1
|
Biswal A, Katoch V, Singh T, Ravindra K, Singh V, Mor S. Changing tropospheric NO 2 dynamics across Indian air pollution hotspots. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 373:126160. [PMID: 40157486 DOI: 10.1016/j.envpol.2025.126160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/11/2025] [Accepted: 03/27/2025] [Indexed: 04/01/2025]
Abstract
The National Clean Air Programme (NCAP) of India launched in 2019, aims to significantly reduce air pollution in its major hotspots, placing major attention on particulate matter. However, Nitrogen dioxide (NO2) a criteria pollutant, also needs attention due to its role in secondary aerosol formation and associated adverse health impacts. Considering this, the current study examines the continuously changing tropospheric vertical column density (VCD) NO2 trends (2005-2023) over 131 polluted cities (non-attainment cities). Based on geographic locations, these cities were categorized into different zones, and their co-located Ozone Monitoring Instrument (OMI) based tropospheric VCD NO2 trends (yearly, seasonal) were studied. Tropospheric VCD NO2 over all the zones shows a statistically significant increasing trend (linear regression) with an annual increase of 1 - 4 × 1013 molecules cm-2y-1. Seasonal-trend decomposition using LOESS (STL) trend component analyzed with linear regression and Mann-Kendall test also showed a similar statistically significant increasing trend in almost all zones across India. However, from 2017 to 2023, tropospheric NO2 across all zones of India except the Northeast (NEAST) showed a declining trend. The highest decline was over Indo-Gangetic Plain (IGP) of around 7 × 1013 molecules cm-2y-1 but found statistically significant only with the Mann-Kendall test. Moreover, there has been an average reduction of 1.9 % per year in tropospheric VCD NO2 over non-attainments cities since 2017 which can be linked to the implementation of upgraded vehicular exhaust standards (Bharat Stage VI), electric vehicle popularisation, NCAP, and strict regulatory implementations. Interestingly, the average VCD NO2 in 2023 has reached similar levels to the COVID-19 lockdown year. While understanding the factors influencing the trend of tropospheric VCD NO2, the feature importance of random forest methods shows that factors vary in zones and trends are influenced by month, meteorological factors, and forest fires in different zones across India.
Collapse
Affiliation(s)
- Akash Biswal
- Research Institute for Humanity and Nature, Kyoto, 6038047, Japan
| | - Varun Katoch
- IMT Nord Europe, Institut Mines-Télécom, Université de Lille, Centre for Education, Research and Innovation in Energy Environment (CERI-EE), 59000, Lille, France
| | - Tanbir Singh
- S.C.V.B. Government College, Palampur, Himachal Pradesh, 176061, India.
| | - Khaiwal Ravindra
- Department of Community Medicine and School of Public Health, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Vikas Singh
- Commission for Air Quality Management, New Delhi, 110001, India
| | - Suman Mor
- Department of Environment Studies, Panjab University, Chandigarh, 160014, India
| |
Collapse
|
2
|
Behera JK, Mishra P, Jena AK, Bhattacharya M, Behera B. Understanding of environmental pollution and its anthropogenic impacts on biological resources during the COVID-19 period. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:54147-54162. [PMID: 36580239 PMCID: PMC9797902 DOI: 10.1007/s11356-022-24789-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
The global outbreak of the COVID-19 pandemic has given rise to a significant health emergency to adverse impact on environment, and human society. The COVID-19 post-pandemic not only affects human beings but also creates pollution crisis in environment. The post-pandemic situation has shown a drastic change in nature due to biomedical waste load and other components. The inadequate segregation of untreated healthcare wastes, chemical disinfectants, and single-use plastics leads to contamination of the water, air, and agricultural fields. These materials allow the growth of disease-causing agents and transmission. Particularly, the COVID-19 outbreak has posed a severe environmental and health concern in many developing countries for infectious waste. In 2030, plastic enhances a transboundary menace to natural ecological communities and public health. This review provides a complete overview of the COVID-19 pandemic on environmental pollution and its anthropogenic impacts to public health and natural ecosystem considering short- and long-term scenarios. The review thoroughly assesses the impacts on ecosystem in the terrestrial, marine, and atmospheric realms. The information from this evaluation can be utilized to assess the short-term and long-term solutions for minimizing any unfavorable effects. Especially, this topic focuses on the excessive use of plastics and their products, subsequently with the involvement of the scientific community, and policymakers will develop the proper management plan for the upcoming generation. This article also provides crucial research gap knowledge to boost national disaster preparedness in future perspectives.
Collapse
Affiliation(s)
- Jiban Kumar Behera
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, 756020, Odisha, India
| | - Pabitra Mishra
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, 756020, Odisha, India
| | - Anway Kumar Jena
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, 756020, Odisha, India
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, 756020, Odisha, India.
| | - Bhaskar Behera
- Department of Biosciences and Biotechnology, Fakir Mohan University, Vyasa Vihar, Balasore, 756020, Odisha, India
| |
Collapse
|
3
|
De Santis D, Amici S, Milesi C, Muroni D, Romanino A, Casari C, Cannas V, Del Frate F. Tracking air quality trends and vehicle traffic dynamics at urban scale using satellite and ground data before and after the COVID-19 outbreak. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165464. [PMID: 37454864 DOI: 10.1016/j.scitotenv.2023.165464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/23/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
The implications of the COVID-19 outbreak are subjected to an increasing number of studies. So far, air quality trends related to the lockdown due to the pandemic have been analysed in large cities or entire regions. In this work, the region studied is the metropolitan area of Cagliari, which is the main city on the island of Sardinia (Italy) and can be representative of a coastal city that includes industrial settlements. The purpose of the study is to evaluate the effect of restrictions related to the COVID-19 outbreak on air quality levels and the traffic dynamics in this type of urban area. Nitrogen Dioxide (NO₂) levels before, during and after COVID-19 lockdown have been investigated using data acquired from the Sentinel-5P/TROPOMI satellite combined with on-site measurements. Both TROPOMI detected and ground-based data have revealed higher levels of NO₂ before and after the lockdown, compared to those during the period of COVID-related restrictions, in particular in the urban area of Cagliari. On the other hand, NO2 registered in the oil refinery area did not show significant differences associated with lockdown. The correlation of TROPOMI NO₂ tropospheric column with ground data (surface NO2) on a monthly mean basis showed different values based on the background and the highest Pearson's coefficient was of about 0.78 near to the city centre, where traffic can be considered a significant source of emission. In addition, a comparison of the air pollution level with the dynamics of vehicle traffic was investigated. The study highlighted a remarkable correlation between the reduction of the number of vehicles and the corresponding tropospheric NO₂ values that decreased on a weekly mean basis.
Collapse
Affiliation(s)
- D De Santis
- Department of Civil Engineering and Computer Science Engineering, "Tor Vergata" University of Rome, Rome, Italy.
| | - S Amici
- Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Rome, Italy; SpacEarth Technology S.r.l., Rome, Italy
| | - C Milesi
- CRS4 (Center for Advanced Studies, Research and Development in Sardinia), Pula, Italy
| | - D Muroni
- CRS4 (Center for Advanced Studies, Research and Development in Sardinia), Pula, Italy
| | - A Romanino
- CRS4 (Center for Advanced Studies, Research and Development in Sardinia), Pula, Italy
| | - C Casari
- CRS4 (Center for Advanced Studies, Research and Development in Sardinia), Pula, Italy
| | - V Cannas
- Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Rome, Italy; SpacEarth Technology S.r.l., Rome, Italy
| | - F Del Frate
- Department of Civil Engineering and Computer Science Engineering, "Tor Vergata" University of Rome, Rome, Italy
| |
Collapse
|
4
|
Dasgupta S, Lall S, Wheeler D. Subways and CO 2 emissions: A global analysis with satellite data. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163691. [PMID: 37100143 DOI: 10.1016/j.scitotenv.2023.163691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/28/2023] [Accepted: 04/19/2023] [Indexed: 06/03/2023]
Abstract
This paper estimates a global CO2 emissions model using satellite data at 25 km resolution. The model incorporates industrial sources (including power, steel, cement, and refineries), fires, and non-industrial population-related factors associated with household incomes and energy requirements. It also tests the impact of subways in the 192 cities where they operate. We find highly significant effects with the expected signs for all model variables, including subways. In a counterfactual exercise estimating CO2 emissions with and without subways, we find they have reduced population-related CO2 emissions by about 50 % for the 192 cities and about 11 % globally. Extending the analysis to future subways for other cities, we estimate the magnitude and social value of CO2 emissions reductions with conservative assumptions about population and income growth and a range of values for the social cost of carbon and investment costs. Even under pessimistic assumptions for these costs, we find that hundreds of cities realize a significant climate co-benefit, along with benefits from reduced traffic congestion and local air pollution, which have traditionally motivated subway construction. Under more moderate assumptions, we find that, on climate grounds alone, hundreds of cities realize high enough social rates of return to warrant subway construction.
Collapse
|
5
|
Priya S, Iqbal J. Assessment of NO 2 concentrations over industrial state Jharkhand, at the time frame of pre, concurrent, and post-COVID-19 lockdown along with the meteorological behaviour: an overview from satellite and ground approaches. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:68591-68608. [PMID: 37126175 PMCID: PMC10150349 DOI: 10.1007/s11356-023-27236-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/22/2023] [Indexed: 05/04/2023]
Abstract
Burning of fossil fuels in the form of coal or gasoline in thermal power plants, industries, and automobiles is a prime source of nitrogen dioxide (NO2), a major air pollutant causing health problems. In this paper, spatio-temporal unevenness of NO2 concentrations via both spaceborne Sentinel-5P and ground-based in situ data have been studied for the period of 2017-2021. Annual and seasonal distribution of TROPOMI-NO2 depict consistency over the Jharkhand region, highlighting six hotspot regions. As compared to 2019, a notable dip of 11% in the spatial annual average TROPOMI-NO2 was achieved in 2020, which were elevated again by 22% in 2021 as the lockdown gradually goes out of the picture. Among eight ground-monitoring stations, Tata and Golmuri stations always displayed a higher level of TROPOMI-NO2 ranges up to 15.2 ×1015molecules.cm-2 and 16.9 ×1015molecules.cm-2 respectively, as being located in the highly industrialised district of Jamshedpur. A big percentage reduction of up to 30% in TROPOMI-NO2 has been reported in Jharia and Bastacola stations in Dhanbad in the lockdown phase of 2020 compared to 2019. Good agreement between TROPOMI-NO2 and surface-NO2 has been achieved with R = 0.8 and R = 0.71 during winter and post-monsoon respectively. Among four meteorological parameters, TROPOMI-NO2 was majorly found to be influenced by precipitation, having R = 0.6-0.8 for almost all stations. More advanced satellite algorithms and ground-based data may be used to estimate NO2 in places where monitoring facilities are limited and thus can help in air pollution control policy.
Collapse
Affiliation(s)
- Shalini Priya
- Department of Civil and Environmental Engineering, Birla Institute of Technology Mesra, Ranchi, Jharkhand 835215 India
| | - Jawed Iqbal
- Department of Civil and Environmental Engineering, Birla Institute of Technology Mesra, Ranchi, Jharkhand 835215 India
| |
Collapse
|
6
|
Chawala P, Priyan R S, Sm SN. Climatology and landscape determinants of AOD, SO 2 and NO 2 over Indo-Gangetic Plain. ENVIRONMENTAL RESEARCH 2023; 220:115125. [PMID: 36592806 DOI: 10.1016/j.envres.2022.115125] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/12/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Indo-Gangetic Plains (IGP) experiences high loading of particulate and gaseous pollutants all year around and is considered to be the most polluted regions of India. Understanding the effect of landscape determinants on air pollution in IGP regions is crucial to make its environment sustainable. We examined satellite retrievals of OMI NO2 and SO2, and MODIS AOD to analyse the long-term trend, spatio-seasonal pattern and dynamics of aerosols, NO2 and SO2 over three IGP regions, namely Upper Indo-Gangetic plain (UIGP), Middle Indo-Gangetic plain (MIGP) and Lower Indo-Gangetic plain (LIGP) over the period 2005-2019. IGP experienced an overall increment in AOD (R2 = 0.63) and SO2 (R2 = 0.67) values, with LIGP (AOD, R2 = 0.8 & SO2, R2 = 0.8) experiencing the largest rate of enhancement. The levels of NO2 (R2 = 0.2) experienced a decrement after 2012 (owing to implementation of vehicle emission policy) except in MIGP, with UIGP (R2 = 0.23) exhibiting the largest rate of decrement. Seasonal heterogeneity in the nature of sources was observed over IGP regions. AOD (0.61 ± 0.1) and NO2 value (3.82 ± 0.98 × 1015 molecules/cm2) were found highest during post-monsoon in UIGP owing to crop residue burning activity. The value of NO2 (3.8 ± 1.4 × 1015 molecules/cm2) in MIGP was found highest during pre-monsoon due to high consumption of coal in power plants for summer cooling demand. The highest SO2 level (0.09 ± 0.06 DU) was observed during post-monsoon in UIGP, as a large number of brick kilns are fired during this period. Correlations among landscape determinants and pollutants revealed that topography is the dominant variable that affect the spatial pattern of AOD compared to vegetation and land use. Lower elevation tends to have high AOD values compared to higher elevation. Vegetation-AOD relationship showed an inverse association in IGP regions and is influenced by factors such as seasonal meteorology and size of the airborne particles. Vegetation possesses positive relationship with SO2 and NO2, implying no pollution abatement effect on SO2 and NO2 pollutants. Built-up change has deteriorating effect as well as quenching effect on pollutants. Increase in built terrain have deteriorated the air quality in UIGP whereas it favored in suppressing the aerosol level in LIGP.
Collapse
Affiliation(s)
- Pratika Chawala
- Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, 600 036, India.
| | - Shanmuga Priyan R
- Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, 600 036, India.
| | - Shiva Nagendra Sm
- Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, 600 036, India
| |
Collapse
|
7
|
Ravindra K, Bahadur SS, Katoch V, Bhardwaj S, Kaur-Sidhu M, Gupta M, Mor S. Application of machine learning approaches to predict the impact of ambient air pollution on outpatient visits for acute respiratory infections. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159509. [PMID: 36257414 DOI: 10.1016/j.scitotenv.2022.159509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 09/13/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
With a remarkable increase in industrialization among fast-developing countries, air pollution is rising at an alarming rate and has become a public health concern. The study aims to examine the effect of air pollution on patient's hospital visits for respiratory diseases, particularly Acute Respiratory Infections (ARI). Outpatient hospital visits, air pollution and meteorological parameters were collected from March 2018 to October 2021. Eight machine learning algorithms (Random Forest model, K-Nearest Neighbors regression model, Linear regression model, LASSO regression model, Decision Tree Regressor, Support Vector Regression, X.G. Boost and Deep Neural Network with 5-layers) were applied for the analysis of daily air pollutants and outpatient visits for ARI. The evaluation was done by using 5-cross-fold confirmations. The data was randomly divided into test and training data sets at a scale of 1:2, respectively. Results show that among the studied eight machine learning models, the Random Forest model has given the best performance with R2 = 0.606, 0.608 without lag and 1-day lag respectively on ARI patients and R2 = 0.872, 0.871 without lag and 1-day lag respectively on total patients. All eight models did not perform well with the lag effect on the ARI patient dataset but performed better on the total patient dataset. Thus, the study did not find any significant association between ARI patients and ambient air pollution due to the intermittent availability of data during the COVID-19 period. This study gives insight into developing machine learning programs for risk prediction that can be used to predict analytics for several other diseases apart from ARI, such as heart disease and other respiratory diseases.
Collapse
Affiliation(s)
- Khaiwal Ravindra
- Department of Community Medicine & School of Public Health, PGIMER, Chandigarh 160012, India.
| | - Samsher Singh Bahadur
- Department of Community Medicine & School of Public Health, PGIMER, Chandigarh 160012, India
| | - Varun Katoch
- Department of Community Medicine & School of Public Health, PGIMER, Chandigarh 160012, India; Department of Environment Studies, Panjab University, Chandigarh 160014, India
| | - Sanjeev Bhardwaj
- Department of Community Medicine & School of Public Health, PGIMER, Chandigarh 160012, India
| | - Maninder Kaur-Sidhu
- Department of Community Medicine & School of Public Health, PGIMER, Chandigarh 160012, India
| | - Madhu Gupta
- Department of Community Medicine & School of Public Health, PGIMER, Chandigarh 160012, India
| | - Suman Mor
- Department of Environment Studies, Panjab University, Chandigarh 160014, India
| |
Collapse
|
8
|
Singh T, Sharma N, Satakshi, Kumar M. Analysis and forecasting of air quality index based on satellite data. Inhal Toxicol 2023; 35:24-39. [PMID: 36602767 DOI: 10.1080/08958378.2022.2164388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE The air quality index (AQI) forecasts are one of the most important aspects of improving urban public health and enabling society to remain sustainable despite the effects of air pollution. Pollution control organizations deploy ground stations to collect information about air pollutants. Establishing a ground station all-around is not feasible due to the cost involved. As an alternative, satellite-captured data can be utilized for AQI assessment. This study explores the changes in AQI during various COVID-19 lockdowns in India utilizing satellite data. Furthermore, it addresses the effectiveness of state-of-the-art deep learning and statistical approaches for forecasting short-term AQI. MATERIALS AND METHODS Google Earth Engine (GEE) has been utilized to capture the data for the study. The satellite data has been authenticated against ground station data utilizing the beta distribution test before being incorporated into the study. The AQI forecasting has been explored using state-of-the-art statistical and deep learning approaches like VAR, Holt-Winter, and LSTM variants (stacked, bi-directional, and vanilla). RESULTS AQI ranged from 100 to 300, from moderately polluted to very poor during the study period. The maximum reduction was recorded during the complete lockdown period in the year 2020. Short-term AQI forecasting with Holt-Winter was more accurate than other models with the lowest MAPE scores. CONCLUSIONS Based on our findings, air pollution is clearly a threat in the studied locations, and it is important for all stakeholders to work together to reduce it. The level of air pollutants dropped substantially during the different lockdowns.
Collapse
Affiliation(s)
- Tinku Singh
- Indian Institute of Information Technology Allahabad, Prayagraj, India
| | - Nikhil Sharma
- Indian Institute of Information Technology Allahabad, Prayagraj, India
| | | | - Manish Kumar
- Indian Institute of Information Technology Allahabad, Prayagraj, India
| |
Collapse
|
9
|
Pathak M, Kuttippurath J. Air quality trends in rural India: analysis of NO 2 pollution using satellite measurements. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:2437-2449. [PMID: 36413251 DOI: 10.1039/d2em00293k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
India is a country with more than 67% of its population (947 million) residing in rural areas and 33% in urban areas (472 million) as of 2020. Therefore, health of the people living in rural India is very important for its future development plans, economy and growth. Here, we analyse the rural air quality using satellite measurements of NO2 in India, as the sources of NO2 are well connected to the industrial and economic uplift of a nation. Our analyses for the rural regions show distinct seasonal changes with the highest value (2.0 × 1015 molecules per cm2) in winter and the lowest in monsoon (1.5 × 1015 molecules per cm2) seasons. About 41% of the total NO2 pollution in India is from its rural sources, but 59% of the urban sources were focused in the past studies. In addition, around 45% of the rural NO2 pollution is due to road transport, whereas more than 90% of it in urban India comes from the power sector. Our assessment shows that the NO2 exposure in rural regions is as serious as that in urban areas, indicating the need for more effective reduction of population exposure and protection of public health. Henceforth, this study reveals that rural India is gradually getting polluted from its nearby regions as well as from the new sources within. This is a big concern for the public health of the large rural population of India.
Collapse
Affiliation(s)
- Mansi Pathak
- CORAL, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | | |
Collapse
|
10
|
Biswas T, Pal SC, Saha A. Strict lockdown measures reduced PM 2.5 concentrations during the COVID-19 pandemic in Kolkata, India. SUSTAINABLE WATER RESOURCES MANAGEMENT 2022; 8:180. [PMID: 36278114 PMCID: PMC9576136 DOI: 10.1007/s40899-022-00763-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 10/01/2022] [Indexed: 05/28/2023]
Abstract
The COVID-19 situation is a critical state throughout the world that most countries have been forced to implement partial to total lockdown to control the COVID-19 disease outbreak. And displays the natural power to rejuvenate herself without the interference of human beings. So, the top-level emergency response including full quarantine actions are significant measures against the COVID-19 and resulted in a notable reduction in PM2.5 in the atmosphere. India was severely attacked by COVID-19, and as a result, the Government of India has imposed a nationwide lockdown from 24th March (2020) to 30th May (2020) in different phases. The COVID-19 outbreak and lockdown had a significant negative impact on India's socioeconomic structure but had a positive impact on environmental sustainability in terms of improved air quality due to the 68 days of the shutdown of India's industrial, commercial, construction, and transportation systems. The current study looked at the spatio-temporal changes in PM2.5 concentrations at different air quality monitoring stations (AQMS) in Kolkata during the COVID-19 period. The study revealed that the average concentration of PM2.5 (µg/m3) was slightly high (139.82) in the pre-lockdown period which was rapidly reduced to 37.77 (72.99% reduction) during the lockdown period and it was further increased (137.11) in post-lockdown period. The study also shows that the average concentration of PM2.5 was 66.83 in 2018, which slightly increased to 70.43 (5.39%) in 2019 and dramatically decreased to 37.77 (46.37%) in the year 2020 due to the COVID-19 outbreak and lockdown. The study clearly shows that air quality improves during lockdown periods in Kolkata, but it is not a permanent solution rather than temporary. Therefore, it is necessary to make the proper policies and strategies by policymakers and government authorities, and environmental scientists to maintain such good air quality by controlling several measures of air pollutants.
Collapse
Affiliation(s)
- Tanmoy Biswas
- Department of Geography, The University of Burdwan, Bardhaman, West Bengal 713104 India
| | - Subodh Chandra Pal
- Department of Geography, The University of Burdwan, Bardhaman, West Bengal 713104 India
| | - Asish Saha
- Department of Geography, The University of Burdwan, Bardhaman, West Bengal 713104 India
| |
Collapse
|
11
|
Siddiqui A, Chauhan P, Halder S, Devadas V, Kumar P. Effect of COVID-19-induced lockdown on NO 2 pollution using TROPOMI and ground-based CPCB observations in Delhi NCR, India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:714. [PMID: 36044095 PMCID: PMC9428889 DOI: 10.1007/s10661-022-10362-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/11/2022] [Indexed: 05/21/2023]
Abstract
The present study investigates the reduction in nitrogen dioxide (NO2) levels using satellite-based (Sentinel-5P TROPOMI) and ground-based (Central Pollution Control Board) observations of 2020. The lockdown duration, monthly, seasonal and annual changes in NO2 were assessed comparing the similar time period in 2019. The study also examines the role of atmospheric parameters like wind speed, air temperature, relative humidity, solar radiation and atmospheric pressure in altering the monthly and annual values of the pollutant. It was ascertained that there was a mean reduction of ~ 61% (~ 66.5%), ~ 58% (~ 51%) in daily mean NO2 pollution during lockdown phase 1 when compared with similar period of 2019 and pre-lockdown phase in 2020 from ground-based (satellite-based) measurements. April month with ~ 57% (~ 57%), summer season with ~ 48% (~ 32%) decline and an annual reduction of ~ 20% (~ 18%) in tropospheric NO2 values were observed (p < 0.001) compared to similar time periods of 2019. It was assessed that the meteorological parameters remained almost similar during various parts of the year in 2019 and 2020, indicating a negligent role in reducing the values of atmospheric pollution, particularly NO2 in the study area. It was concluded that the halt in anthropogenic activities and associated factors was mainly responsible for the reduced values in the Delhi conglomerate. Similar work can be proposed for other pollutants to holistically describe the pollution scenario as an aftermath of COVID-19-induced lockdown.
Collapse
Affiliation(s)
- Asfa Siddiqui
- Indian Institute of Remote Sensing, Indian Space Research Organisation, Dehradun, Uttarakhand, India, 248001.
| | - Prakash Chauhan
- Indian Institute of Remote Sensing, Indian Space Research Organisation, Dehradun, Uttarakhand, India, 248001
- National Remote Sensing Centre, Indian Space Research Organisation, Hyderabad, Telangana, India, 500037
| | - Suvankar Halder
- Indian Institute of Remote Sensing, Indian Space Research Organisation, Dehradun, Uttarakhand, India, 248001
| | - V Devadas
- Indian Institute of Technology, Roorkee, Uttarakhand, India, 247667
| | - Pramod Kumar
- Indian Institute of Remote Sensing, Indian Space Research Organisation, Dehradun, Uttarakhand, India, 248001
| |
Collapse
|
12
|
Ukhurebor KE, Aigbe UO, Onyancha RB, UK-Eghonghon G, Balogun VA, Egielewa PE, Ngonso BF, Osibote OA, Imoisi SE, Ndunagu JN, Kusuma HS, Darmokoesoemo H. Greenhouse Gas Emission: Perception during the COVID-19 Pandemic. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6166276. [PMID: 36246992 PMCID: PMC9553500 DOI: 10.1155/2022/6166276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/29/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022]
Abstract
The period 2020/2021 was an unprecedented and historic time for industrial, economic, and societal activities all over the world with great challenges to human health, the ecosystems, and other aspects of human endeavors owing to the COVID-19 or SARS-CoV-2 (CV-19) pandemic which is now a topical aspect of research interest. Despite the negative impacts of the CV-19 pandemic, there are also positive reports during the CV-19 pandemic such as the reduction of gas flare, reduction in the burning of fossil fuels from automobile exhaust and a reduction in the other ensuing factors of greenhouse gases emissions (which is one of the major drives for global warming and climate change as well as other environmental effluences). Hence, this brief perspective review study is centered on greenhouse gas (GHG) emission. The study employs a methodical approach to analyze some already available research studies from existing publications and databases on GHG emission using the perception during the CV-19 pandemic. The specific findings from this review show that, from the meteorological perspective, the global response to the catastrophe ensuing from the CV-19 pandemic has a great influence on the reduction of GHGs, the reduction in the burning of fossil fuels from automobiles and industrial devices, and the reduction in the other ensuing factors of GHG emission. Hence, it will not be far from the truth to conclude that there is a possible positive connection between the CV-19 pandemic and GHG emissions. The study has a direct impact on the environment owing to the negative and positive environmental consequences of the CV-19 pandemic. Suggestions and recommendations in the form of future prospects of GHG emission vis-à-vis global warming and climate change are also discussed. Furthermore, suggestions on how to improve food security and agriculture during a pandemic such as the CV-19 outbreak period are highlighted.
Collapse
Affiliation(s)
- Kingsley Eghonghon Ukhurebor
- Department of Physics, Faculty of Science, Edo State University Uzairue, P.M.B. 04, Auchi, 312101 Edo State, Nigeria
| | - Uyiosa Osagie Aigbe
- Department of Mathematics and Physics, Faculty of Applied Sciences, Cape Peninsula University of Technology, P.O. Box 1906, Cape Town, South Africa
| | - Robert Birundu Onyancha
- Department of Technical and Applied Physics, School of Physics and Earth Sciences Technology, Technical University of Kenya, P.O. Box 52428-00200, Nairobi, Kenya
| | - Gladys UK-Eghonghon
- Department of Nursing Services, University of Benin Teaching Hospital, P.M.B., 1111 Benin City, Nigeria
| | - Vincent Aizebeoje Balogun
- Department of Mechanical Engineering, Faculty of Engineering, Edo State University Uzairue, P.M.B. 04, Auchi, 312101 Edo State, Nigeria
| | - Peter Eshioke Egielewa
- Department of Mass Communication, Edo State University Uzairue, P.M.B. 04 Auchi, 312101 Edo State, Nigeria
| | - Blessed Frederick Ngonso
- Department of Mass Communication, Edo State University Uzairue, P.M.B. 04 Auchi, 312101 Edo State, Nigeria
| | - Otolorin Adelaja Osibote
- Department of Mathematics and Physics, Faculty of Applied Sciences, Cape Peninsula University of Technology, P.O. Box 1906, Cape Town, South Africa
| | - Simon Ejokema Imoisi
- Department of Public and International Law, Faculty of Law, Edo State University Uzairue, P.M.B. 04, Auchi, 312101 Edo State, Nigeria
| | - Juliana Ngozi Ndunagu
- Faculty of Sciences/Africa Centre of Excellence on Technology Enhanced Learning (ACETEL), National Open University of Nigeria, Abuja, Nigeria
| | - Heri Septya Kusuma
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran” Yogyakarta, Indonesia
| | - Handoko Darmokoesoemo
- Department of Chemistry, Faculty of Science and Technology, Airlangga University, Mulyorejo, Surabaya 60115, Indonesia
| |
Collapse
|
13
|
Chen Z, Shi D. The Atmospheric Environment Effects of the COVID-19 Pandemic: A Metrological Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11111. [PMID: 36078825 PMCID: PMC9518114 DOI: 10.3390/ijerph191711111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Since the COVID-19 outbreak, the scientific community has been trying to clarify various problems, such as the mechanism of virus transmission, environmental impact, and socio-economic impact. The spread of COVID-19 in the atmospheric environment is variable and uncertain, potentially resulting in differences in air pollution. Many scholars are striving to explore the relationship between air quality, meteorological indicators, and COVID-19 to understand the interaction between COVID-19 and the atmospheric environment. In this study, we try to summarize COVID-19 studies related to the atmospheric environment by reviewing publications since January 2020. We used metrological methods to analyze many publications in Web of Science Core Collection. To clarify the current situation, hotspots, and development trends in the field. According to the study, COVID-19 research based on the atmospheric environment has attracted global attention. COVID-19 and air quality, meteorological factors affecting the spread of COVID-19, air pollution, and human health are the main topics. Environmental variables have a certain impact on the spread of SARS-CoV-2, and the prevalence of COVID-19 has improved the atmospheric environment to some extent. The findings of this study will aid scholars to understand the current situation in this field and provide guidance for future research.
Collapse
Affiliation(s)
- Zhong Chen
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Dongping Shi
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
- Key Laboratory of Large Structure Health Monitoring and Control, Shijiazhuang 050043, China
| |
Collapse
|
14
|
Serio C, Masiello G, Cersosimo A. NO 2 pollution over selected cities in the Po Valley in 2018-2021 and its possible effects on boosting COVID-19 deaths. Heliyon 2022; 8:e09978. [PMID: 35873538 PMCID: PMC9297682 DOI: 10.1016/j.heliyon.2022.e09978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/01/2022] [Accepted: 07/13/2022] [Indexed: 11/29/2022] Open
Abstract
This work analyzes nitrogen dioxide (NO2) pollution over a set of cities in the Po Valley in northern Italy, using satellite and in situ observations. The cities include Milan, Bergamo, and Brescia, the first area of the COVID-19 outbreak and diffusion in Italy, with a higher mortality rate than in other parts of Italy and Europe. The analysis was performed for three years, from May 2018 to April 2021, including the period of first-wave diffusion of COVID-19 over the Po Valley, that is, January 2020–April 2020. The study aimed at giving a more general picture of the NO2 temporal and spatial variation, possibly due to the lockdown adopted for the pandemic crisis containment and other factors, such as the meteorological conditions and the seasonal cycle. We have mainly investigated two effects: first, the correlation of NO2 pollution with atmospheric parameters such as air and dew point temperature, and second the possible correlation between air quality and COVID-19 deaths, which could explain the high mortality rate. We have found a good relationship between air quality and temperature. In light of this relationship, we can conclude that the air quality improvement in March 2020 was primarily because of the lockdown adopted to prevent and limit virus diffusion. We also report a good correlation between NO2 pollution and COVID-19 deaths, which is not seen when considering a reference city in the South of Italy. The critical factor in explaining the difference is the persistence of air pollution in the Po Valley in wintertime. We found that NO2 pollution shows a seasonal cycle, yielding a non-causal correlation with the COVID-19 deaths. However, causality comes in once we read the correlation in the context of current and recent epidemiological evidence and leads us to conclude that air pollution may have acted as a significant risk factor in boosting COVID-19 fatalities.
Collapse
Affiliation(s)
- Carmine Serio
- School of Engineering, University of Basilicata, Potenza, Italy
| | - Guido Masiello
- School of Engineering, University of Basilicata, Potenza, Italy
| | | |
Collapse
|
15
|
Baky Haskuee M, Asgary A. Environmental risk of Covid-19 recovery. ENERGY & ENVIRONMENT 2022:0958305X221108493. [PMCID: PMC9289494 DOI: 10.1177/0958305x221108493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
During Covid-19 pandemic world economy experienced negative growth rate, therefore energy consumption and consequently emission pollution decreased. According to Environmental Kuznets Curve, it is expected that energy consumption and emission pollution increase in response to Covid-19 economic recovery, even higher than its pre-pandemic level. The goal of this paper is to study the environmental risk of Covid-19 economic recovery. We use an Environmentally-Augmented Global Vector Autoregressive Model (E-GVAR) to trace dynamic effects of Covid-19 economic recovery on pollution emission. Using generalized impulse response functions (GIRFs), we investigated the effect of positive economic shocks in real per capita income in China and USA economies on total C O 2 equivalent emission pollution. The results show that positive economic recovery affects emission pollution significantly. China and emerging economies may experience high risk while Europe region is moderately affected by this positive shock. A positive Economic Shock in China decrease pollution emission in USA over time. It can be attributed to substitution effect of Chinese product in global market. Generally, our results demonstrate spillover effect of transition shocks from large economies to the rest of world and highlights the importance of linkages in the world economy.
Collapse
Affiliation(s)
- Mortaza Baky Haskuee
- Mortaza Baky Haskuee, Disaster and
Emergency Management, School of Administrative Studies, Faculty of Liberal Arts
and Professional Studies, York University, 4700 Keel St., Toronto, ON M3J 1P3,
Canada.
| | | |
Collapse
|
16
|
Azad S, Ghandehari M. Emissions of nitrogen dioxide in the northeast U.S. during the 2020 COVID-19 lockdown. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 312:114902. [PMID: 35364514 PMCID: PMC9758611 DOI: 10.1016/j.jenvman.2022.114902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 03/08/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
We have quantified the emissions of Nitrogen dioxide (NO2) in the Northeast megalopolis of the United States during the COVID-19 lockdown. The measurement of NO2 emission serves as the indicator for the emission of the group of nitrogen oxides (NOx). Approximately 56% of NO2 emissions in the US are from mobile sources, and the remainder is from stationary sources. Since 2002, clean air regulations have resulted in approximately 5% compound annual reduction of NOx emissions in the US (8.2% in the study area). Therefore, when studying the impact of sporadic events like an epidemic on emissions, it is necessary to account for the persistent reduction of emissions due to policy driven emission reduction measures. Using spaceborne sensors, ground monitors, National Emission Inventory data, and the US Motor Vehicle Emission Simulator, we quantified the reduction of total NOx emissions, distinguishing stationary sources from on-road mobile sources (trucks and automobiles). When considering total NOx emissions (stationary and mobile combined), we find that the pandemic restrictions resulted in 3.4% reduction of total NOx emissions in the study area in 2020. This is compared to (and in addition to) the expected 8.2% policy driven reduction of NOx emissions in 2020. This somewhat low reduction of emissions is because most stationary sources (factories, power plants, etc.) were operational during the pandemic. Truck traffic, a significant source of mobile emissions, also did not decline significantly (average 4.8% monthly truck traffic reduction in the study area between March and August 2020), as they were delivering goods during the lockdown. On the other hand, automobile traffic, responsible for 24% of total NOx emissions, dropped significantly, 52% in April, returning to near normal after 5 months. While the reduction of automobile traffic was significant, especially in the early months of the pandemic, its effect on emissions was relatively insignificant.
Collapse
Affiliation(s)
- Shams Azad
- New York University, Tandon School of Engineering, Department of Civil and Urban Engineering, 6 MetroTech Center, Brooklyn, NY, 11201, USA.
| | - Masoud Ghandehari
- New York University, Tandon School of Engineering, Department of Civil and Urban Engineering, 6 MetroTech Center, Brooklyn, NY, 11201, USA.
| |
Collapse
|
17
|
Ravindra K, Goyal A, Mor S. Influence of meteorological parameters and air pollutants on the airborne pollen of city Chandigarh, India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151829. [PMID: 34813801 DOI: 10.1016/j.scitotenv.2021.151829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/13/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Pollen, climatic variables and air pollutants coexist in nature with the potential to interact with one another and play a crucial role in increasing allergic diseases. The current study evaluates the influence of meteorological parameters and air pollutants on the airborne pollen in an urban city, Chandigarh, situated in the Indo-Gangetic Plains. Airborne pollen monitoring was done following Spanish Aerobiological Network guidelines and dynamics of daily total pollen and six most abundant taxa were studied from June 2018 to June 2020. Among meteorological parameters, temperature and wind were the most correlated and influential parameters to airborne pollen concentration. Annual Pollen Integral (APIn) of Cannabis sativa (r = 0.52), Parthenium hysterophorus (r = 0.27), Poaceae (r = 0.32) and total pollen concentration (r = 0.30) showed a statistically significant positive correlation with temperature. In contrast, precipitation and relative humidity negatively correlated with APIn of total pollen concentration, Eucalyptus sp. and Poaceae except for Parthenium hysterophorus and Celtis occidentalis. Similar results were found with Seasonal Pollen Integral (SPIn) of total pollen concentration, six major taxa and meteorological variables. Spearman correlation performed for NOx showed a significant positive correlation among APIn and SPIn of Celtis occidentalis and insignificant among APIn and SPIn of Eucalyptus sp. and Morus alba. In contrast, except for Eucalyptus sp., PM10 and PM2.5 were negatively correlated among APIn and SPIn of total pollen concentration and other major taxa. Spearman's correlation of APIn and SPIn for each pollen taxon, meteorological parameters and air pollutants suggests that each taxon has a different pattern in response to all parameters. The study findings suggest that pollen response must be examined at the taxon level, not the assemblage level, having long time-series data. This will help to compute future scenarios of changing environmental factors and comprehend the relationships and trends among meteorology, air pollutants and aerobiology.
Collapse
Affiliation(s)
- Khaiwal Ravindra
- Department of Community Medicine and School of Public Health, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India.
| | - Akshi Goyal
- Department of Environment Studies, Panjab University, Chandigarh 160014, India
| | - Suman Mor
- Department of Environment Studies, Panjab University, Chandigarh 160014, India
| |
Collapse
|
18
|
Kant R, Trivedi A, Ghadai B, Kumar V, Mallik C. Interpreting the COVID effect on atmospheric constituents over the Indian region during the lockdown: chemistry, meteorology, and seasonality. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:274. [PMID: 35286487 PMCID: PMC8918593 DOI: 10.1007/s10661-022-09932-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Most of the published articles which document changes in atmospheric compositions during the various lockdown and unlock phases of COVID-19 pandemic have made a direct comparison to a reference point (which may be 1 year apart) for attribution of the COVID-mediated lockdown impact on atmospheric composition. In the present study, we offer a better attribution of the lockdown impacts by also considering the effect of meteorology and seasonality. We decrease the temporal distance between the impacted and reference points by considering the difference of adjacent periods first and then comparing the impacted point to the mean of several reference points in the previous years. Additionally, we conduct a multi-station analysis to get a holistic effect of the different climatic and emission regimes. In several places in eastern and coastal India, the seasonally induced changes already pointed to a decrease in PM concentrations based on the previous year data; hence, the actual decrease due to lockdown would be much less than that observed just on the basis of difference of concentrations between subsequent periods. In contrast, northern Indian stations would normally show an increase in PM concentration at the time of the year when lockdown was effected; hence, actual lockdown-induced change would be in surplus of the observed change. The impact of wind-borne transport of pollutants to the study sites dominates over the dilution effects. Box model simulations point to a VOC-sensitive composition.
Collapse
Affiliation(s)
- Rahul Kant
- Department of Atmospheric Science, Central University of Rajasthan, Ajmer, 305801, India
| | - Avani Trivedi
- Department of Atmospheric Science, Central University of Rajasthan, Ajmer, 305801, India
| | - Bibhutimaya Ghadai
- Department of Atmospheric Science, Central University of Rajasthan, Ajmer, 305801, India
| | - Vinod Kumar
- Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128, Mainz, Germany
| | - Chinmay Mallik
- Department of Atmospheric Science, Central University of Rajasthan, Ajmer, 305801, India.
| |
Collapse
|
19
|
Zhang Z, Liu Y, Liu H, Hao A, Zhang Z. The impact of lockdown on nitrogen dioxide (NO 2) over Central Asian countries during the COVID-19 pandemic. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:18923-18931. [PMID: 34705200 PMCID: PMC8548356 DOI: 10.1007/s11356-021-17140-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/17/2021] [Indexed: 04/12/2023]
Abstract
Nitrogen dioxide (NO2) is one of the main air pollutants, formed due to both natural and anthropogenic processes, which has a significant negative impact on human health. The COVID-19 pandemic has prompted countries to take various measures, including social distancing or stay-at-home orders. This study analyzes the impact of COVID-19 lockdown measures on nitrogen dioxide (NO2) changes in Central Asian countries. Data from TROPOspheric Monitoring Instrument (TROPOMI) on the Sentinel-5 Precursor satellite, as well as meteorological data, make it possible to assess changes in NO2 concentration in countries and major cities in the region. In particular, the obtained satellite data show a decreased tropospheric column of NO2. Its decrease during the lockdown (March 19-April 14) ranged from - 5.1% (Tajikistan) to - 11.6% (Turkmenistan). Based on the obtained results, it can be concluded that limitations in anthropogenic activities have led to improvements in air quality. The possible influence of meteorology is not assessed in this study, and the implied uncertainties cannot be quantified. In this way, the level of air pollution is expected to decrease as long as partial or complete lockdown continues.
Collapse
Affiliation(s)
- Zhongrong Zhang
- School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou, 730070, China.
| | - Yijia Liu
- School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Haizhong Liu
- School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Aihong Hao
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Zhongwei Zhang
- School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou, 730070, China
| |
Collapse
|
20
|
Rawat P, Naja M. Remote sensing study of ozone, NO 2, and CO: some contrary effects of SARS-CoV-2 lockdown over India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:22515-22530. [PMID: 34792768 PMCID: PMC8598935 DOI: 10.1007/s11356-021-17441-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 11/05/2021] [Indexed: 05/28/2023]
Abstract
Escalating emissions of several air pollutants over South Asia could play a detrimental role in the regional and global atmosphere. Therefore, it is necessary to investigate these emissions within the boundary layer and at higher heights utilizing satellite data that are more inclusionary, where limited in situ observations are available. Here, we utilize the Infrared Atmospheric Sounding Interferometer (IASI), Ozone Monitoring Instruments (OMI), TROPOspheric Monitoring Instrument (TROPOMI), and Global Ozone Monitoring Experiment (GOME-2) hyperspectral satellite data to assess the changes in emission sources during Indian lockdown with a primary focus on the tropospheric profiles of ozone and carbon monoxide (CO). A significant reduction (> 20%) in the tropospheric ozone was seen over northern and northeast regions compared to 2018, while a dramatic increase (> 20%) compared to 2019 was seen. The subtropical dynamics mainly contributed to the increased ozone over the northern region. An analysis of the ozone production regime showed mostly NO2 limited regime over the major part of India and VOC limited regime over thermal power plants regions. Unlike in the boundary layer, where CO showed reduction (15-20%), CO profiles showed a consistent increase (as high as 31%) in the free troposphere over the majority of cities and thermal power plants. The CO total column also showed an increase (~ 20%) over central and western India and a slight decrease (5%) over northern India. Similar to CO, an increase (~ 15%) of NO2 column over the western region was observed particularly compared to 2019. However, unlike ozone and CO, reduction of tropospheric NO2 columns was seen over the major part of India, with the highest reduction over northern regions (20-52%). Furthermore, homogeneous yearly differences (> 30%) between OMI and TROPOMI NO2 observations were also seen distinctly over the remote areas. Contrary to surface-based studies, the present study shows an increase in CO, ozone (decrease), and NO2 at several locations and in the free troposphere during the lockdown.
Collapse
Affiliation(s)
- Prajjwal Rawat
- Aryabhatta Research Institute of Observational Sciences, Manora Peak, Nainital, 263001, India
| | - Manish Naja
- Aryabhatta Research Institute of Observational Sciences, Manora Peak, Nainital, 263001, India.
| |
Collapse
|
21
|
Ravindra K, Singh T, Vardhan S, Shrivastava A, Singh S, Kumar P, Mor S. COVID-19 pandemic: What can we learn for better air quality and human health? J Infect Public Health 2022; 15:187-198. [PMID: 34979337 PMCID: PMC8642828 DOI: 10.1016/j.jiph.2021.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/15/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023] Open
Abstract
The COVID-19 lockdown resulted in improved air quality in many cities across the world. With the objective of what could be the new learning from the COVID-19 pandemic and subsequent lockdowns for better air quality and human health, a critical synthesis of the available evidence concerning air pollution reduction, the population at risk and natural versus anthropogenic emissions was conducted. Can the new societal norms adopted during pandemics, such as the use of face cover, awareness regarding respiratory hand hygiene, and physical distancing, help in reducing disease burden in the future? The use of masks will be more socially acceptable during the high air pollution episodes in lower and middle-income countries, which could help to reduce air pollution exposure. Although post-pandemic, some air pollution reduction strategies may be affected, such as car-pooling and the use of mass transit systems for commuting to avoid exposure to airborne infections like coronavirus. However, promoting non-motorized modes of transportation such as cycling and walking within cities as currently being enabled in Europe and other countries could overshadow such losses. This demand focus on increasing walkability in a town for all ages and populations, including for a differently-abled community. The study highlighted that for better health and sustainability there. is also a need to promote other measures such as work-from-home, technological infrastructure, the extension of smart cities, and the use of information technology.
Collapse
Affiliation(s)
- Khaiwal Ravindra
- Department of Community Medicine and School of Public Health, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India.
| | - Tanbir Singh
- Department of Environment Studies, Panjab University, Chandigarh, 160014, India
| | - Shikha Vardhan
- Centre for Environmental & Occupational Health, Climate Change & Health, National Centre for Disease Control, Delhi, 110054, India
| | - Aakash Shrivastava
- Centre for Environmental & Occupational Health, Climate Change & Health, National Centre for Disease Control, Delhi, 110054, India
| | - Sujeet Singh
- Centre for Environmental & Occupational Health, Climate Change & Health, National Centre for Disease Control, Delhi, 110054, India
| | - Prashant Kumar
- Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, GU2 7XH, United Kingdom
| | - Suman Mor
- Department of Environment Studies, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
22
|
Kawano A, Kim Y, Meas M, Sokal-Gutierrez K. Association between satellite-detected tropospheric nitrogen dioxide and acute respiratory infections in children under age five in Senegal: spatio-temporal analysis. BMC Public Health 2022; 22:178. [PMID: 35081933 PMCID: PMC8790943 DOI: 10.1186/s12889-022-12577-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 01/12/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There is growing evidence to suggest that exposure to a high concentration of nitrogen dioxide (NO2) can lead to a higher incidence of Acute Respiratory Infections (ARIs) in children; however, such an association remains understudied in Sub-Saharan Africa due to the limited availability of exposure data. This study explored this association by using the satellite-detected tropospheric NO2 concentrations measured by Sentinel-5 Precursor and ARI symptoms in children under age five collected in the Demographic and Health Survey (DHS) in Senegal. METHODS We matched the daily tropospheric NO2 exposure with the individual ARI symptoms according to the DHS survey clusters spatially and temporally and conducted a logistic regression analysis to estimate the association of exposure to NO2 with ARI symptoms in two preceding weeks. RESULTS We observed a positive association between exposure to continuous levels of NO2 and ARI symptoms after adjusting for confounders (OR 1.27 per 10 mol/m2, 95% CI: 1.06 - 1.52). When the association was further examined by quartile exposure categories, the 4th quartile category was positively associated with symptoms of ARI after adjusting for confounders (OR 1.71, 95% CI: 1.08-2.69). This suggests that exposure to certain high levels of NO2 is associated with the increased risk of children having symptoms of ARI in Senegal. CONCLUSIONS This study highlights the need for increased research on the effects of ambient NO2 exposure in Africa as well as the need for more robust, ground-based air monitoring in the region. For a country like Senegal, where more than 90% of the population lives in areas that do not meet the national air quality standards, it is urgently required to implement air pollution prevention efforts to protect children from the health hazards of air pollution.
Collapse
Affiliation(s)
- Ayako Kawano
- School of Public Health, University of California Berkeley, 2121 Berkeley Way, Berkeley, CA, 94704, USA
| | - Yoonhee Kim
- Department of Global Environmental Health, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Michelle Meas
- School of Public Health, University of California Berkeley, 2121 Berkeley Way, Berkeley, CA, 94704, USA
| | - Karen Sokal-Gutierrez
- School of Public Health, University of California Berkeley, 2121 Berkeley Way, Berkeley, CA, 94704, USA.
| |
Collapse
|
23
|
Attri P, Sarkar S, Mani D. Classification and transformation of aerosols over selected Indian cities during reduced emissions under Covid-19 lockdown. JOURNAL OF EARTH SYSTEM SCIENCE 2022; 131:190. [PMCID: PMC9436171 DOI: 10.1007/s12040-022-01916-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/21/2022] [Accepted: 03/01/2022] [Indexed: 01/08/2025]
Abstract
Abstract Studies in the recent past show improved air quality over India during the Covid-19 lockdown. This research attempts to characterize atmospheric aerosols in terms of α and AOD and their transformation over India during the pandemic lockdown. The type and particle distribution of aerosols, including gaseous species for five Indian regions were considered. Fine to coarse particle shift was observed in most regions. The northern region observed high fire counts, implying crop residue burning season during the stringent lockdown. Thiruvananthapuram, in the south, showed an increase in PM, owing to the resumption of mobility post-lockdown. Hyderabad, however; observed increased PM2.5 (2.79%) and AOD (37.23%) during Phase 1. Maritime (MT) aerosol predominated over Thiruvananthapuram, whereas urban/biomass burning (UBB) type decreased over the eastern region. Contributions from continental average (CA), maritime continental average (MCA), and MT were observed over Hyderabad, post-lockdown. In the central region, MCA was replaced by UBB and mixed type, with isolated episodes of clean continental (CC) and desert dust (DD). During lockdown phases, an increase in O3 over western, northern, and central regions is attributed to increased temperature and decreased NO2. A significant correlation with population density (PD) exists with NO2 (R 2 = 0.75; p < 0.05), suggesting human mobility as a major contributor to NO2 in the atmosphere during the lockdown period. Highlights Characterization of atmospheric aerosols during Covid-19 lockdown over India. General shift from fine to coarse particles size in most regions. Crop residue burning increased pollutants in North during lockdown. Forest fire season in central and south-central region increased PM, NO2 concentrations during lockdown. Maritime origin aerosols dominate over Thiruvananthapuram. Decline in pollutants in post-lockdown due to meteorology (early monsoon, cyclone Amphan, and Nisarga). Supplementary Information The online version contains supplementary material available at 10.1007/s12040-022-01916-y.
Collapse
Affiliation(s)
- Pradeep Attri
- Centre for Earth, Ocean and Atmospheric Sciences, University of Hyderabad, Hyderabad, 500 046 Telangana India
| | | | - Devleena Mani
- Centre for Earth, Ocean and Atmospheric Sciences, University of Hyderabad, Hyderabad, 500 046 Telangana India
| |
Collapse
|
24
|
Benchrif A, Wheida A, Tahri M, Shubbar RM, Biswas B. Air quality during three covid-19 lockdown phases: AQI, PM2.5 and NO2 assessment in cities with more than 1 million inhabitants. SUSTAINABLE CITIES AND SOCIETY 2021; 74:103170. [PMID: 34290956 PMCID: PMC8277957 DOI: 10.1016/j.scs.2021.103170] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 05/17/2023]
Abstract
Implemented quarantine due to the ongoing novel coronavirus (agent of COVID-19) has an immense impact on human mobility and economic activities as well as on air quality. Since then, and due to the drastic reduction in pollution levels in cities across the world, a large discussion has been magnetized regarding if the lockdown is an adequate alternative counter-measure for enhancing air quality. This paper aimed at studying the Air Quality Index (AQI), PM2.5, and tropospheric NO2 levels in three lockdown phases (before, during, and after) among 21 cities around the world. Simple before/after comparison approach was carried out to capture the declining trend in air pollution levels caused by the lockdown restrictions. The results showed that the frequency distribution for NO2 is more variable than that for PM2.5, and the distribution is flatter from 2020 to the baseline 2018-2019 period. Besides, AQI, in most of the cities, has varied from high to mild pollution during the lockdown and was moderate before. Although during the lockdown, a reduction of 3 to 58% of daily NO2 concentrations was observed across the cities, an increase was detected in three cities including Abidjan (1%), Conakry (3%), and Chengdu (10%). Despite this mixed trend, the NO2 time series clearly showed the effect of the unlocking phase where the NO2 levels increased in almost all cities. Similarly, PM2.5 concentrations have increased in the post-lockdown period, with 50% of the cities reporting significant positive differences between the lock and the unlock phase. Then, the levels of PM2.5 were higher at the pre-lockdown phase than at any other time exhibiting a "U" shape. In addition, during Ramadan, it was noted that altered patterns of daily activities in some Islamic cities have a significant negative impact on air quality.
Collapse
Affiliation(s)
| | - Ali Wheida
- Theoretical Physics Department, Physics Division, National Research Centre, Dokki, Cairo, Egypt
| | - Mounia Tahri
- National Centre for Nuclear Energy, Science and Technology (CNESTEN), Morocco
| | - Ramiz M Shubbar
- Midland Refineries Company (MRC), Daura Refinery, Baghdad, Iraq
| | - Biplab Biswas
- Department of Geography, The University of Burdwan, Burdwan, India
| |
Collapse
|
25
|
Srivastava P, Dhyani S, Emmanuel MA, Khan AS. COVID-19 and environment: a poignant reminder of sustainability in the new normal. ENVIRONMENTAL SUSTAINABILITY (SINGAPORE) 2021; 4:649-670. [PMID: 38624923 PMCID: PMC8475439 DOI: 10.1007/s42398-021-00207-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 12/23/2022]
Abstract
The nexus of COVID-19 and environment is conspicuously deep-rooted. The roles of environmental factors in the origin, transmission and spread of COVID-19 and the mutual impact of the pandemic on the global environment have been the two perspectives to view this nexus. The present paper attempts to systematically review the existing literature to understand and explore the linkages of COVID-19 with environment and proposes conceptual frameworks to underline this nexus. Our study indicates a critical role of meteorological factors, ambient air pollutants and wastewater in severe acute respiratory syndrome coronavirus 2(SARS-CoV-2) transmission-spread dynamics. The study also focuses on the direct and indirect impacts of COVID-19 on the regional and global environment. Most of the indirect environmental effects of COVID-19 were attributed to global human confinement that resulted from the implementation of the pandemic containment measures. This worldwide anthropogenic 'pause' sent ripples to all environmental compartments and presented a unique test bed to identify anthropogenic impacts on the earth's natural systems. The review further addresses emerging sustainability challenges in the new normal and their potential solutions. The situation warrants critical attention to the environment-COVID-19 nexus and innovative sustainable practices to address the ramifications of short- and long-term environmental impacts of the COVID-19 pandemic. Graphical abstract
Collapse
Affiliation(s)
- Prateek Srivastava
- Department of Botany, C.M.P College, University of Allahabad, Prayagraj, Uttar Pradesh 211002 India
| | - Shalini Dhyani
- CSIR-National Environmental Engineering Research Institute, Nagpur, 440020 Maharashtra India
| | | | - Ambrina Sardar Khan
- Amity Institute of Environmental Sciences, Amity University, Noida, Uttar Pradesh 201303 India
| |
Collapse
|
26
|
Singh V, Mishra V. Environmental impacts of coronavirus disease 2019 (COVID-19). BIORESOURCE TECHNOLOGY REPORTS 2021; 15:100744. [PMID: 34189443 PMCID: PMC8226008 DOI: 10.1016/j.biteb.2021.100744] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 02/03/2023]
Abstract
The coronavirus disease (COVID-19), a variant of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) originated in Wuhan city of China and has now transmitted over the world. Till the April 24, 2020, nearly 144,367,284 confirmed positive cases with 3,066,270 deaths worldwide. The recent studies have reported that SARS-CoV-2 is transmitted through respiratory droplets. Several vaccines are available now. However, the vaccination process has not completed yet. Worldwide lockdown was initiated to restrict gathering, transport and industrial activities. Lockdown due to COVID-19 showed reduction in environmental pollution. The quality of air and water improved in metro cities and in rivers during COVID-19. This review not only provides the updated information related to impact of COVID-19 on air, water and noise pollution, generation of biomedical waste and global environmental sustainable development but also it covers the basic mechanism of COVID-19 transmission.
Collapse
Affiliation(s)
| | - Vishal Mishra
- Corresponding author at: School of Biochemical Engineering, IIT (BHU) Varanasi, 221005, India
| |
Collapse
|
27
|
Naqvi HR, Mutreja G, Hashim M, Singh A, Nawazuzzoha M, Naqvi DF, Siddiqui MA, Shakeel A, Chaudhary AA, Naqvi AR. Global assessment of tropospheric and ground air pollutants and its correlation with COVID-19. ATMOSPHERIC POLLUTION RESEARCH 2021; 12:101172. [PMID: 34421319 PMCID: PMC8372483 DOI: 10.1016/j.apr.2021.101172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 05/06/2023]
Abstract
The declaration of COVID-19 pandemic by the WHO initiated a series of lockdowns globally that varied in stringency and duration; however, the spatiotemporal effects of these lockdowns on air quality remain understudied. This study evaluates the global impact of lockdowns on air pollutants using tropospheric and ground-level indicators over a five-month period. Moreover, the relationship between air pollution and COVID-19 cases and mortalities was examined. Changes in the global tropospheric (NO2, aerosols, and O3) and ground-level (PM2.5, PM10, NO2, and O3) pollutants were observed, and the maximum air quality improvement was observed immediately after lockdown. Except for a few countries, a decline in air pollutants correlated with a reduction in Land Surface Temperature (LST). Notably, regions with higher tropospheric NO2 and aerosol concentrations were also COVID-19 hotspots. Our analysis showed moderate positive correlation for NO2 with COVID-19 cases (R2 = 0.33; r = 0.57, P = 0.006) and mortalities (R2 = 0.40; r = 0.63, P = 0.015), while O3 showed a weak-moderate positive correlation with COVID-19 cases (R2 = 0.22; r = 0.47, P = 0.003) and mortalities (R2 = 0.12; r = 0.35, P = 0.012). However, PM2.5, and PM10 showed no significant correlation with either COVID-19 cases or mortality. This study reveals that humans living under adverse air pollution conditions are at higher risk of COVID-19 infection and mortality.
Collapse
Affiliation(s)
- H R Naqvi
- Department of Geography, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
| | - G Mutreja
- Environmental Systems Research Institute, R & D Center, New Delhi, India
| | - M Hashim
- Department of Geography, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
| | - A Singh
- Department of Geography, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
| | - M Nawazuzzoha
- Department of Geography, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
| | - D F Naqvi
- ZiMetrics Technologies Pvt. Ltd., Pune, India
| | - M A Siddiqui
- Department of Geography, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
| | - A Shakeel
- Department of Geography, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
| | - A A Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, 13317-7544, Saudi Arabia
| | - A R Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
28
|
Jain P, Rakshit B, Raina B, Bardhan S. Regional integration and environmental sustainability during the COVID-19 pandemic: Evidence from South Asia. INTERNATIONAL SOCIAL SCIENCE JOURNAL 2021; 73:ISSJ12291. [PMID: 34898716 PMCID: PMC8652824 DOI: 10.1111/issj.12291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 06/22/2021] [Accepted: 07/26/2021] [Indexed: 11/30/2022]
Abstract
South Asia, a sub-region with nearly a third of the world's population living in extreme poverty and hunger, has been affected by the COVID-19 pandemic in an unprecedented way. The pandemic has undermined the progress achieved by the subregion towards attaining sustainable development goals. This study argues that fostering environmental sustainability in the South Asian region is crucial to "Building Back Better" while taking cognisance of future climate-related risks. With the low level of preparedness, the collapse of global supply chains, and restrictive regional integration, the individual country in the region lacks the fiscal and technical capacity to implement sustainable development goals effectively. Therefore, based on the analytical approach to regional integration, this paper explores the potential role of regional integration in ensuring environmental sustainability in South Asia. Additionally, this study illustrates how the COVID-19 pandemic has affected several environmental aspects at the regional level, such as clean energy, disaster risk reduction, and waste management, and shows how regional cooperation can address these challenges post pandemic. While previous studies mainly focus on regional integration in the European Union, this study targets the crucial importance of regional cooperation in South Asia in achieving environmental sustainability.
Collapse
Affiliation(s)
- Panika Jain
- Department of Humanities and Social SciencesIndian Institute of TechnologyRoparIndia
| | - Bijoy Rakshit
- Department of Humanities and Social SciencesIndian Institute of TechnologyRoparIndia
| | - Bisma Raina
- Department of Humanities and Social SciencesIndian Institute of TechnologyRoparIndia
| | - Samaresh Bardhan
- Department of Humanities and Social SciencesIndian Institute of TechnologyRoparIndia
| |
Collapse
|
29
|
Ukhurebor KE, Singh KR, Nayak V, Uk-Eghonghon G. Influence of the SARS-CoV-2 pandemic: a review from the climate change perspective. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:1060-1078. [PMID: 34132283 DOI: 10.1039/d1em00154j] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Ever since the global outbreak of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2/COVID-19) in the early part of 2020, there is no doubt that the SARS-CoV-2 pandemic has placed great tension globally and has affected almost all aspects of human endeavors. There are presently several research studies on the atmospheric environmental and economic effects of this dreaded virus. Supposedly, the responses ought to have also present innovations that would advance scientific research to mitigate its impacts since most of the ensuing consequences impact the atmospheric climatic conditions. Even when it appears that economic events would possibly return in no time, the circumstances will change. Specifically, from the existing literature, it appears that not much has been done to study the influence of the SARS-CoV-2 pandemic on climate change. Hence, this present review article will explore the possible connection between the SARS-CoV-2 pandemic and climate change. The utilization of various scientific domains for climate change studies during the SARS-CoV-2 pandemic and exploring the positive influences of the SARS-CoV-2 pandemic and measures to avoid the negative impacts on climate change owing to SARS-CoV-2 have also been discussed.
Collapse
|
30
|
Parida BR, Bar S, Roberts G, Mandal SP, Pandey AC, Kumar M, Dash J. Improvement in air quality and its impact on land surface temperature in major urban areas across India during the first lockdown of the pandemic. ENVIRONMENTAL RESEARCH 2021; 199:111280. [PMID: 34029544 PMCID: PMC9189601 DOI: 10.1016/j.envres.2021.111280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/12/2021] [Accepted: 04/30/2021] [Indexed: 05/21/2023]
Abstract
The SARS CoV-2 (COVID-19) pandemic and the enforced lockdown have reduced the use of surface and air transportation. This study investigates the impact of the lockdown restrictions in India on atmospheric composition, using Sentinel-5Ps retrievals of tropospheric NO2 concentration and ground-station measurements of NO2 and PM2.5 between March-May in 2019 and 2020. Detailed analysis of the changes to atmospheric composition are carried out over six major urban areas (i.e. Delhi, Mumbai, Kolkata, Chennai, Bangalore, and Hyderabad) by comparing Moderate Resolution Imaging Spectroradiometer (MODIS) Aerosol Optical Depth (AOD) and land surface temperature (LST) measurements in the lockdown year 2020 and pre-lockdown (2015-2019). Satellite-based data showed that NO2 concentration reduced by 18% (Kolkata), 29% (Hyderabad), 32-34% (Chennai, Mumbai, and Bangalore), and 43% (Delhi). Surface-based concentrations of NO2, PM2.5, and AOD also substantially dropped by 32-74%, 10-42%, and 8-34%, respectively over these major cities during the lockdown period and co-located with the intensity of anthropogenic activity. Only a smaller fraction of the reduction of pollutants was associated with meteorological variability. A substantial negative anomaly was found for LST both in the day (-0.16 °C to -1 °C) and night (-0.63 °C to -2.1 °C) across select all cities, which was also consistent with air temperature measurements. The decreases in LST could be associated with a reduction in pollutants, greenhouse gases and water vapor content. Improvement in air quality with lower urban temperatures due to lockdown may be a temporary effect, but it provides a crucial connection among human activities, air pollution, aerosols, radiative flux, and temperature. The lockdown for a shorter-period showed a significant improvement in environmental quality and provides a strong evidence base for larger scale policy implementation to improve air quality.
Collapse
Affiliation(s)
- Bikash Ranjan Parida
- Department of Geoinformatics, School of Natural Resource Management, Central University of Jharkhand, Ranchi, 835222, India.
| | - Somnath Bar
- Department of Geoinformatics, School of Natural Resource Management, Central University of Jharkhand, Ranchi, 835222, India
| | - Gareth Roberts
- Geography and Environmental Science, University of Southampton, Highfield, Southampton, SO17 1BJ, United Kingdom
| | - Shyama Prasad Mandal
- Department of Geoinformatics, School of Natural Resource Management, Central University of Jharkhand, Ranchi, 835222, India
| | - Arvind Chandra Pandey
- Department of Geoinformatics, School of Natural Resource Management, Central University of Jharkhand, Ranchi, 835222, India
| | - Manoj Kumar
- Department of Environmental Sciences, School of Natural Resource Management, Central University of Jharkhand, Ranchi, 835222, India
| | - Jadunandan Dash
- Geography and Environmental Science, University of Southampton, Highfield, Southampton, SO17 1BJ, United Kingdom
| |
Collapse
|
31
|
Prakash S, Goswami M, Khan YDI, Nautiyal S. Environmental impact of COVID-19 led lockdown: A satellite data-based assessment of air quality in Indian megacities. URBAN CLIMATE 2021; 38:100900. [PMID: 36570864 PMCID: PMC9764093 DOI: 10.1016/j.uclim.2021.100900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 06/18/2021] [Accepted: 06/20/2021] [Indexed: 05/05/2023]
Abstract
The strategies to contain the spread of COVID-19 pandemic, including restricted human movement and economic activities, have shown positive impacts on the environment. Present research analysed the effects of COVID-19 led lockdown on air quality with special reference to major pollutants, namely nitrogen dioxide (NO2), carbon monoxide (CO), sulphur dioxide (SO2) and aerosol optical depth (AOD). The assessment has been conducted for megacities of India (Delhi, Mumbai, Bengaluru, Chennai and Kolkata) for four months, that is, March and April in 2019 and 2020 using Sentinel 5P and MCD19A2 data. A decrease in concentrations of air pollutants, specifically NO2 and SO2, has been observed during the lockdown period in all the cities; whereas CO and AOD have exhibited discrete pattern of spatio-temporal variation. Four megacities except Kolkata have revealed a positive correlation between NO2 concentration and population density. The results conclude overall improvement in air quality during COVID-19 led lockdown. The current situation provides a unique opportunity to implement a structural economic change that could help us move towards a city with low emission economy. Realizing the achievable improvement of air quality, the study suggests further in-depth research on source attribution of individual pollutants to assess the prospect of emission reduction actions.
Collapse
Affiliation(s)
- Satya Prakash
- Centre for Ecological Economics and Natural Resources (CEENR), Institute for Social and Economic Change (ISEC), Dr. VKRV Rao Road Nagarabhavi, 560072 Bengaluru, India
| | - Mrinalini Goswami
- Centre for Ecological Economics and Natural Resources (CEENR), Institute for Social and Economic Change (ISEC), Dr. VKRV Rao Road Nagarabhavi, 560072 Bengaluru, India
| | - Y D Imran Khan
- Centre for Ecological Economics and Natural Resources (CEENR), Institute for Social and Economic Change (ISEC), Dr. VKRV Rao Road Nagarabhavi, 560072 Bengaluru, India
| | - Sunil Nautiyal
- Centre for Ecological Economics and Natural Resources (CEENR), Institute for Social and Economic Change (ISEC), Dr. VKRV Rao Road Nagarabhavi, 560072 Bengaluru, India
- Leibniz-Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374 Muencheberg, Germany
| |
Collapse
|
32
|
Marinello S, Butturi MA, Gamberini R. How changes in human activities during the lockdown impacted air quality parameters: A review. ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY 2021; 40:e13672. [PMID: 34221243 PMCID: PMC8237064 DOI: 10.1002/ep.13672] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/26/2021] [Accepted: 05/02/2021] [Indexed: 05/14/2023]
Abstract
The health emergency linked to the spread of COVID-19 has led to important reduction in industrial and logistics activities, as well as to a drastic changes in citizens' behaviors and habits. The restrictions on working activities, journeys and relationships imposed by the lockdown have had important consequences, including for environmental quality. This review aims to provide a structured and critical evaluation of the recent scientific bibliography that analyzed and described the impact of lockdown on human activities and on air quality. The results indicate an important effect of the lockdown during the first few months of 2020 on air pollution levels, compared to previous periods. The concentrations of particulate matter, nitrogen dioxide, sulfur dioxide and carbon monoxide have decreased. Tropospheric ozone, on the other hand, has significantly increased. These results are important indicators that can become decision drivers for future policies and strategies in industrial and logistics activities (including the mobility sector) aimed at their environmental sustainability. The scenario imposed by COVID-19 has supported the understanding of the link between the reduction of polluting emissions and the state of air quality and will be able to support strategic choices for the future sustainable growth of the industrial and logistics sector.
Collapse
Affiliation(s)
- Samuele Marinello
- En&Tech Interdipartimental Center of the University of Modena and Reggio EmiliaReggio EmiliaItaly
| | - Maria Angela Butturi
- Department of Sciences and Methods for EngineeringUniversity of Modena and Reggio EmiliaReggio EmiliaItaly
| | - Rita Gamberini
- En&Tech Interdipartimental Center of the University of Modena and Reggio EmiliaReggio EmiliaItaly
- Department of Sciences and Methods for EngineeringUniversity of Modena and Reggio EmiliaReggio EmiliaItaly
| |
Collapse
|
33
|
Ravindra K, Goyal A, Mor S. Does airborne pollen influence COVID-19 outbreak? SUSTAINABLE CITIES AND SOCIETY 2021; 70:102887. [PMID: 33816082 PMCID: PMC7999829 DOI: 10.1016/j.scs.2021.102887] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/04/2021] [Accepted: 03/23/2021] [Indexed: 05/09/2023]
Abstract
The fast spread of SARS-CoV-2 presented a worldwide challenge to public health, economy, and educational system, affecting wellbeing of human society. With high transmission rates, there are increasing evidences of COVID-19 spread via bioaerosols from an infected person. The current review was conducted to examine airborne pollen impact on COVID-19 transmission and to identify the major gaps for post-pandemic research. The study used all key terms to identify revenant literature and observation were collated for the current research. Based on existing literature, there is a potential association between pollen bioaerosols and COVID-19. There are few studies focusing the impact of airborne pollen on SARS-CoV-2, which could be useful to advance future research. Allergic rhinitis and asthma patients were found to have pre-modified immune activation, which could help to provide protection against COVID-19. However, does airborne pollen acts as a potent carrier for SARS-CoV-2 transport, dispersal and its proliferation still require multidisciplinary research. Further, a clear conclusion cannot be drawn due to limited evidence and hence more research is needed to show how pollen bioaerosols could affect virus survivals. The small but growing literature review focuses on searching for every possible answer to provide additional security layers to overcome near future corona-like infectious diseases.
Collapse
Key Words
- AAAAI, American Academy of Allergy, Asthma & Immunology
- ACE-2, angiotensin-converting enzyme 2
- ARDS, acute respiratory distress syndrome
- Airborne pollen
- Allergic rhinitis
- Asthma
- Bioaerosols
- CCDC, Chinese Centre for Disease Control and Prevention
- CDC, Centers for Disease Control and Prevention
- CESM, Community Earth System Model
- CMAQ, Community Multiscale Air Quality
- COPD, chronic obstructive pulmonary diseases
- COVID-19
- ERS, European Respiratory Society
- FLI, flu-like illnesses
- GINA, Global Initiative for Asthma
- H1N1, Influenza A virus subtype H1N1
- H5N1, avian influenza virus
- IgE, Immunoglobulin E
- LDT, long-distance transport
- MERS, Middle East respiratory syndrome
- NHC, National Health Commission
- RSV, Respiratory Syncytial Virus infection
- SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus-2
- STaMPS, Simulator of Timing and Magnitude of Pollen Season
- Virus
- WAO, World Allergy Organisation
- WHO, World Health Organization
- WRF, Weather Research Forecasting
Collapse
Affiliation(s)
- Khaiwal Ravindra
- Department of Community Medicine and School of Public Health, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Akshi Goyal
- Department of Environment Studies, Panjab University, Chandigarh, 160014, India
| | - Suman Mor
- Department of Environment Studies, Panjab University, Chandigarh, 160014, India
| |
Collapse
|
34
|
Ravindra K, Singh T, Biswal A, Singh V, Mor S. Impact of COVID-19 lockdown on ambient air quality in megacities of India and implication for air pollution control strategies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:21621-21632. [PMID: 33415615 PMCID: PMC7789901 DOI: 10.1007/s11356-020-11808-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/20/2020] [Indexed: 04/16/2023]
Abstract
The impact of restrictions during various phases of COVID-19 lockdown on daily mean PM2.5 concentration in five Indian megacities (New Delhi, Chennai, Kolkata, Mumbai, and Hyderabad) was studied. The impact was studied for pre-lockdown (1st Mar-24th Mar 2020), lockdown (25th Mar-31st May 2020), and unlocking (1st Jun-31st Aug 2020) phases. The lockdown period comprises 4 lockdown phases with distinct measures, whereas the unlocking period had 3 phases. PM2.5 concentration reduced significantly in all megacities and met the national standards during the lockdown period. The maximum reduction in PM2.5 level was observed in Kolkata (62%), followed by Mumbai (49%), Chennai (34%), and New Delhi (26%) during the lockdown period. Comparatively, Hyderabad exhibited a smaller reduction in PM2.5 concentration, i.e., 10%. The average PM2.5 levels during the lockdown in the peak hour (i.e., 07:00-11:00 h) in New Delhi, Chennai, Kolkata, Mumbai, and Hyderabad decreased by 21.3%, 48.5%, 63.4%, 56.4%, and 23.8%, respectively, compared to those before lockdown period. During the unlocking period, except for Chennai, all megacities showed a reduction in average PM2.5 levels compared to concentrations in the lockdown period, but these reductions were mainly linked with monsoon rains in India. The current study provided an opportunity to study air pollution in the absence of major anthropogenic activities and during limited activities in monsoon season having an ecological design. The study reports a new baseline of PM2.5, except for monsoon, and explores this knowledge to plan future air pollution reduction strategies. The study also discusses how this new learning of knowledge could strengthen air pollution control policies for better air quality and sustainability.Graphical abstract.
Collapse
Affiliation(s)
- Khaiwal Ravindra
- Department of Community Medicine and School of Public Health, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India.
| | - Tanbir Singh
- Department of Environment Studies, Panjab University, Chandigarh, 160014, India
| | - Akash Biswal
- Department of Environment Studies, Panjab University, Chandigarh, 160014, India
- National Atmospheric Research Laboratory, Gadanki, Chandigarh, 517502, India
| | - Vikas Singh
- National Atmospheric Research Laboratory, Gadanki, Chandigarh, 517502, India
| | - Suman Mor
- Department of Environment Studies, Panjab University, Chandigarh, 160014, India
| |
Collapse
|
35
|
Ganguly R, Sharma D, Kumar P. Short-term impacts of air pollutants in three megacities of India during COVID-19 lockdown. ENVIRONMENT, DEVELOPMENT AND SUSTAINABILITY 2021; 23:18204-18231. [PMID: 33907505 PMCID: PMC8062216 DOI: 10.1007/s10668-021-01434-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/12/2021] [Indexed: 05/30/2023]
Abstract
Lockdown was imposed by the Indian government in the month of March 2020 as an early precaution to the COVID-19 pandemic which obstructed the socio-economic growth globally. The main aim of this study was to analyse the impact of lockdown (imposed in March and continued in April 2020) on the existing air quality in three megacities of India (Delhi, Mumbai and Kolkata) by assessing the trends of PM10 and NO2 concentrations. A comparison of the percentage reduction in concentrations of lockdown period with respect to same period in year 2019 and pre-lockdown period (February 14-March 24) was made. It was observed from the study that an overall decrease of pollutant concentrations was in the ranges of 30-60% and 52-80% of PM10 and NO2, respectively, in the three cities during lockdown in comparison with previous year and pre-lockdown period. The overall decrease in concentrations of pollutants at urban sites was greater than the background sites. Highest decline in concentrations of PM10 were observed in Kolkata city, followed by Mumbai and Delhi, while decline in NO2 was highest in Mumbai. Results also highlighted that capital city Delhi had the worst air quality amongst three cities, with particulate matter (PM10) being the dominant pollutant. Although COVID-19 has significantly affected the human life considering the mortality and morbidity, lockdowns imposed to control the pandemic had significantly improved the air quality in the selected study locations, although for the short amount of period.
Collapse
Affiliation(s)
- Rajiv Ganguly
- Department of Civil Engineering, Jaypee University of Information Technology, Waknaghat, District Solan, Himachal Pradesh 173234 India
| | - Divyansh Sharma
- Department of Civil Engineering, Jaypee University of Information Technology, Waknaghat, District Solan, Himachal Pradesh 173234 India
| | - Prashant Kumar
- Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, GU2 7XH United Kingdom
| |
Collapse
|
36
|
Naqvi HR, Mutreja G, Shakeel A, Siddiqui MA. Spatio-temporal analysis of air quality and its relationship with major COVID-19 hotspot places in India. REMOTE SENSING APPLICATIONS : SOCIETY AND ENVIRONMENT 2021; 22:100473. [PMID: 33553572 PMCID: PMC7846885 DOI: 10.1016/j.rsase.2021.100473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/29/2020] [Accepted: 01/26/2021] [Indexed: 12/23/2022]
Abstract
The COVID-19 pandemic spread worldwide, such as wind, with more than 400,000 documented cases as of March 24th, 2020. In this regard, strict lockdown measures were imposed in India on the same date to stop virus spread. Thereafter, various lockdown impacts were observed, and one of the immediate effects was a reduction in air pollution levels across the world and in India as well. In this study, we have observed approximately 40% reduction in air quality index (AQI) during one month of lockdown in India. The detailed investigations were performed for 14 major hotspot places where the COVID-19 cases were >1000 (as of 1st June 2020) and represents more than 70% associated mortality in India. We assessed the impact of lockdown on different air quality indicators, including ground (PM2.5, PM10, NO2, SO2, O3, and AQI) and tropospheric nitric oxide (NO2) pollutants, through ground monitoring stations and Sentinel-5 satellite datasets respectively. The highest reductions were noticed in NO2 (-48.68%), PM2.5 (-34.84%) and PM10 (-33.89%) air pollutant (unit in μg/m3) post-lockdown. Moreover, tropospheric NO2 (mol/m2) concentrations were also improved over Delhi, Mumbai, Kolkata, Thane, and Ahmedabad metro cities. We found strong positive correlation of COVID-19 mortality with PM10 (R2 = 0.145; r = 0.38) and AQI (R2 = 0.17; r = 0.412) pollutant indicators that significantly improved next time point. The correlation finding suggests that long-term bad air quality may aggravate the clinical symptoms of the disease.
Collapse
Affiliation(s)
- Hasan Raja Naqvi
- Department of Geography, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
| | - Guneet Mutreja
- Environmental Systems Research Institute, R & D Center, New Delhi, India
| | - Adnan Shakeel
- Department of Geography, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
| | - Masood Ahsan Siddiqui
- Department of Geography, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
37
|
Dumka UC, Kaskaoutis DG, Verma S, Ningombam SS, Kumar S, Ghosh S. Silver linings in the dark clouds of COVID-19: Improvement of air quality over India and Delhi metropolitan area from measurements and WRF-CHIMERE model simulations. ATMOSPHERIC POLLUTION RESEARCH 2021; 12:225-242. [PMID: 36915905 PMCID: PMC9996264 DOI: 10.1016/j.apr.2020.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 05/16/2023]
Abstract
The current study examines the impact of the COVID-19 lockdown (25th March until May 17, 2020) period in particulate matter (PM) concentrations and air pollutants (NOx, SO2, CO, NH3, and O3) at 63 stations located at Delhi, Uttar Pradesh and Haryana states within the Delhi-NCR, India. Large average reductions are recorded between the stations in each state such as PM10 (-46 to -58%), PM2.5 (-49 to -55%), NO2 (-27 to -58%), NO (-54% to -59%), CO (-4 to -44%), NH3 (-2 to -38%), while a slight increase is observed for O3 (+4 to +6%) during the lockdown period compared to same periods in previous years. Furthermore, PM and air pollutants are significantly reduced during lockdown compared to the respective period in previous years, while a significant increase in pollution levels is observed after the re-opening of economy. The meteorological changes were rather marginal between the examined periods in order to justify such large reductions in pollution levels, which are mostly attributed to traffic-related pollutants (NOx, CO and road-dust PM). The WRF-CHIMERE model simulations reveal a remarkable reduction in PM2.5, NO2 and SO2 levels over whole Indian subcontinent and mostly over urban areas, due to limitation in emissions from the traffic and industrial sectors. A PM2.5 reduction of -48% was simulated in Delhi in great consistency with measurements, rendering the model as a powerful tool for simulations of lower pollution levels during lockdown period.
Collapse
Affiliation(s)
- U C Dumka
- Aryabhatta Research Institute of Observational Sciences, Nainital, 263001, India
| | - D G Kaskaoutis
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Palaia Penteli, 15236, Athens, Greece
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, 71003, Crete, Greece
| | - Shubha Verma
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | | | - Sarvan Kumar
- Department of Earth and Planetary Sciences, Prof. Rajendra Singh (Rajju Bhaiya) Institute of Physical Sciences for Study and Research, Veer Bahadur Singh Purvanchal University, Jaunpur, 222003, Uttar Pradesh, India
| | - Sanhita Ghosh
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| |
Collapse
|
38
|
Mor S, Kumar S, Singh T, Dogra S, Pandey V, Ravindra K. Impact of COVID-19 lockdown on air quality in Chandigarh, India: Understanding the emission sources during controlled anthropogenic activities. CHEMOSPHERE 2021; 263:127978. [PMID: 33297028 PMCID: PMC7434328 DOI: 10.1016/j.chemosphere.2020.127978] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/07/2020] [Accepted: 08/09/2020] [Indexed: 05/03/2023]
Abstract
The variation in ambient air quality during COVID-19 lockdown was studied in Chandigarh, located in the Indo-Gangetic plain of India. Total 14 air pollutants, including particulate matter (PM10, PM2.5), trace gases (NO2, NO, NOx, SO2, O3, NH3, CO) and VOC's (benzene, toluene, o-xylene, m,p-xylene, ethylbenzene) were examined along with meteorological parameters. The study duration was divided into four parts, i.e., a) 21 days of before lockdown b) 21 days of the first phase of lockdown c) 19 days of the second phase of lockdown d) 14 days of the third phase of lockdown. The results showed significant reductions during the first and second phases for all pollutants. However, concentrations increased during the third phase. The concentrations of SO2, O3, and m,p-xylene kept on increasing throughout the study period, except for benzene, which continuously decreased. The percentage decrease in the concentrations during consecutive periods of lockdown were 28.8%, 23.4% and 1.1% for PM2.5 and 36.8%, 22.8% and 2.4% for PM10 respectively. The Principal Component Analysis (PCA) and characteristic ratios identified vehicular pollution as a primary source during different phases of lockdown. During the lockdown, residential sources showed a significant adverse impact on the air quality of the city. Regional atmospheric transfer of pollutants from coal-burning and stubble burning were identified as secondary sources of air pollution. The findings of the study offer the potential to plan air pollution reduction strategies in the extreme pollution episodes such as during crop residue burning period over Indo-Gangetic plain.
Collapse
Affiliation(s)
- Suman Mor
- Department of Environment Studies, Panjab University, Chandigarh, 160014, India
| | - Sahil Kumar
- Department of Environment Studies, Panjab University, Chandigarh, 160014, India
| | - Tanbir Singh
- Department of Environment Studies, Panjab University, Chandigarh, 160014, India
| | - Sushil Dogra
- Chandigarh Pollution Control Committee, Chandigarh, 160019, India
| | - Vivek Pandey
- Chandigarh Pollution Control Committee, Chandigarh, 160019, India
| | - Khaiwal Ravindra
- Department of Community Medicine and School of Public Health, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India.
| |
Collapse
|
39
|
Rume T, Islam SMDU. Environmental effects of COVID-19 pandemic and potential strategies of sustainability. Heliyon 2020. [PMID: 32964165 DOI: 10.1016/2fj.heliyon.2020.e04965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023] Open
Abstract
The global outbreak of coronavirus disease 2019 (COVID-19) is affecting every part of human lives, including the physical world. The measures taken to control the spread of the virus and the slowdown of economic activities have significant effects on the environment. Therefore, this study intends to explore the positive and negative environmental impacts of the COVID-19 pandemic, by reviewing the available scientific literatures. This study indicates that, the pandemic situation significantly improves air quality in different cities across the world, reduces GHGs emission, lessens water pollution and noise, and reduces the pressure on the tourist destinations, which may assist with the restoration of the ecological system. In addition, there are also some negative consequences of COVID-19, such as increase of medical waste, haphazard use and disposal of disinfectants, mask, and gloves; and burden of untreated wastes continuously endangering the environment. It seems that, economic activities will return soon after the pandemic, and the situation might change. Hence, this study also outlines possible ways to achieve long-term environmental benefits. It is expected that the proper implementation of the proposed strategies might be helpful for the global environmental sustainability.
Collapse
Affiliation(s)
- Tanjena Rume
- Department of Geological Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh
| | - S M Didar-Ul Islam
- Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh
| |
Collapse
|
40
|
Rume T, Islam SDU. Environmental effects of COVID-19 pandemic and potential strategies of sustainability. Heliyon 2020; 6:e04965. [PMID: 32964165 PMCID: PMC7498239 DOI: 10.1016/j.heliyon.2020.e04965] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/06/2020] [Accepted: 09/15/2020] [Indexed: 01/17/2023] Open
Abstract
The global outbreak of coronavirus disease 2019 (COVID-19) is affecting every part of human lives, including the physical world. The measures taken to control the spread of the virus and the slowdown of economic activities have significant effects on the environment. Therefore, this study intends to explore the positive and negative environmental impacts of the COVID-19 pandemic, by reviewing the available scientific literatures. This study indicates that, the pandemic situation significantly improves air quality in different cities across the world, reduces GHGs emission, lessens water pollution and noise, and reduces the pressure on the tourist destinations, which may assist with the restoration of the ecological system. In addition, there are also some negative consequences of COVID-19, such as increase of medical waste, haphazard use and disposal of disinfectants, mask, and gloves; and burden of untreated wastes continuously endangering the environment. It seems that, economic activities will return soon after the pandemic, and the situation might change. Hence, this study also outlines possible ways to achieve long-term environmental benefits. It is expected that the proper implementation of the proposed strategies might be helpful for the global environmental sustainability.
Collapse
Affiliation(s)
- Tanjena Rume
- Department of Geological Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh
| | - S.M. Didar-Ul Islam
- Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh
| |
Collapse
|