1
|
Wang Y, Chen Y, McGarrigle J, Cook J, Rios PD, La Monica G, Wei W, Oberholzer J. Cell Therapy for T1D Beyond BLA: Gearing Up Toward Clinical Practice. Diabetes Ther 2025; 16:1125-1138. [PMID: 40214896 PMCID: PMC12085407 DOI: 10.1007/s13300-025-01732-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 03/18/2025] [Indexed: 05/18/2025] Open
Abstract
Type 1 diabetes (T1D) remains a significant global health challenge and patients with T1D need lifelong insulin therapy. Islet transplantation holds transformative potential by replacing autoimmune-mediated destruction of insulin-producing beta cells. This review examines the trajectory of islet transplantation for T1D, focusing on the process and benefits of obtaining biologics license application (BLA) approval for cell-based therapies. Following US Food and Drug Administration (FDA) approval, the authors identify key steps urgently needed to foster islet transplantation as a viable treatment for a broader population of patients with T1D. Furthermore, the authors highlight recent advances in encapsulation technologies, stem cell-derived islets, xenogeneic islets, and gene editing as strategies to overcome challenges such as immune rejection and limited islet sources. These innovations are pivotal in enhancing the safety and efficacy of islet transplantation. Ultimately, this review emphasizes that while BLA approval represents a critical milestone, realizing the full potential of cell therapy for T1D requires addressing the scientific, clinical, and logistical challenges of its real-world implementation. By fostering innovation, collaboration, and strategic partnerships, the field can transform T1D care, offering patients a durable, life-changing alternative to traditional insulin therapy.
Collapse
Affiliation(s)
- Yong Wang
- CellTrans, Inc., 2201 W. Campbell Park Dr, Chicago, IL, 60612, USA.
- University of Zürich Hospital, Ramistrasse 100, 8991, Zürich, Switzerland.
- Visceral and Transplant Department, University of Zürich Hospital, Ramistrasse 100, 8991, Zürich, Switzerland.
| | - YingYing Chen
- University of Zürich Hospital, Ramistrasse 100, 8991, Zürich, Switzerland
| | - James McGarrigle
- CellTrans, Inc., 2201 W. Campbell Park Dr, Chicago, IL, 60612, USA
| | - Jenny Cook
- CellTrans, Inc., 2201 W. Campbell Park Dr, Chicago, IL, 60612, USA
| | - Peter D Rios
- CellTrans, Inc., 2201 W. Campbell Park Dr, Chicago, IL, 60612, USA
| | | | - Wei Wei
- University of Zürich Hospital, Ramistrasse 100, 8991, Zürich, Switzerland
| | - Jose Oberholzer
- CellTrans, Inc., 2201 W. Campbell Park Dr, Chicago, IL, 60612, USA.
- University of Zürich Hospital, Ramistrasse 100, 8991, Zürich, Switzerland.
- Visceral and Transplant Department, University of Zürich Hospital, Ramistrasse 100, 8991, Zürich, Switzerland.
| |
Collapse
|
2
|
Wang Y, McGarrigle J, Cook J, Rios P, Monica GL, Chen Y, Wei W, Oberholzer J. The future of islet transplantation beyond the BLA approval: challenges and opportunities. FRONTIERS IN TRANSPLANTATION 2025; 4:1522409. [PMID: 40124184 PMCID: PMC11925927 DOI: 10.3389/frtra.2025.1522409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/19/2025] [Indexed: 03/25/2025]
Abstract
This opinion paper explores the path forward for islet transplantation as a cell therapy for type 1 diabetes, following the Biologics License Application (BLA) approval. The authors review key challenges and opportunities that lie ahead. After a brief overview of the history of human islet transplantation, the paper examines the FDA's regulatory stance on isolated islet cells and the requirements for obtaining a BLA. The authors discuss the significance of this approval and the critical steps necessary to broaden patient access, such as scaling up production, clinical integration, reimbursement frameworks, post-marketing surveillance, and patient education initiatives. The paper highlights that the approval of LANTIDRA as an allogeneic cell transplant for uncontrolled type 1 diabetes marks the beginning of new chapters in improving islet transplantation. The authors emphasize essential areas for development, including advancements in islet manufacturing, optimization of transplant sites, islet encapsulation, exploration of unlimited cell sources, and gene editing technologies. In conclusion, the future of islet transplantation beyond the BLA approval presents challenges and opportunities. While significant regulatory milestones have been reached, hurdles remain. Innovations in stem cell-derived islets, cell encapsulation, and gene editing show promise in enhancing graft survival, expanding the availability of transplantable cells, and reducing the reliance on immunosuppressive drugs. These advancements could pave the way for more accessible, durable, and personalized diabetes treatments.
Collapse
Affiliation(s)
- Yong Wang
- Clinic of Visceral and Transplant Surgery, University Hospital Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zürich, Switzerland
- CellTrans, Inc., Chicago, IL, United States
| | | | - Jenny Cook
- CellTrans, Inc., Chicago, IL, United States
| | - Peter Rios
- CellTrans, Inc., Chicago, IL, United States
| | | | - Yingying Chen
- Clinic of Visceral and Transplant Surgery, University Hospital Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zürich, Switzerland
| | - Wei Wei
- Clinic of Visceral and Transplant Surgery, University Hospital Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zürich, Switzerland
| | - Jose Oberholzer
- Clinic of Visceral and Transplant Surgery, University Hospital Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zürich, Switzerland
- CellTrans, Inc., Chicago, IL, United States
| |
Collapse
|
3
|
Dai P, Wu Y, Du Q, Du J, Wang K, Chen R, Feng X, Chen C, Zhang X. Knockout of B2M in combination with PD-L1 overexpression protects MSC-derived new islet β cells from graft rejection in the treatment of canine diabetes mellitus. Stem Cell Res Ther 2024; 15:458. [PMID: 39623490 PMCID: PMC11613808 DOI: 10.1186/s13287-024-04067-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/19/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND The immunogenicity of allogeneic mesenchymal stem cells (MSCs) is significantly enhanced after transplantation or differentiation, and these cells can be recognized and cleared by recipient immune cells. Graft rejection has become a major obstacle to improving the therapeutic effect of allogeneic MSCs or, after their differentiation, transplantation in the treatment of diabetes and other diseases. Solving this problem is helpful for prolonging the time that cells play a role in the recipient body and for significantly improving the clinical therapeutic effect. METHODS In this study, canine adipose-derived mesenchymal stem cells (ADSCs) were used as seed cells, and gene editing technology was used to knock out the B2M gene in these cells and cooperate with the overexpression of the PD-L1 gene. Gene-edited ADSCs (GeADSCs), whose biological characteristics and safety are not different from those of normal canine ADSCs, have been obtained. RESULTS The immunogenicity of GeADSCs is reduced, the immune escape ability of GeADSCs is enhanced, and GeADSCs can remain in the body for a longer time. Using the optimized induction program, the efficiency of the differentiation of GeADSCs into new islet β-cells was increased, and the maturity of the new islet β-cells was increased. The immunogenicity of new islet β-cells decreased, and their immune escape ability was enhanced after the cells were transplanted into diabetic dogs (the graft site was prevascularized by the implantation of a scaffold to form a vascularized pouch). The number of infiltrating immune cells and the content of immune factors were decreased at the graft site. CONCLUSIONS New islet β-cell transplantation, which has low immunogenicity, can reverse diabetes in dogs, and the therapeutic effect of cell transplantation is significantly enhanced. This study provides a new method for prolonging the survival and functional time of cells in transplant recipients and significantly improving the clinical therapeutic effect.
Collapse
Affiliation(s)
- Pengxiu Dai
- The College of Veterinary Medicine, Northwest Agriculture and Forestry University, Shaanxi, 712100, Yangling, China
| | - Yi Wu
- The College of Veterinary Medicine, Northwest Agriculture and Forestry University, Shaanxi, 712100, Yangling, China
| | - Qingjie Du
- The College of Veterinary Medicine, Northwest Agriculture and Forestry University, Shaanxi, 712100, Yangling, China
| | - Juanjuan Du
- The College of Veterinary Medicine, Northwest Agriculture and Forestry University, Shaanxi, 712100, Yangling, China
| | - Keyi Wang
- The College of Veterinary Medicine, Northwest Agriculture and Forestry University, Shaanxi, 712100, Yangling, China
| | - Ruiqi Chen
- The College of Veterinary Medicine, Northwest Agriculture and Forestry University, Shaanxi, 712100, Yangling, China
| | - Xiancheng Feng
- The College of Veterinary Medicine, Northwest Agriculture and Forestry University, Shaanxi, 712100, Yangling, China
| | - Chen Chen
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Xinke Zhang
- The College of Veterinary Medicine, Northwest Agriculture and Forestry University, Shaanxi, 712100, Yangling, China.
| |
Collapse
|
4
|
Einstein SA, Steyn LV, Weegman BP, Suszynski TM, Sambanis A, O'Brien TD, Avgoustiniatos ES, Firpo MT, Graham ML, Janecek J, Eberly LE, Garwood M, Putnam CW, Papas KK. Hypoxia within subcutaneously implanted macroencapsulation devices limits the viability and functionality of densely loaded islets. FRONTIERS IN TRANSPLANTATION 2023; 2:1257029. [PMID: 38993891 PMCID: PMC11235299 DOI: 10.3389/frtra.2023.1257029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/20/2023] [Indexed: 07/13/2024]
Abstract
Introduction Subcutaneous macroencapsulation devices circumvent disadvantages of intraportal islet therapy. However, a curative dose of islets within reasonably sized devices requires dense cell packing. We measured internal PO2 of implanted devices, mathematically modeled oxygen availability within devices and tested the predictions with implanted devices containing densely packed human islets. Methods Partial pressure of oxygen (PO2) within implanted empty devices was measured by noninvasive 19F-MRS. A mathematical model was constructed, predicting internal PO2, viability and functionality of densely packed islets as a function of external PO2. Finally, viability was measured by oxygen consumption rate (OCR) in day 7 explants loaded at various islet densities. Results In empty devices, PO2 was 12 mmHg or lower, despite successful external vascularization. Devices loaded with human islets implanted for 7 days, then explanted and assessed by OCR confirmed trends proffered by the model but viability was substantially lower than predicted. Co-localization of insulin and caspase-3 immunostaining suggested that apoptosis contributed to loss of beta cells. Discussion Measured PO2 within empty devices declined during the first few days post-transplant then modestly increased with neovascularization around the device. Viability of islets is inversely related to islet density within devices.
Collapse
Affiliation(s)
- Samuel A Einstein
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States
- Department of Radiology, The Pennsylvania State University, Hershey, PA, United States
| | - Leah V Steyn
- Department of Surgery, University of Arizona, Tucson, AZ, United States
| | - Bradley P Weegman
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States
- Sylvatica Biotech Inc., North Charleston, SC, United States
| | - Thomas M Suszynski
- Department of Plastic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Athanassios Sambanis
- Department of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Timothy D O'Brien
- Veterinary Population Medicine Department, University of Minnesota, Saint Paul, MN, United States
- Department of Medicine, Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| | | | - Meri T Firpo
- Department of Medicine, Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| | - Melanie L Graham
- Veterinary Population Medicine Department, University of Minnesota, Saint Paul, MN, United States
- Department of Surgery, Preclinical Research Center, University of Minnesota, Saint Paul, MN, United States
| | - Jody Janecek
- Department of Surgery, Preclinical Research Center, University of Minnesota, Saint Paul, MN, United States
| | - Lynn E Eberly
- Division of Biostatistics, University of Minnesota, Minneapolis, MN, United States
| | - Michael Garwood
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States
| | - Charles W Putnam
- Department of Surgery, University of Arizona, Tucson, AZ, United States
| | - Klearchos K Papas
- Department of Surgery, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
5
|
Zanetti IR, Zhang L, Burgin M, Kilbourne J, Yaron JR, Fonseca D, Lucas AR. Mouse Models of Renal Allograft Transplant Rejection: Methods to Investigate Chemokine-GAG Interaction and Therapeutic Blockade. Methods Mol Biol 2023; 2597:39-58. [PMID: 36374413 DOI: 10.1007/978-1-0716-2835-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Chemokine-glycosaminoglycan (GAG) interactions direct immune cell activation and invasion, e.g., directing immune cells to sites of infection or injury, and are central to initiating immune responses. Acute innate and also adaptive or antibody-mediated immune cell responses both drive damage to kidney transplants. These immune responses are central to allograft rejection and transplant failure. While treatment for acute rejection has advanced greatly, ongoing or chronic immune damage from inflammation and antibody-mediated rejection remains a significant problem, leading to transplant loss. There are limited numbers of organs available for transplant, and preventing chronic graft damage will allow for longer graft stability and function, reducing the need for repeat transplantation. Chemokine-GAG interactions are the basis for initial immune responses, forming directional gradients that allow immune cells to traverse the vascular endothelium and enter engrafted organs. Targeting chemokine-GAG interactions thus has the potential to reduce immune damage to transplanted kidneys.Mouse models for renal transplant are available, but are complex and require extensive microsurgery expertise. Here we describe simplified subcapsular and subcutaneous renal allograft transplant models, for rapid assessment of the roles of chemokine-GAG interactions during allograft surgery and rejection. These models are described, together with treatment using a unique chemokine modulating protein (CMP) M-T7 that disrupts chemokine-GAG interactions.
Collapse
Affiliation(s)
- Isabela R Zanetti
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Liqiang Zhang
- Center for Immunotherapy Vaccines and Virotherapy and Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Michelle Burgin
- Center for Immunotherapy Vaccines and Virotherapy and Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Jacquelyn Kilbourne
- Department of Animal Care and Technologies, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Jordan R Yaron
- Center for Personalized Diagnostics, Biodesign Institute and School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
| | - David Fonseca
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Alexandra R Lucas
- Center for Personalized Diagnostics and Center for Immunotherapy Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
6
|
Friberger I, Gontu V, Harris RA, Tran TA, Lundberg J, Holmin S. Phenotyping of Macrophages After Radiolabeling and Safety of Intra-arterial Transplantation Assessed by SPECT/CT and MRI. Cell Transplant 2023; 32:9636897231212780. [PMID: 38009543 PMCID: PMC10683405 DOI: 10.1177/09636897231212780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 10/04/2023] [Accepted: 10/23/2023] [Indexed: 11/29/2023] Open
Abstract
Cell therapy is an integral modality of regenerative medicine. Macrophages are known for their sensitivity to activation stimuli and capability to recruit other immune cells to the sites of injury and healing. In addition, the route of administration can impact engraftment and efficacy of cell therapy, and modern neuro-interventional techniques provide the possibility for selective intra-arterial (IA) delivery to the central nervous system (CNS) with very low risk. The effects of radiolabelling and catheter transport on differentially activated macrophages were evaluated. Furthermore, the safety of selective IA administration of these macrophages to the rabbit brain was assessed by single-photon emission computed tomography/computed tomography (SPECT/CT) and ultra-high-field (9.4 T) magnetic resonance imaging (MRI). Cells were successfully labeled with (111In)In-(oxinate)3 and passed through a microcatheter with preserved phenotype. No cells were retained in the healthy rabbit brain after IA administration, and no adverse events could be observed either 1 h (n = 6) or 24 h (n = 2) after cell administration. The procedure affected both lipopolysaccharide/gamma interferon (LPS/IFNγ) activated cells and interleukin 4 (IL4), interleukin 10 (IL10)/transforming growth factor beta 1 (TGFβ1) activated cells to some degree. The LPS/IFNγ activated cells had a significant increase in their phagocytotic function. Overall, the major impact on the cell phenotypes was due to the radiolabeling and not passage through the catheter. Unstimulated cells were substantially affected by both radiolabeling and catheter administration and are hence not suited for this procedure, while both activated macrophages retained their initial phenotypes. In conclusion, activated macrophages are suitable candidates for targeted IA administration without adverse effects on normal, healthy brain parenchyma.
Collapse
Affiliation(s)
- Ida Friberger
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Vamsi Gontu
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Robert A Harris
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Centre for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Thuy A Tran
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Radiopharmacy, Karolinska University Hospital, Stockholm, Sweden
| | - Johan Lundberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Staffan Holmin
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
7
|
Dai P, Qi G, Xu H, Zhu M, Li J, Chen Y, Zhang L, Zhang X, Zhang Y. Reprogramming adipose mesenchymal stem cells into islet β-cells for the treatment of canine diabetes mellitus. Stem Cell Res Ther 2022; 13:370. [PMID: 35902971 PMCID: PMC9331803 DOI: 10.1186/s13287-022-03020-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/07/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Islet transplantation is an excellent method for the treatment of type I diabetes mellitus. However, due to the limited number of donors, cumbersome isolation and purification procedures, and immune rejection, the clinical application is greatly limited. The development of a simple and efficient new method to obtain islet β-cells is a key problem that urgently requires a solution for the treatment of type I diabetes mellitus. METHODS In this study, Pbx1, Rfx3, Pdx1, Ngn3, Pax4 and MafA were used to form a six-gene combination to efficiently reprogram aMSCs (adipose mesenchymal stem cells) into ra-βCs (reprogrammed aMSCs-derived islet β-cells), and the characteristics and immunogenicity of ra-βCs were detected. Feasibility of ra-βCs transplantation for the treatment of diabetes mellitus in model dogs and clinical dogs was detected. RESULTS In this study, aMSCs were efficiently reprogrammed into ra-βCs using a six-gene combination. The ra-βCs showed islet β-cell characteristics. The immunogenicity of ra-βCs was detected and remained low in vitro and increased after transplantation. The cotransplantation of ra-βCs and aMSCs in the treatment of a model and clinical cases of canine diabetes mellitus achieved ideal therapeutic effects. CONCLUSIONS The aMSCs were efficiently reprogrammed into ra-βCs using a six-gene combination. The cotransplantation of ra-βCs and aMSCs as a treatment for canine diabetes is feasible, which provides a theoretical basis and therapeutic method for the treatment of canine diabetes.
Collapse
Affiliation(s)
- Pengxiu Dai
- Shaanxi Branch of National Stem Cell Engineering and Technology Centre, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Guixiang Qi
- Shaanxi Branch of National Stem Cell Engineering and Technology Centre, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Haojie Xu
- Shaanxi Branch of National Stem Cell Engineering and Technology Centre, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mingde Zhu
- Shaanxi Branch of National Stem Cell Engineering and Technology Centre, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jiakai Li
- Shaanxi Branch of National Stem Cell Engineering and Technology Centre, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yijing Chen
- Shaanxi Branch of National Stem Cell Engineering and Technology Centre, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Luwen Zhang
- Shaanxi Branch of National Stem Cell Engineering and Technology Centre, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xinke Zhang
- Shaanxi Branch of National Stem Cell Engineering and Technology Centre, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yihua Zhang
- Shaanxi Branch of National Stem Cell Engineering and Technology Centre, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,Baiopai (Tianjin) Biotechnology Co., LTD, Jinnan District, Tianjin, 300350, China.
| |
Collapse
|
8
|
Du S, Li Y, Geng Z, Zhang Q, Buhler LH, Gonelle-Gispert C, Wang Y. Engineering Islets From Stem Cells: The Optimal Solution for the Treatment of Diabetes? Front Immunol 2022; 13:869514. [PMID: 35572568 PMCID: PMC9092457 DOI: 10.3389/fimmu.2022.869514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetes is a metabolic disease characterized by insulin deficiency. Bioengineering of stem cells with the aim to restore insulin production and glucose regulation has the potential to cure diabetic patients. In this review, we focus on the recent developments for bioengineering of induced pluripotent stem cells (iPSCs), mesenchymal stem cells (MSCs), embryonic stem cells (ESCs), and pancreatic progenitor cells in view of generating insulin producing and glucose regulating cells for β-cell replacement therapies. Recent clinical trials using islet cells derived from stem cells have been initiated for the transplantation into diabetic patients, with crucial bottlenecks of tumorigenesis, post-transplant survival, genetic instability, and immunogenicity that should be further optimized. As a new approach given high expectations, bioengineered islets from stem cells occupies considerable potential for the future clinical application and addressing the treatment dilemma of diabetes.
Collapse
Affiliation(s)
- Suya Du
- Department of Clinical Pharmacy, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yanjiao Li
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhen Geng
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, China.,Institute of Organ Transplantation, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Qi Zhang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Leo H Buhler
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, China.,Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | | | - Yi Wang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, China.,Institute of Organ Transplantation, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu, China
| |
Collapse
|
9
|
Li H, Zhu H, Ge T, Wang Z, Zhang C. Mesenchymal Stem Cell-Based Therapy for Diabetes Mellitus: Enhancement Strategies and Future Perspectives. Stem Cell Rev Rep 2021; 17:1552-1569. [PMID: 33675006 DOI: 10.1007/s12015-021-10139-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2021] [Indexed: 12/11/2022]
Abstract
Diabetes mellitus (DM), a chronic disorder of carbohydrate metabolism, is characterized by the unbridled hyperglycemia resulted from the impaired ability of the body to either produce or respond to insulin. As a cell-based regenerative therapy, mesenchymal stem cells (MSCs) hold immense potency for curing DM duo to their easy isolation, multi-differentiation potential, and immunomodulatory property. However, despite the promising efficacy in pre-clinical animal models, naive MSC administration fails to exhibit clinically satisfactory therapeutic outcomes, which varies greatly among individuals with DM. Recently, numbers of innovative strategies have been applied to improve MSC-based therapy. Preconditioning, genetic modification, combination therapy and exosome application are representative strategies to maximize the therapeutic benefits of MSCs. Therefore, in this review, we summarize recent advancements in mechanistic studies of MSCs-based treatment for DM, and mainly focus on the novel approaches aiming to improve the anti-diabetic potentials of naive MSCs. Additionally, the potential directions of MSCs-based therapy for DM are also proposed at a glance.
Collapse
Affiliation(s)
- Haisen Li
- Department of Plastic and Reconstructive Surgery, Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China.,Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.,Sinoneural Cell Engineering Group Holdings Co., Ltd., Shanghai 201100, China
| | - Hao Zhu
- Sinoneural Cell Engineering Group Holdings Co., Ltd., Shanghai 201100, China
| | - Ting Ge
- Xinxiang First People's Hospital, Xinxiang 453000, China
| | - Zhifeng Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China. .,Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China. .,Sinoneural Cell Engineering Group Holdings Co., Ltd., Shanghai 201100, China.
| | - Chao Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China. .,Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|