1
|
Zhao M, Zhang Y, Li Y, Liu K, Zhang C, Li G. Complete Genome Sequence and Probiotic Properties of Pediococcus acidilactici CLP03 Isolated from Healthy Felis catus. Probiotics Antimicrob Proteins 2025; 17:903-917. [PMID: 37953343 DOI: 10.1007/s12602-023-10187-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 11/14/2023]
Abstract
Probiotics are available from various sources, including the gastrointestinal tract of healthy animals. In this study, Pediococcus acidilactici was isolated for the first time from Felis catus and evaluated for its functionality. The findings revealed that P. acidilactici CLP03 exhibited inhibitory properties against pathogenic bacteria (E. coli, Salmonella, S. aureus, P. aeruginosa, and L. monocytogenes). Then, survival of strains exposed to pH 2.5, 0.3% bile salts, 0.5% bile salts, and gastrointestinal fluids was 63.97%, 98.84%, 87.95%, and 52.45%, respectively. Also, P. acidilactici CLP03 demonstrated high hydrophobicity (69.63-82.03%) and self-aggregation (73.51-81.44%), negative for hemolytic, and was susceptible to clindamycin. Finally, the scavenging rates of DPPH, ABTS, and O2- were 53.55%, 54.81%, and 85.13%, respectively, which demonstrated that the strain CLP03 has good oxidation resistance. All these characteristics contribute to the survival, colonization, and functionality of the strain in the gastrointestinal tract, indicating their excellent probiotic potential. On the other hand, animal experiments (KM mice, randomly assigned to four groups) showed that the gavage of CLP03 had no toxic effects on mice, increased the serum SOD content, and decreased the MDA and BUN contents, which revealed gavage of CLP03 significantly increased the antioxidant capacity of mice in vivo. In addition, complete genome annotation showed that P. acidilactici CLP03 had 1976 CDS genes, and the numbers of CRISPR, gene islands, and phages were 8, 3, and 6, respectively. In conclusion, P. acidilactici CLP03 could be a candidate functional cat probiotic to enhance animal health and welfare.
Collapse
Affiliation(s)
- Mengdi Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China
| | - Yuanyuan Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yueyao Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Keyuan Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Zhang
- Qingdao Function Pet Technology Biology, Qingdao, 266000, China
| | - Guangyu Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
2
|
Arumugam U, Sudarsanan GB, Karuppannan AK, Palaniappan S. Metagenomic Studies Reveal the Evidence of Akkermansia muciniphila and Other Probiotic Bacteria in the Gut of Healthy and Enterocytozoon hepatopenaei (EHP)-Infected Farmed Penaeus vannamei. Probiotics Antimicrob Proteins 2025; 17:432-439. [PMID: 37749431 DOI: 10.1007/s12602-023-10165-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2023] [Indexed: 09/27/2023]
Abstract
Penaeus vannamei (whiteleg shrimp) is the most widely cultured shrimp globally. Enterocytozoon hepatopenaei (EHP), a microsporidian parasite, infects P. vannamei and causes severe growth retardation, subsequent production, and economic losses in the shrimp culture. The influence of EHP infection in the shrimp gut microbiota is poorly studied, and this would be an interesting area to investigate since the gut microbiome of shrimp influences a number of key host processes such as digestion and immunity. In this study, a metagenomic approach was followed to compare the overall species richness of the gut microbiota of EHP-infected and healthy P. vannamei. Bacterial genomic DNA from the healthy and EHP-infected gut sample were profiled for the bacterial 16S rRNA gene, targeting the V3-V4 conserved region. Operational taxonomic units (OTUs), an approximation of definitive taxonomic identity, were identified based on the sequence similarity within the sample reads and clustered together using a cut-off of 97% identity using UCLUST. The OTUs were then used for the computation of alpha diversity and beta diversity for each sample. EHP-infected gut sample showed lower bacterial abundance throughout the family, class, order, genus, and species levels when compared to healthy gut sample. This study shows that the shrimp gut microbiota is sensitive and exhibits a high level of plasticity during a microsporidian infection like EHP. Furthermore, Akkermansia muciniphila, a novel probiotic bacterium, has been reported in the shrimp gut for the first time.
Collapse
Affiliation(s)
- Uma Arumugam
- State Referral Laboratory for Aquatic Animal Health, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, Madhavaram Campus, Chennai, 600051, Tamil Nadu, India.
| | - Ganesh Babu Sudarsanan
- State Referral Laboratory for Aquatic Animal Health, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, Madhavaram Campus, Chennai, 600051, Tamil Nadu, India
| | - Anbu Kumar Karuppannan
- Bioinformatics Center, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Vepery, Chennai, 600007, Tamil Nadu, India
| | - Subash Palaniappan
- State Referral Laboratory for Aquatic Animal Health, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, Madhavaram Campus, Chennai, 600051, Tamil Nadu, India
| |
Collapse
|
3
|
Siddique N, Rahman MM, Akter S, Hasan MM, Das ZC, Hoque MN. Draft genome sequencing of Pediococcus acidilactici strains isolated from cow's milk: unlocking insights into functional traits and applications. Microbiol Resour Announc 2024; 13:e0025224. [PMID: 39023249 PMCID: PMC11320898 DOI: 10.1128/mra.00252-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/28/2024] [Indexed: 07/20/2024] Open
Abstract
Pediococcus acidilactici is a potential probiotic bacteria isolated from diverse sources. However, strains isolated from milk, especially from raw milk of healthy cows, have not been thoroughly studied. Here, we report the draft genome sequence of P. acidilactici strains MBBL5 and MBBL7, isolated from milk samples of healthy cows.
Collapse
Affiliation(s)
- Naim Siddique
- Molecular Biology and Bioinformatics Laboratory, Department of Gynaecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh
| | - Md. Morshedur Rahman
- Molecular Biology and Bioinformatics Laboratory, Department of Gynaecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh
| | - Salma Akter
- Department of Microbiology, Jahangirnagar University, Dhaka, Bangladesh
| | - Mehedi Mahmudul Hasan
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Ziban Chandra Das
- Molecular Biology and Bioinformatics Laboratory, Department of Gynaecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh
| | - M. Nazmul Hoque
- Molecular Biology and Bioinformatics Laboratory, Department of Gynaecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh
| |
Collapse
|
4
|
Quintieri L, Fanelli F, Monaci L, Fusco V. Milk and Its Derivatives as Sources of Components and Microorganisms with Health-Promoting Properties: Probiotics and Bioactive Peptides. Foods 2024; 13:601. [PMID: 38397577 PMCID: PMC10888271 DOI: 10.3390/foods13040601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/31/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Milk is a source of many valuable nutrients, including minerals, vitamins and proteins, with an important role in adult health. Milk and dairy products naturally containing or with added probiotics have healthy functional food properties. Indeed, probiotic microorganisms, which beneficially affect the host by improving the intestinal microbial balance, are recognized to affect the immune response and other important biological functions. In addition to macronutrients and micronutrients, biologically active peptides (BPAs) have been identified within the amino acid sequences of native milk proteins; hydrolytic reactions, such as those catalyzed by digestive enzymes, result in their release. BPAs directly influence numerous biological pathways evoking behavioral, gastrointestinal, hormonal, immunological, neurological, and nutritional responses. The addition of BPAs to food products or application in drug development could improve consumer health and provide therapeutic strategies for the treatment or prevention of diseases. Herein, we review the scientific literature on probiotics, BPAs in milk and dairy products, with special attention to milk from minor species (buffalo, sheep, camel, yak, donkey, etc.); safety assessment will be also taken into consideration. Finally, recent advances in foodomics to unveil the probiotic role in human health and discover novel active peptide sequences will also be provided.
Collapse
Affiliation(s)
| | - Francesca Fanelli
- National Research Council of Italy, Institute of Sciences of Food Production (CNR-ISPA), 70126 Bari, Italy; (L.Q.); (L.M.); (V.F.)
| | | | | |
Collapse
|
5
|
Quiroz-Eraso S, Rodríguez-Castaño GP, Acosta-González A. Interactions between polyphenols from Theobroma cacao and Lactobacillales to evaluate the potential of a combined strategy for intestinal free-fatty acid removal. Curr Res Food Sci 2023; 7:100594. [PMID: 37790859 PMCID: PMC10543767 DOI: 10.1016/j.crfs.2023.100594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 10/05/2023] Open
Abstract
Reducing the absorption of lipids in the gastrointestinal tract is one approach used to manage caloric intake in the fight against excessive weight. Biocompounds, such as polyphenols and probiotics, have been used in this regard. However, some studies have reported that polyphenols have both inhibitory and stimulatory effects on bacterial growth. This study aimed to investigate the resistance to polyphenol-rich extracts from Theobroma cacao L. of Lactobacillales isolated from the human fecal microbiota of lean volunteers (with high saturated fat consumption), to further the knowledge of the potential combination of these bioactive compounds. The strains were selected using an improved and affordable strategy that allowed the rapid screening of strains with fat-removing capacity. Among 1400 isolates, two strains, Lactobacillus sp. A1 and Pediococcus acidilactici E1, were selected due to their capacity to remove saturated fats from the culture media similar to the reference strain Lactobacillus sp. JBD301. Both isolated strains differed in their resistance to cocoa polyphenols: the extract did not affect the growth of strain A1, but reduced the growth of strain E1. However, the extract did not affect the level of in vitro fat removal by either strain, confirming the potential use of a combination of bacteria and polyphenols as a promising strategy for the intestinal removal of free fatty acids.
Collapse
Affiliation(s)
- Samuel Quiroz-Eraso
- Maestría en Diseño y Gestión de Procesos, Facultad de Ingeniería, Universidad de la Sabana, Km. 7 Autopista Norte, Chia 25001, Colombia
- Bioprospection Research Group (GIBP), Facultad de Ingeniería, Universidad de La Sabana, Km. 7 Autopista Norte, Chia 25001, Colombia
| | - Gina Paola Rodríguez-Castaño
- Bioprospection Research Group (GIBP), Facultad de Ingeniería, Universidad de La Sabana, Km. 7 Autopista Norte, Chia 25001, Colombia
| | - Alejandro Acosta-González
- Bioprospection Research Group (GIBP), Facultad de Ingeniería, Universidad de La Sabana, Km. 7 Autopista Norte, Chia 25001, Colombia
- Unisabana Center for Translational Science, Campus Universitario, Universidad de La Sabana, Km. 7 Autopista Norte, Chia 25001, Colombia
| |
Collapse
|
6
|
Icer MA, Özbay S, Ağagündüz D, Kelle B, Bartkiene E, Rocha JMF, Ozogul F. The Impacts of Acidophilic Lactic Acid Bacteria on Food and Human Health: A Review of the Current Knowledge. Foods 2023; 12:2965. [PMID: 37569234 PMCID: PMC10418883 DOI: 10.3390/foods12152965] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
The need to improve the safety/quality of food and the health of the hosts has resulted in increasing worldwide interest in acidophilic lactic acid bacteria (LAB) for the food, livestock as well as health industries. In addition to the use of acidophilic LAB with probiotic potential for food fermentation and preservation, their application in the natural disposal of acidic wastes polluting the environment is also being investigated. Considering this new benefit that has been assigned to probiotic microorganisms in recent years, the acceleration in efforts to identify new, efficient, promising probiotic acidophilic LAB is not surprising. One of these effots is to determine both the beneficial and harmful compounds synthesized by acidophilic LAB. Moreover, microorganisms are of concern due to their possible hemolytic, DNase, gelatinase and mucinolytic activities, and the presence of virulence/antibiotic genes. Hence, it is argued that acidophilic LAB should be evaluated for these parameters before their use in the health/food/livestock industry. However, this issue has not yet been fully discussed in the literature. Thus, this review pays attention to the less-known aspects of acidophilic LAB and the compounds they release, clarifying critical unanswered questions, and discussing their health benefits and safety.
Collapse
Affiliation(s)
- Mehmet Arif Icer
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Amasya University, Amasya 05100, Turkey;
| | - Sena Özbay
- Department of Food Technology, Kaman Vocational School, Kırşehir Ahi Evran University, Kırşehir 40360, Turkey;
| | - Duygu Ağagündüz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Emek, Ankara 06490, Turkey
| | - Bayram Kelle
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Cukurova University, Adana 01330, Turkey;
| | - Elena Bartkiene
- Department of Food Safety and Quality, Lithuanian University of Health Sciences Tilzes 18, LT-47181 Kaunas, Lithuania;
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes Street 18, LT-47181 Kaunas, Lithuania
| | - João Miguel F. Rocha
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Cukurova University, Balcalı, Adana 01330, Turkey;
- Biotechnology Research and Application Center, Cukurova University, Adana 01330, Turkey
| |
Collapse
|
7
|
Immune System and Epidemics: The Role of African Indigenous Bioactive Substances. Nutrients 2023; 15:nu15020273. [PMID: 36678143 PMCID: PMC9864875 DOI: 10.3390/nu15020273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
With over 6 million coronavirus pandemic deaths, the African continent reported the lowest death rate despite having a high disease burden. The African community's resilience to the pandemic has been attributed to climate and weather conditions, herd immunity, repeated exposure to infectious organisms that help stimulate the immune system, and a disproportionately large youth population. In addition, functional foods, herbal remedies, and dietary supplements contain micronutrients and bioactive compounds that can help boost the immune system. This review identified significant traditional fermented foods and herbal remedies available within the African continent with the potential to boost the immune system in epidemics and pandemics. Methodology: Databases, such as PubMed, the Web of Science, and Scopus, were searched using relevant search terms to identify traditional African fermented foods and medicinal plants with immune-boosting or antiviral capabilities. Cereal-based fermented foods, meat-, and fish-based fermented foods, and dairy-based fermented foods containing antioxidants, immunomodulatory effects, probiotics, vitamins, and peptides were identified and discussed. In addition, nine herbal remedies and spices belonging to eight plant families have antioxidant, immunomodulatory, anti-inflammatory, neuroprotective, hepatoprotective, cardioprotective, and antiviral properties. Peptides, flavonoids, alkaloids, sterols, ascorbic acid, minerals, vitamins, and saponins are some of the bioactive compounds in the remedies. Bioactive compounds in food and plants significantly support the immune system and help increase resistance against infectious diseases. The variety of food and medicinal plants found on the African continent could play an essential role in providing community resilience against infectious diseases during epidemics and pandemics. The African continent should investigate nutritional, herbal, and environmental factors that support healthy living and longevity.
Collapse
|
8
|
Exploration of Indian Traditional recipe “Tarvaani” from the drained rice gruel for nutritional and probiotic potential. Int J Gastron Food Sci 2023. [DOI: 10.1016/j.ijgfs.2023.100670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
9
|
Hwanhlem N, Salaipeth L, Charoensook R, Kanjan P, Maneerat S. Lactic Acid Bacteria from Gamecock and Goat Originating from Phitsanulok, Thailand: Isolation, Identification, Technological Properties and Probiotic Potential. J Microbiol Biotechnol 2022; 32:355-364. [PMID: 35058398 PMCID: PMC9628785 DOI: 10.4014/jmb.2110.10040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 12/15/2022]
Abstract
From independent swab samples of the cloaca of indigenous gamecocks (CIG), anus of healthy baby goats (AHG), and vagina of goats (VG) originating from Phitsanulok, Thailand, a total of 263 isolates of lactic acid bacteria (LAB) were collected. Only three isolates, designated C707, G502, and V202, isolated from CIG, AHG, and VG, respectively, exhibited an excellent inhibitory zone diameter against foodborne pathogenic bacteria when evaluated by agar spot test. Isolates C707 and G502 were identified as Enterococcus faecium, whereas V202 was identified as Pediococcus acidilactici, based on 16S rRNA sequence analysis. When foodborne pathogenic bacteria were co-cultured with chosen LAB in mixed BHI-MRS broth at 39°C, their growth was suppressed. These LAB were found to be capable of surviving in simulated stomach conditions. Only the isolate G502 was able to survive in the conditions of simulated intestinal juice. This research suggests that selected LAB could be used as a food/feed supplement to reduce foodborne pathogenic bacteria and improve the safety of animal-based food or feed.
Collapse
Affiliation(s)
- Noraphat Hwanhlem
- Division of Animal Science and Feed Technology, Department of Agricultural Science, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand,Corresponding author Phone: +6655962737 E-mail:
| | - Lakha Salaipeth
- School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand
| | - Rangsun Charoensook
- Division of Animal Science and Feed Technology, Department of Agricultural Science, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand
| | - Pochanart Kanjan
- Department of Agricultural and Fishery Science, Faculty of Science and Technology, Prince of Songkla University, Pattani, 94000 Thailand
| | - Suppasil Maneerat
- Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| |
Collapse
|
10
|
Power AL, Barber DG, Groenhof SRM, Wagley S, Liu P, Parker DA, Love J. The Application of Imaging Flow Cytometry for Characterisation and Quantification of Bacterial Phenotypes. Front Cell Infect Microbiol 2021; 11:716592. [PMID: 34368019 PMCID: PMC8335544 DOI: 10.3389/fcimb.2021.716592] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/08/2021] [Indexed: 12/25/2022] Open
Abstract
Bacteria modify their morphology in response to various factors including growth stage, nutrient availability, predation, motility and long-term survival strategies. Morphological changes may also be associated with specific physiological phenotypes such as the formation of dormant or persister cells in a “viable but non-culturable” (VBNC) state which frequently display different shapes and size compared to their active counterparts. Such dormancy phenotypes can display various degrees of tolerance to antibiotics and therefore a detailed understanding of these phenotypes is crucial for combatting chronic infections and associated diseases. Cell shape and size are therefore more than simple phenotypic characteristics; they are important physiological properties for understanding bacterial life-strategies and pathologies. However, quantitative studies on the changes to cell morphologies during bacterial growth, persister cell formation and the VBNC state are few and severely constrained by current limitations in the most used investigative techniques of flow cytometry (FC) and light or electron microscopy. In this study, we applied high-throughput Imaging Flow Cytometry (IFC) to characterise and quantify, at single-cell level and over time, the phenotypic heterogeneity and morphological changes in cultured populations of four bacterial species, Bacillus subtilis, Lactiplantibacillus plantarum, Pediococcus acidilactici and Escherichia coli. Morphologies in relation to growth stage and stress responses, cell integrity and metabolic activity were analysed. Additionally, we were able to identify and morphologically classify dormant cell phenotypes such as VBNC cells and monitor the resuscitation of persister cells in Escherichia coli following antibiotic treatment. We therefore demonstrate that IFC, with its high-throughput data collection and image capture capabilities, provides a platform by which a detailed understanding of changes in bacterial phenotypes and their physiological implications may be accurately monitored and quantified, leading to a better understanding of the role of phenotypic heterogeneity in the dynamic microbiome.
Collapse
Affiliation(s)
- Ann L Power
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Daniel G Barber
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Sophie R M Groenhof
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Sariqa Wagley
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Ping Liu
- Shell International Exploration & Production Inc., Westhollow Technology Center, Houston, TX, United States
| | - David A Parker
- Shell International Exploration & Production Inc., Westhollow Technology Center, Houston, TX, United States
| | - John Love
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
11
|
Ayyash MM, Abdalla AK, AlKalbani NS, Baig MA, Turner MS, Liu SQ, Shah NP. Invited review: Characterization of new probiotics from dairy and nondairy products-Insights into acid tolerance, bile metabolism and tolerance, and adhesion capability. J Dairy Sci 2021; 104:8363-8379. [PMID: 33934857 DOI: 10.3168/jds.2021-20398] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022]
Abstract
The selection of potential probiotic strains that possess the physiological capacity of performing successfully in the gastrointestinal tract (GIT) is a critical challenge. Probiotic microorganisms must tolerate the deleterious effects of various stresses to survive passage and function in the human GIT. Adhesion to the intestinal mucosa is also an important aspect. Recently, numerous studies have been performed concerning the selection and evaluation of novel probiotic microorganisms, mainly probiotic bacteria isolated from dairy and nondairy products. Therefore, it would be crucial to critically review the assessment methods employed to select the potential probiotics. This article aims to review and discuss the recent approaches, methods used for the selection, and outcomes of the evaluation of novel probiotic strains with the main purpose of supporting future probiotic microbial assessment studies. The findings and approaches used for assessing acid tolerance, bile metabolism and tolerance, and adhesion capability are the focus of this review. In addition, probiotic bile deconjugation and bile salt hydrolysis are explored. The selection of a new probiotic strain has mainly been based on the in vitro tolerance of physiologically related stresses including low pH and bile, to ensure that the potential probiotic microorganism can survive the harsh conditions of the GIT. However, the varied experimental conditions used in these studies (different types of media, bile, pH, and incubation time) hamper the comparison of the results of these investigations. Therefore, standardization of experimental conditions for characterizing and selecting probiotics is warranted.
Collapse
Affiliation(s)
- Mutamed M Ayyash
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University (UAEU), PO Box 15551, Al Ain, United Arab Emirates.
| | - Abdelmoneim K Abdalla
- Food Science Department, College of Agriculture, South Valley University, 83523 Qena, Egypt
| | - Nadia S AlKalbani
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University (UAEU), PO Box 15551, Al Ain, United Arab Emirates
| | - Mohd Affan Baig
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University (UAEU), PO Box 15551, Al Ain, United Arab Emirates
| | - Mark S Turner
- School of Agriculture and Food Sciences, The University of Queensland (UQ), Brisbane, QLD 4072, Australia
| | - Shao-Quan Liu
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, S14 Level 5, Science Drive 2 117542, Singapore
| | - Nagendra P Shah
- Food and Nutritional Science, School of Biological Sciences, the University of Hong Kong, Pokfulam Road, Hong Kong 999077, P.R. China
| |
Collapse
|