy, Swami Vivekanand Subharti University, Subhartipuram, Meerut, Uttar Pradesh, 250005, India
| | - Jyoti Bala
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, India
| | - Haramritpal Singh Sidhu
- Department of Mechanical Engineering, Giani Zail Singh Campus College of Engineering & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, India
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, India
| |
Collapse
|
9
|
Kennedy SM, K A, J JJB, V E, Rb JR. Transformative applications of additive manufacturing in biomedical engineering: bioprinting to surgical innovations. J Med Eng Technol 2024; 48:151-168. [PMID: 39282861 DOI: 10.1080/03091902.2024.2399017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 08/17/2024] [Accepted: 08/24/2024] [Indexed: 10/10/2024]
Abstract
This paper delves into the diverse applications and transformative impact of additive manufacturing (AM) in biomedical engineering. A detailed analysis of various AM technologies showcases their distinct capabilities and specific applications within the medical field. Special emphasis is placed on bioprinting of organs and tissues, a revolutionary area where AM has the potential to revolutionize organ transplantation and regenerative medicine by fabricating functional tissues and organs. The review further explores the customization of implants and prosthetics, demonstrating how tailored medical devices enhance patient comfort and performance. Additionally, the utility of AM in surgical planning is examined, highlighting how printed models contribute to increased surgical precision, reduced operating times, and minimized complications. The discussion extends to the 3D printing of surgical instruments, showcasing how these bespoke tools can improve surgical outcomes. Moreover, the integration of AM in drug delivery systems, including the development of innovative drug-loaded implants, underscores its potential to enhance therapeutic efficacy and reduce side effects. It also addresses personalized prosthetic implants, regulatory frameworks, biocompatibility concerns, and the future potential of AM in global health and sustainable practices.
Collapse
Affiliation(s)
- Senthil Maharaj Kennedy
- Department of Mechanical Engineering, AAA College of Engineering and Technology, Sivakasi, India
| | - Amudhan K
- Department of Mechanical Engineering, Mepco Schlenk Engineering College, Sivakasi, India
| | - Jerold John Britto J
- Department of Mechanical Engineering, Ramco Institute of Technology, Rajapalayam, India
| | - Ezhilmaran V
- Department of Manufacturing Engineering, Anna University, Chennai, India
| | - Jeen Robert Rb
- Department of Mechanical Engineering, Sri Krishna College of Technology, Coimbatore, India
| |
Collapse
|
10
|
Ock J, Moon S, Kim M, Ko BS, Kim N. Evaluation of the accuracy of an augmented reality-based tumor-targeting guide for breast-conserving surgery. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 245:108002. [PMID: 38215659 DOI: 10.1016/j.cmpb.2023.108002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/14/2024]
Abstract
BACKGROUND AND OBJECTIVES Although magnetic resonance imaging (MRI) is commonly used for breast tumor detection, significant challenges remain in determining and presenting the three-dimensional (3D) morphology of tumors to guide breast-conserving surgery. To address this challenge, we have developed the augmented reality-breast surgery guide (AR-BSG) and compared its performance with that of a traditional 3D-printed breast surgical guide (3DP-BSG). METHODS Based on the MRI results of a breast cancer patient, a breast phantom made of skin, body, and tumor was fabricated through 3D printing and silicone-casting. AR-BSG and 3DP-BSG were executed using surgical plans based on the breast phantom's computed tomography scan images. Three operators independently inserted a catheter into the phantom using each guide. Their targeting accuracy was then evaluated using Bland-Altman analysis with limits of agreement (LoA). Differences between the users of each guide were evaluated using the intraclass correlation coefficient (ICC). RESULTS The entry and end point errors associated with AR-BSG were -0.34±0.68 mm (LoA: -1.71-1.01 mm) and 0.81±1.88 mm (LoA: -4.60-3.00 mm), respectively, whereas 3DP-BSG was associated with entry and end point errors of -0.28±0.70 mm (LoA: -1.69-1.11 mm) and -0.62±1.24 mm (LoA: -3.00-1.80 mm), respectively. The AR-BSG's entry and end point ICC values were 0.99 and 0.97, respectively, whereas 3DP-BSG was associated with entry and end point ICC values of 0.99 and 0.99, respectively. CONCLUSIONS AR-BSG can consistently and accurately localize tumor margins for surgeons without inferior guiding accuracy AR-BSG can consistently and accurately localize tumor margins for surgeons without inferior guiding accuracy compared to 3DP-BSG. Additionally, when compared with 3DP-BSG, AR-BSG can offer better spatial perception and visualization, lower costs, and a shorter setup time.
Collapse
Affiliation(s)
- Junhyeok Ock
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, 388-1 Pungnap2-dong, Songpa-gu, Seoul, South Korea
| | - Sojin Moon
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, 388-1 Pungnap2-dong, Songpa-gu, Seoul, South Korea
| | - MinKyeong Kim
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, 388-1 Pungnap2-dong, Songpa-gu, Seoul, South Korea
| | - Beom Seok Ko
- Department of Breast Surgery, Asan Medical Center, University of Ulsan College of Medicine, 388-1 Pungnap2-dong, Songpa-gu, Seoul, South Korea
| | - Namkug Kim
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, 388-1 Pungnap2-dong, Songpa-gu, Seoul, South Korea; Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 388-1 Pungnap2-dong, Songpa-gu, Seoul, South Korea.
| |
Collapse
|
11
|
Joshua RJN, Raj SA, Hameed Sultan MT, Łukaszewicz A, Józwik J, Oksiuta Z, Dziedzic K, Tofil A, Shahar FS. Powder Bed Fusion 3D Printing in Precision Manufacturing for Biomedical Applications: A Comprehensive Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:769. [PMID: 38591985 PMCID: PMC10856375 DOI: 10.3390/ma17030769] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 04/10/2024]
Abstract
Precision manufacturing requirements are the key to ensuring the quality and reliability of biomedical implants. The powder bed fusion (PBF) technique offers a promising solution, enabling the creation of complex, patient-specific implants with a high degree of precision. This technology is revolutionizing the biomedical industry, paving the way for a new era of personalized medicine. This review explores and details powder bed fusion 3D printing and its application in the biomedical field. It begins with an introduction to the powder bed fusion 3D-printing technology and its various classifications. Later, it analyzes the numerous fields in which powder bed fusion 3D printing has been successfully deployed where precision components are required, including the fabrication of personalized implants and scaffolds for tissue engineering. This review also discusses the potential advantages and limitations for using the powder bed fusion 3D-printing technology in terms of precision, customization, and cost effectiveness. In addition, it highlights the current challenges and prospects of the powder bed fusion 3D-printing technology. This work offers valuable insights for researchers engaged in the field, aiming to contribute to the advancement of the powder bed fusion 3D-printing technology in the context of precision manufacturing for biomedical applications.
Collapse
Affiliation(s)
- Rajan John Nekin Joshua
- Department of Manufacturing Engineering, School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India;
| | - Sakthivel Aravind Raj
- Department of Manufacturing Engineering, School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India;
| | - Mohamed Thariq Hameed Sultan
- Department of Aerospace Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Aerospace Malaysia Innovation Centre (944751-A), Prime Minister’s Department, MIGHT Partnership Hub, Jalan Impact, Cyberjaya 63000, Selangor, Malaysia
| | - Andrzej Łukaszewicz
- Institute of Mechanical Engineering, Faculty of Mechanical Engineering, Bialystok University of Technology, Wiejska 45C, 15-351 Bialystok, Poland;
| | - Jerzy Józwik
- Department of Production Engineering, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland;
- Institute of Technical Sciences and Aviation, University College of Applied Sciences in Chełm, Pocztowa 54, 22-100 Chełm, Poland;
| | - Zbigniew Oksiuta
- Institute of Biomedical Engineering, Faculty of Mechanical Engineering, Bialystok University of Technology, Wiejska 45C, 15-351 Bialystok, Poland;
| | - Krzysztof Dziedzic
- Institute of Computer Science, Electrical Engineering and Computer Science Faculty, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland;
| | - Arkadiusz Tofil
- Institute of Technical Sciences and Aviation, University College of Applied Sciences in Chełm, Pocztowa 54, 22-100 Chełm, Poland;
| | - Farah Syazwani Shahar
- Department of Aerospace Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| |
Collapse
|
12
|
Aggarwal K, Nagpal K. Three-Dimensional Printing as a Progressive Innovative Tool for Customized and Precise Drug Delivery. Crit Rev Ther Drug Carrier Syst 2024; 41:95-130. [PMID: 38037821 DOI: 10.1615/critrevtherdrugcarriersyst.2023046832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
While using three-dimensional printing, materials are deposited layer by layer in accordance with the digital model created by computer-aided design software. Numerous research teams have shown interest in this technology throughout the last few decades to produce various dosage forms in the pharmaceutical industry. The number of publications has increased since the first printed medicine was approved in 2015 by Food and Drug Administration. Considering this, the idea of creating complex, custom-made structures that are loaded with pharmaceuticals for tissue engineering and dose optimization is particularly intriguing. New approaches and techniques for creating unique medication delivery systems are made possible by the development of additive manufacturing keeping in mind the comparative advantages it has over conventional methods of manufacturing medicaments. This review focuses on three-dimensional printed formulations grouped in orally disintegrated tablets, buccal films, implants, suppositories, and microneedles. The various types of techniques that are involved in it are summarized. Additionally, challenges and applications related to three-dimensional printing of pharmaceuticals are also being discussed.
Collapse
Affiliation(s)
- Kirti Aggarwal
- Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Noida, AUUP
| | - Kalpana Nagpal
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, UP-201303, India
| |
Collapse
|
13
|
Mishra Y, Mishra V, Aljabali AAA, El-Tanani M, Naikoo GA, Charbe N, Chava SR, Tambuwala MM. 3D Printed Personalized Colon-targeted Tablets: A Novel Approach in Ulcerative Colitis Management. Curr Drug Deliv 2024; 21:1211-1225. [PMID: 37718525 DOI: 10.2174/1567201821666230915150544] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/19/2023] [Accepted: 08/03/2023] [Indexed: 09/19/2023]
Abstract
Ulcerative colitis (UC) and Crohn's disease (CD) are two types of idiopathic inflammatory bowel disease (IBD) that are increasing in frequency and incidence worldwide, particularly in highly industrialized countries. Conventional tablets struggle to effectively deliver anti-inflammatory drugs since the inflammation is localized in different areas of the colon in each patient. The goal of 3D printing technology in pharmaceutics is to create personalized drug delivery systems (DDS) that are tailored to each individual's specific needs. This review provides an overview of existing 3D printing processes, with a focus on extrusion-based technologies, which have received the most attention. Personalized pharmaceutical products offer numerous benefits to patients worldwide, and 3D printing technology is becoming more affordable every day. Custom manufacturing of 3D printed tablets provides innovative ideas for developing a tailored colon DDS. In the future, 3D printing could be used to manufacture personalized tablets for UC patients based on the location of inflammation in the colon, resulting in improved therapeutic outcomes and a better quality of life.
Collapse
Affiliation(s)
- Yachana Mishra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara (Punjab)-144411, India
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara (Punjab)-144411, India
| | - Alaa A A Aljabali
- Faculty of Pharmacy, Department of Pharmaceutics & Pharmaceutical Technology, Yarmouk University, Irbid 21163, Jordan
| | - Mohamed El-Tanani
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Gowhar A Naikoo
- Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, Salalah PC 211, Oman
| | - Nitin Charbe
- Center for Pharmacometrics & Systems Pharmacology, Department of Pharmaceutics (Lake Nona), University of Florida, Orlando, FL, USA
| | | | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS. United Kingdom
| |
Collapse
|
14
|
Roychoudhury A, Raj R. Role of 3D printing in microfluidics and applications. NEXT-GENERATION SMART BIOSENSING 2024:67-107. [DOI: 10.1016/b978-0-323-98805-6.00004-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
15
|
Alzoubi L, Aljabali AAA, Tambuwala MM. Empowering Precision Medicine: The Impact of 3D Printing on Personalized Therapeutic. AAPS PharmSciTech 2023; 24:228. [PMID: 37964180 DOI: 10.1208/s12249-023-02682-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
This review explores recent advancements and applications of 3D printing in healthcare, with a focus on personalized medicine, tissue engineering, and medical device production. It also assesses economic, environmental, and ethical considerations. In our review of the literature, we employed a comprehensive search strategy, utilizing well-known databases like PubMed and Google Scholar. Our chosen keywords encompassed essential topics, including 3D printing, personalized medicine, nanotechnology, and related areas. We first screened article titles and abstracts and then conducted a detailed examination of selected articles without imposing any date limitations. The articles selected for inclusion, comprising research studies, clinical investigations, and expert opinions, underwent a meticulous quality assessment. This methodology ensured the incorporation of high-quality sources, contributing to a robust exploration of the role of 3D printing in the realm of healthcare. The review highlights 3D printing's potential in healthcare, including customized drug delivery systems, patient-specific implants, prosthetics, and biofabrication of organs. These innovations have significantly improved patient outcomes. Integration of nanotechnology has enhanced drug delivery precision and biocompatibility. 3D printing also demonstrates cost-effectiveness and sustainability through optimized material usage and recycling. The healthcare sector has witnessed remarkable progress through 3D printing, promoting a patient-centric approach. From personalized implants to radiation shielding and drug delivery systems, 3D printing offers tailored solutions. Its transformative applications, coupled with economic viability and sustainability, have the potential to revolutionize healthcare. Addressing material biocompatibility, standardization, and ethical concerns is essential for responsible adoption.
Collapse
Affiliation(s)
- Lorca Alzoubi
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Yarmouk University, P.O. Box 566, Irbid, 21163, Jordan
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, P.O. Box 566, Irbid, 21163, Jordan.
| | - Murtaza M Tambuwala
- Lincoln Medical School, Brayford Pool Campus, University of Lincoln, Lincoln, LN6 7TS, UK.
| |
Collapse
|
16
|
Zilinskaite N, Shukla RP, Baradoke A. Use of 3D Printing Techniques to Fabricate Implantable Microelectrodes for Electrochemical Detection of Biomarkers in the Early Diagnosis of Cardiovascular and Neurodegenerative Diseases. ACS MEASUREMENT SCIENCE AU 2023; 3:315-336. [PMID: 37868357 PMCID: PMC10588936 DOI: 10.1021/acsmeasuresciau.3c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 10/24/2023]
Abstract
This Review provides a comprehensive overview of 3D printing techniques to fabricate implantable microelectrodes for the electrochemical detection of biomarkers in the early diagnosis of cardiovascular and neurodegenerative diseases. Early diagnosis of these diseases is crucial to improving patient outcomes and reducing healthcare systems' burden. Biomarkers serve as measurable indicators of these diseases, and implantable microelectrodes offer a promising tool for their electrochemical detection. Here, we discuss various 3D printing techniques, including stereolithography (SLA), digital light processing (DLP), fused deposition modeling (FDM), selective laser sintering (SLS), and two-photon polymerization (2PP), highlighting their advantages and limitations in microelectrode fabrication. We also explore the materials used in constructing implantable microelectrodes, emphasizing their biocompatibility and biodegradation properties. The principles of electrochemical detection and the types of sensors utilized are examined, with a focus on their applications in detecting biomarkers for cardiovascular and neurodegenerative diseases. Finally, we address the current challenges and future perspectives in the field of 3D-printed implantable microelectrodes, emphasizing their potential for improving early diagnosis and personalized treatment strategies.
Collapse
Affiliation(s)
- Nemira Zilinskaite
- Wellcome/Cancer
Research UK Gurdon Institute, Henry Wellcome Building of Cancer and
Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, U.K.
- Faculty
of Medicine, University of Vilnius, M. K. Čiurlionio g. 21, LT-03101 Vilnius, Lithuania
| | - Rajendra P. Shukla
- BIOS
Lab-on-a-Chip Group, MESA+ Institute for Nanotechnology, Max Planck
Center for Complex Fluid Dynamics, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Ausra Baradoke
- Wellcome/Cancer
Research UK Gurdon Institute, Henry Wellcome Building of Cancer and
Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, U.K.
- Faculty
of Medicine, University of Vilnius, M. K. Čiurlionio g. 21, LT-03101 Vilnius, Lithuania
- BIOS
Lab-on-a-Chip Group, MESA+ Institute for Nanotechnology, Max Planck
Center for Complex Fluid Dynamics, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- Center for
Physical Sciences and Technology, Savanoriu 231, LT-02300 Vilnius, Lithuania
| |
Collapse
|
17
|
Garnica-Bohórquez I, Güiza-Argüello VR, López-Gualdrón CI. Effect of Sterilization on the Dimensional and Mechanical Behavior of Polylactic Acid Pieces Produced by Fused Deposition Modeling. Polymers (Basel) 2023; 15:3317. [PMID: 37571211 PMCID: PMC10422276 DOI: 10.3390/polym15153317] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
To successfully implement additive manufacturing (AM) techniques for custom medical device (MD) production with low-cost resources, it is imperative to understand the effect of common and affordable sterilization processes, such as formaldehyde or steam sterilization, on pieces manufactured by AM. In this way, the performance of low-risk MDs, such as biomodels and surgical guides, could be assessed for complying with safety, precision, and MD delivery requirements. In this context, the aim of the present work was to evaluate the effect of formaldehyde and steam sterilization on the dimensional and mechanical stability of standard polylactic acid (PLA) test pieces produced by fused deposition modeling (FDM). To achieve this, PLA samples were sterilized according to the sterilization protocol of a public hospital in the city of Bucaramanga, Colombia. Significant changes regarding mechanical and dimensional properties were found as a function of manufacturing parameters. This research attempts to contribute to the development of affordable approaches for the fabrication of functional and customized medical devices through AM technologies, an issue of particular interest for low- and middle-income countries.
Collapse
Affiliation(s)
- Israel Garnica-Bohórquez
- Industrial Design Department, Universidad Industrial de Santander, Bucaramanga 680002, Colombia;
| | - Viviana R. Güiza-Argüello
- Metallurgical Engineering and Materials Science Department, Universidad Industrial de Santander, Bucaramanga 680002, Colombia;
| | - Clara I. López-Gualdrón
- Industrial Design Department, Universidad Industrial de Santander, Bucaramanga 680002, Colombia;
| |
Collapse
|
18
|
Hosseini F, Mirzaei Chegeni M, Bidaki A, Zaer M, Abolhassani H, Seyedi SA, Nabipoorashrafi SA, Ashrafnia Menarbazari A, Moeinzadeh A, Farmani AR, Tavakkoli Yaraki M. 3D-printing-assisted synthesis of paclitaxel-loaded niosomes functionalized by cross-linked gelatin/alginate composite: Large-scale synthesis and in-vitro anti-cancer evaluation. Int J Biol Macromol 2023; 242:124697. [PMID: 37156313 DOI: 10.1016/j.ijbiomac.2023.124697] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/10/2023]
Abstract
Breast cancer is one of the most lethal cancers, especially in women. Despite many efforts, side effects of anti-cancer drugs and metastasis are still the main challenges in breast cancer treatment. Recently, advanced technologies such as 3D-printing and nanotechnology have created new horizons in cancer treatment. In this work, we report an advanced drug delivery system based on 3D-printed gelatin-alginate scaffolds containing paclitaxel-loaded niosomes (Nio-PTX@GT-AL). The morphology, drug release, degradation, cellular uptake, flow cytometry, cell cytotoxicity, migration, gene expression, and caspase activity of scaffolds, and control samples (Nio-PTX, and Free-PTX) were investigated. Results demonstrated that synthesized niosomes had spherical-like, in the range of 60-80 nm with desirable cellular uptake. Nio-PTX@GT-AL and Nio-PTX had a sustained drug release and were biodegradable. Cytotoxicity studies revealed that the designed Nio-PTX@GT-AL scaffold had <5 % cytotoxicity against non-tumorigenic breast cell line (MCF-10A) but showed 80 % cytotoxicity against breast cancer cells (MCF-7), which was considerably more than the anti-cancer effects of control samples. In migration evaluation (scratch-assay), approximately 70 % reduction of covered surface area was observed. The anticancer effect of the designed nanocarrier could be attributed to gene expression regulation, where a significant increase in the expression and activity of genes promoting apoptosis (CASP-3, CASP-8, and CASP-9) and inhibiting metastasis (Bax, and p53) and a remarkable decrease in metastasis-enhancing genes (Bcl2, MMP-2, and MMP-9) were observed. Also, flow cytometry results declared that Nio-PTX@GT-AL reduced necrosis and increased apoptosis considerably. The results of this study prove that employing 3D-printing and niosomal formulation is an effective approach in designing nanocarriers for efficient drug delivery applications.
Collapse
Affiliation(s)
- Fatemeh Hosseini
- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Ali Bidaki
- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Zaer
- Biomedical Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Hossein Abolhassani
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA
| | - Seyed Arsalan Seyedi
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, School of Medicine, Tehran, Iran
| | - Seyed Ali Nabipoorashrafi
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, School of Medicine, Tehran, Iran
| | | | - Alaa Moeinzadeh
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Farmani
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| | - Mohammad Tavakkoli Yaraki
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW 2109, Australia.
| |
Collapse
|
19
|
Alzyod H, Ficzere P. Optimizing fused filament fabrication process parameters for quality enhancement of PA12 parts using numerical modeling and taguchi method. Heliyon 2023; 9:e14445. [PMID: 36942227 PMCID: PMC10023978 DOI: 10.1016/j.heliyon.2023.e14445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Fused Filament Fabrication (FFF) is an Additive Manufacturing (AM) technique implemented in widespread applications and several components. Despite its benefits, the physics behind the FFF process is quite complicated and requires fast heating and cooling rate of the extruded material. Consequently, the component experiences extremely non-uniform internal stresses that might lead to warpage deformation. It is necessary to optimize the printing parameters as they are associated with the warpage deformation of printed components. One method for achieving this target is conducting physical tests that offer precise findings, but it is an expensive strategy. Another approach is to simulate the printing parameters with special software. In this work, Digimat-AM was employed to develop a thermomechanical Finite Element Model of the FFF to simulate parts made of Polyamide12 (PA12). An L27 orthogonal array, a tool of the Taguchi orthogonal array, and an analysis of variance (ANOVA) were used to estimate the impact of five printing parameters and their ultimate levels to improve the dimension's quality by minimizing the warpage deformation. Results showed a significant impact of the bed temperature on the warpage deformation values. The infill density contributed 2.84% in reducing the warpage deformation, and the rest of the parameters' contribution was less than 1% for each.
Collapse
|
20
|
Waqar A, Othman I, Pomares JC. Impact of 3D Printing on the Overall Project Success of Residential Construction Projects Using Structural Equation Modelling. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20053800. [PMID: 36900821 PMCID: PMC10000831 DOI: 10.3390/ijerph20053800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 06/04/2023]
Abstract
After a decade of research and development, 3D printing is now an established technique in the construction sector, complete with its own set of accepted standards. The use of 3D printing in construction might potentially improve the outcome of the project as a whole. However, traditional strategies are often used in the residential construction industry in Malaysia, which causes serious public safety and health issues along with a negative impact on the environment. In the context of project management, overall project success (OPS) has five dimensions, such as cost, time, quality, safety, and environment. Understanding the role of 3D printing in relation to OPS dimensions in Malaysian residential construction projects would allow construction professionals to adopt 3D printing more easily. The aim of the study was to find the impact of 3D construction printing on OPS while considering the implications for all five dimensions. Fifteen professionals were interviewed to first evaluate and summarise the impact factors of 3D printing using the current literature. Then, a pilot survey was conducted, and the results were checked using exploratory factor analysis (EFA). The feasibility of 3D printing in the building sector was investigated by surveying industry experts. Partial least squares structural equation modelling was used to investigate and validate the fundamental structure and linkages between 3D printing and OPS (PLS-SEM). A strong correlation was found between 3D printing in residential projects and OPS. Highly positive implications are indicated by the environmental and safety dimensions of OPS. Malaysian decision-makers may look to the outcomes of introducing 3D printing into the residential construction industry as a modern method for increasing environmental sustainability, public health and safety, reducing cost and time, and increasing the quality of construction work. With this study's findings in hand, construction engineering management in Malaysia's residential building sector might benefit from a deeper understanding of how 3D printing is used for improving environmental compliance, public health and safety, and project scope.
Collapse
Affiliation(s)
- Ahsan Waqar
- Department of Civil & Environmental Engineering, University Technology PETRONAS, Seri Iskandar 32610, Malaysia
| | - Idris Othman
- Department of Civil & Environmental Engineering, University Technology PETRONAS, Seri Iskandar 32610, Malaysia
| | | |
Collapse
|
21
|
AlRawi A, Basha T, Elmeligy AO, Mousa NA, Mohammed G. The Role of Three-dimensional Printed Models in Women's Health. WOMEN'S HEALTH (LONDON, ENGLAND) 2023; 19:17455057231199040. [PMID: 37688305 PMCID: PMC10493061 DOI: 10.1177/17455057231199040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/26/2023] [Accepted: 08/11/2023] [Indexed: 09/10/2023]
Abstract
Three-dimensional printing is an innovative technology that has gained prominence in recent years due to its attractive features such as affordability, efficiency, and quick production. The technology is used to produce a three-dimensional model by depositing materials in layers using specific printers. In the medical field, it has been increasingly used in various specialties, including neurosurgery, cardiology, and orthopedics, most commonly for the pre-planning of complex surgeries. In addition, it has been applied in therapeutic treatments, patient education, and training wof medical professionals. In the field of obstetrics and gynecology, there is a limited number of studies in which three-dimensional printed models were applied. In this review, we aim to provide an overview of three-dimensional printing applications in the medical field, highlighting the few reported applications in obstetrics and gynecology. We also review all relevant studies and discuss the current challenges and limitations of adopting the technology in routine clinical practice. The technology has the potential to expand for wider applications related to women's health, including patient counseling, surgical training, and medical education.
Collapse
Affiliation(s)
- Afnan AlRawi
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Tasneem Basha
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Ahmed O Elmeligy
- Department of Electrical and Computer Engineering, Faculty of Engineering, McGill University, Montreal, QC, Canada
| | - Noha A Mousa
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Ghada Mohammed
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
22
|
Sekar MP, Budharaju H, Zennifer A, Sethuraman S, Sundaramurthi D. Four-dimension printing in healthcare. 3D Print Med 2023. [DOI: 10.1016/b978-0-323-89831-7.00010-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
23
|
Expanding Quality by Design Principles to Support 3D Printed Medical Device Development Following the Renewed Regulatory Framework in Europe. Biomedicines 2022; 10:biomedicines10112947. [PMID: 36428514 PMCID: PMC9687721 DOI: 10.3390/biomedicines10112947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
The vast scope of 3D printing has ignited the production of tailored medical device (MD) development and catalyzed a paradigm shift in the health-care industry, particularly following the COVID pandemic. This review aims to provide an update on the current progress and emerging opportunities for additive manufacturing following the introduction of the new medical device regulation (MDR) within the EU. The advent of early-phase implementation of the Quality by Design (QbD) quality management framework in MD development is a focal point. The application of a regulatory supported QbD concept will ensure successful MD development, as well as pointing out the current challenges of 3D bioprinting. Utilizing a QbD scientific and risk-management approach ensures the acceleration of MD development in a more targeted way by building in all stakeholders' expectations, namely those of the patients, the biomedical industry, and regulatory bodies.
Collapse
|
24
|
Mazarura KR, Kumar P, Choonara YE. Customised 3D printed multi-drug systems: An effective and efficient approach to polypharmacy. Expert Opin Drug Deliv 2022; 19:1149-1163. [PMID: 36059243 DOI: 10.1080/17425247.2022.2121816] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Combination therapies continue to improve therapeutic outcomes as currently achieved by polypharmacy. Since the introduction of the polypill, there has been a significant improvement in adherence and patient outcomes. However, the mass production of polypills presents a number of technical, formulation, and clinical challenges. The current one-size-fits-all approach ignores the unique clinical demands of patients, necessitating the adoption of a more versatile tool. That will be the novel, but not so novel, 3D printing. AREAS COVERED : The present review investigates this promising paradigm shift from one medication for all, to customised medicines, providing an overview of the current state of 3D-printed multi-active pharmaceutical forms, techniques applied and printing materials. Details on cost implications, as well as potential limitations and challenges are also elaborated. EXPERT OPINION : 3D printing of multi-active systems, is not only beneficial but also essential. With growing interest in this field, a shift in manufacturing, prescribing, and administration patterns is at this point, unavoidable. Addressing limitations and challenges, as well as data presentation on clinical trial results, will aid in the acceleration of this technology's implementation. However, it is clear that 3D printing is not the end of it, as evidenced by the emerging 4D printing technology.
Collapse
Affiliation(s)
- Kundai R Mazarura
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| |
Collapse
|
25
|
Zhang L, Forgham H, Shen A, Wang J, Zhu J, Huang X, Tang SY, Xu C, Davis TP, Qiao R. Nanomaterial integrated 3D printing for biomedical applications. J Mater Chem B 2022; 10:7473-7490. [PMID: 35993266 DOI: 10.1039/d2tb00931e] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
3D printing technology, otherwise known as additive manufacturing, has provided a promising tool for manufacturing customized biomaterials for tissue engineering and regenerative medicine applications. A vast variety of biomaterials including metals, ceramics, polymers, and composites are currently being used as base materials in 3D printing. In recent years, nanomaterials have been incorporated into 3D printing polymers to fabricate innovative, versatile, multifunctional hybrid materials that can be used in many different applications within the biomedical field. This review focuses on recent advances in novel hybrid biomaterials composed of nanomaterials and 3D printing technologies for biomedical applications. Various nanomaterials including metal-based nanomaterials, metal-organic frameworks, upconversion nanoparticles, and lipid-based nanoparticles used for 3D printing are presented, with a summary of the mechanisms, functional properties, advantages, disadvantages, and applications in biomedical 3D printing. To finish, this review offers a perspective and discusses the challenges facing the further development of nanomaterials in biomedical 3D printing.
Collapse
Affiliation(s)
- Liwen Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Helen Forgham
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Ao Shen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia. .,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jiafan Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia. .,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jiayuan Zhu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia. .,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Xumin Huang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Shi-Yang Tang
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Birmingham B15 2TT, UK
| | - Chun Xu
- School of Dentistry, The University of Queensland, Brisbane, Queensland 4006, Australia.,Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), School of Dentistry, The University of Queensland, Brisbane, QLD 4006, Australia
| | - Thomas P Davis
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Ruirui Qiao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
26
|
Liu S, Wang T, Li S, Wang X. Application Status of Sacrificial Biomaterials in 3D Bioprinting. Polymers (Basel) 2022; 14:2182. [PMID: 35683853 PMCID: PMC9182955 DOI: 10.3390/polym14112182] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
Additive manufacturing, also known as three-dimensional (3D) printing, relates to several rapid prototyping (RP) technologies, and has shown great potential in the manufacture of organoids and even complex bioartificial organs. A major challenge for 3D bioprinting complex org unit ans is the competitive requirements with respect to structural biomimeticability, material integrability, and functional manufacturability. Over the past several years, 3D bioprinting based on sacrificial templates has shown its unique advantages in building hierarchical vascular networks in complex organs. Sacrificial biomaterials as supporting structures have been used widely in the construction of tubular tissues. The advent of suspension printing has enabled the precise printing of some soft biomaterials (e.g., collagen and fibrinogen), which were previously considered unprintable singly with cells. In addition, the introduction of sacrificial biomaterials can improve the porosity of biomaterials, making the printed structures more favorable for cell proliferation, migration and connection. In this review, we mainly consider the latest developments and applications of 3D bioprinting based on the strategy of sacrificial biomaterials, discuss the basic principles of sacrificial templates, and look forward to the broad prospects of this approach for complex organ engineering or manufacturing.
Collapse
Affiliation(s)
- Siyu Liu
- Center of 3D Printing & Organ Manufacturing, School of Intelligent Medicine, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (S.L.); (T.W.); (S.L.)
| | - Tianlin Wang
- Center of 3D Printing & Organ Manufacturing, School of Intelligent Medicine, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (S.L.); (T.W.); (S.L.)
| | - Shenglong Li
- Center of 3D Printing & Organ Manufacturing, School of Intelligent Medicine, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (S.L.); (T.W.); (S.L.)
| | - Xiaohong Wang
- Center of 3D Printing & Organ Manufacturing, School of Intelligent Medicine, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (S.L.); (T.W.); (S.L.)
- Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
27
|
Esfarjani SM, Dadashi A, Azadi M. Topology optimization of additive-manufactured metamaterial structures: A review focused on multi-material types. FORCES IN MECHANICS 2022. [DOI: 10.1016/j.finmec.2022.100100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Do Knowledge Economy Indicators Affect Economic Growth? Evidence from Developing Countries. SUSTAINABILITY 2022. [DOI: 10.3390/su14084774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The competitiveness of national economies is increasingly dependent on their ability to produce and use knowledge, as knowledge, education, and innovation are the main indicators of economic growth in a globalizing world. Many countries have adopted policies related to the production of knowledge and its transformation into wealth that stimulates the growth and competitiveness of their economies. Through our study, we measured some knowledge economy (KE) variables for a sample of 20 developing countries. During the period (1996–2020), using panel data, the estimate was made using three models: the cumulative regression model, the fixed-effects model, and the random-effects model. The results of the statistical tests indicated that the fixed-effects model is the appropriate model, and that the estimates of the proposed model parameters do not contradict the assumptions of economic theory, nor do they contradict the practical reality. In addition, the results showed that 93% one of the changes that occur in economic growth in the developing countries under study is due to the dependence on the knowledge economy. It became clear through the study that the use of cross-sectional time-series models increases the accuracy of statistical forecasting, because it considers the information with a time dimension in the time series, as well as the cross-sectional dimension in different units. Our study found a positive impact on economic growth of the internet and mobile phone users, control of corruption, political stability, foreign direct investment, and the total value of international trade. Additionally, spending on education, patents for residents, and trade openness had a negative impact on economic growth. Accordingly, the knowledge economy in developing countries contributed greatly to their economic growth and had a prominent role in maintaining high rates of growth for decades. Our study contributes by expanding the scope of developing countries in deciding to focus on the important indicators in the knowledge economy (KE), so that they can increase the added value of their economic growth.
Collapse
|
29
|
3D Printing of Ceramic Biomaterials. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
30
|
Alfarisi NAS, Santos GNC, Norcahyo R, Sentanuhady J, Azizah N, Muflikhun MA. Model optimization and performance evaluation of hand cranked music box base structure manufactured via 3D printing. Heliyon 2021; 7:e08432. [PMID: 34917787 PMCID: PMC8645455 DOI: 10.1016/j.heliyon.2021.e08432] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/23/2021] [Accepted: 11/16/2021] [Indexed: 01/30/2023] Open
Abstract
A sound produced from the music box could mesmerize music lovers. The complex mechanism that combined manual with semi-automatics movement creates the music box as a challenge for the manufacturer to innovate and optimize. This study focused on redesigning a hand-cranked music box's base structure using 3D printing and comparing the sound produced with the original model. It is shown that 3D printing can create a complex model with minimum material waste and good repeatability. After remodeling the music box's in a 3D CAD model, the prototype was built, and the tune played by each model was recorded and compared. The results showed that four improvements were made in the barrel mounting, crankshaft holder, crankshaft locker, and comb locker from the built four models. The sound analysis shows that the quality of sound can be improved by using the system's spacer. Furthermore, the finite element method and exact experiment results show that the loudest and best sound quality can be achieved using a 60° angle slope for the music box base structure.
Collapse
Affiliation(s)
| | | | - Rachmadi Norcahyo
- Mechanical and Industrial Engineering Department, Gadjah Mada University, Indonesia
| | - Jayan Sentanuhady
- Mechanical and Industrial Engineering Department, Gadjah Mada University, Indonesia
| | | | | |
Collapse
|
31
|
Jíra A, Šejnoha M, Krejčí T, Vorel J, Řehounek L, Marseglia G. Mechanical Properties of Porous Structures for Dental Implants: Experimental Study and Computational Homogenization. MATERIALS 2021; 14:ma14164592. [PMID: 34443120 PMCID: PMC8398312 DOI: 10.3390/ma14164592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 11/24/2022]
Abstract
A combined experimental and numerical study on titanium porous microstructures intended to interface the bone tissue and the solid homogeneous part of a modern dental implant is presented. A specific class of trabecular geometries is compared to a gyroid structure. Limitations associated with the application of the adopted selective laser melting technology to small microstructures with a pore size of 500 μm are first examined experimentally. The measured effective elastic properties of trabecular structures made of Ti6Al4V material support the computational framework based on homogenization with the difference between the measured and predicted Young’s moduli of the Dode Thick structure being less than 5%. In this regard, the extended finite element method is promoted, particularly in light of the complex sheet gyroid studied next. While for plastic material-based structures a close match between experiments and simulations was observed, an order of magnitude difference was encountered for titanium specimens. This calls for further study and we expect to reconcile this inconsistency with the help of computational microtomography.
Collapse
Affiliation(s)
- Aleš Jíra
- Department of Mechanics, Faculty of Civil Engineering, Czech Technical University in Prague, 166 29 Prague, Czech Republic; (A.J.); (M.Š.); (T.K.); (J.V.); (L.Ř.)
| | - Michal Šejnoha
- Department of Mechanics, Faculty of Civil Engineering, Czech Technical University in Prague, 166 29 Prague, Czech Republic; (A.J.); (M.Š.); (T.K.); (J.V.); (L.Ř.)
| | - Tomáš Krejčí
- Department of Mechanics, Faculty of Civil Engineering, Czech Technical University in Prague, 166 29 Prague, Czech Republic; (A.J.); (M.Š.); (T.K.); (J.V.); (L.Ř.)
| | - Jan Vorel
- Department of Mechanics, Faculty of Civil Engineering, Czech Technical University in Prague, 166 29 Prague, Czech Republic; (A.J.); (M.Š.); (T.K.); (J.V.); (L.Ř.)
| | - Luboš Řehounek
- Department of Mechanics, Faculty of Civil Engineering, Czech Technical University in Prague, 166 29 Prague, Czech Republic; (A.J.); (M.Š.); (T.K.); (J.V.); (L.Ř.)
| | - Guido Marseglia
- High Technical School of Architecture, University of Seville, 41012 Sevilla, Spain
- Instituto de Matemáticas de la Universidad de Sevilla, University of Seville, 41012 Sevilla, Spain
- Correspondence:
| |
Collapse
|
32
|
Exploring Regional Advanced Manufacturing and Its Driving Factors: A Case Study of the Guangdong-Hong Kong-Macao Greater Bay Area. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18115800. [PMID: 34071373 PMCID: PMC8198759 DOI: 10.3390/ijerph18115800] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/20/2021] [Accepted: 05/27/2021] [Indexed: 12/16/2022]
Abstract
This study aims to analyze the development trend of the manufacturing industry of the Guangdong-Hong Kong-Macao Greater Bay Area (from 2008 to 2018) by constructing an evaluation system. On the basis of push-pull-mooring theory, we analyze these factors by using an entropy and cluster model. The results show the following: (1) Technological development had an obvious spatial distribution pattern of core regional radiation, while others did not. (2) Economic development was based on the city's existing industrial development system, while environmental development depended on governmental policies. (3) Compared with the environmental factor, the development trends of the economic and technological factors were more similar. Lastly, we provide four strategies for the development of the manufacturing industry in different cities.
Collapse
|
33
|
Kim JS, Choi J, Ki CS, Lee KH. 3D Silk Fiber Construct Embedded Dual-Layer PEG Hydrogel for Articular Cartilage Repair - In vitro Assessment. Front Bioeng Biotechnol 2021; 9:653509. [PMID: 33842448 PMCID: PMC8024629 DOI: 10.3389/fbioe.2021.653509] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/03/2021] [Indexed: 01/22/2023] Open
Abstract
Since articular cartilage does not regenerate itself, researches are underway to heal damaged articular cartilage by applying biomaterials such as a hydrogel. In this study, we have constructed a dual-layer composite hydrogel mimicking the layered structure of articular cartilage. The top layer consists of a high-density PEG hydrogel prepared with 8-arm PEG and PEG diacrylate using thiol-norbornene photo-click chemistry. The compressive modulus of the top layer was 700.1 kPa. The bottom layer consists of a low-density PEG hydrogel reinforced with a 3D silk fiber construct. The low-density PEG hydrogel was prepared with 4-arm PEG using the same cross-linking chemistry, and the compressive modulus was 13.2 kPa. Silk fiber was chosen based on the strong interfacial bonding with the low-density PEG hydrogel. The 3D silk fiber construct was fabricated by moving the silk fiber around the piles using a pile frame, and the compressive modulus of the 3D silk fiber construct was 567 kPa. The two layers were joined through a covalent bond which endowed sufficient stability against repeated torsions. The final 3D silk fiber construct embedded dual-layer PEG hydrogel had a compressive modulus of 744 kPa. Chondrogenic markers confirmed the chondrogenic differentiation of human mesenchymal stem cells encapsulated in the bottom layer.
Collapse
Affiliation(s)
- Jung Soo Kim
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, South Korea
| | - Jaeho Choi
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, South Korea
| | - Chang Seok Ki
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, South Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Ki Hoon Lee
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, South Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
34
|
Potential Development of Sustainable 3D-Printed Meat Analogues: A Review. SUSTAINABILITY 2021. [DOI: 10.3390/su13020938] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To mitigate the threat of climate change driven by livestock meat production, a multifaceted approach that incorporates dietary changes, innovative product development, advances in technologies, and reductions in food wastes/losses is proposed. The emerging technology of 3D printing (3DP) has been recognized for its unprecedented capacity to fabricate food products with intricate structures and reduced material cost and energy. For sustainable 3DP of meat substitutes, the possible materials discussed are derived from in vitro cell culture, meat byproducts/waste, insects, and plants. These material-based approaches are analyzed from their potential environmental effects, technological viability, and consumer acceptance standpoints. Although skeletal muscles and skin are bioprinted for medical applications, they could be utilized as meat without the additional printing of vascular networks. The impediments to bioprinting of meat are lack of food-safe substrates/materials, cost-effectiveness, and scalability. The sustainability of bioprinting could be enhanced by the utilization of generic/universal components or scaffolds and optimization of cell sourcing and fabrication logistics. Despite the availability of several plants and their byproducts and some start-up ventures attempting to fabricate food products, 3D printing of meat analogues remains a challenge. From various insects, powders, proteins (soluble/insoluble), lipids, and fibers are produced, which—in different combinations and at optimal concentrations—can potentially result in superior meat substitutes. Valuable materials derived from meat byproducts/wastes using low energy methods could reduce waste production and offset some greenhouse gas (GHG) emissions. Apart from printer innovations (speed, precision, and productivity), rational structure of supply chain and optimization of material flow and logistic costs can improve the sustainability of 3D printing. Irrespective of the materials used, perception-related challenges exist for 3D-printed food products. Consumer acceptance could be a significant challenge that could hinder the success of 3D-printed meat analogs.
Collapse
|