1
|
Zhang T, Zhou S, Cheng C, Yang Y, Yang D, Shi D, Li H, Yang Z, Chen T, Li J, Jin M. Metagenomic assembled genomes profile potential pathogens and antibiotic-resistant pathogens in an urban river. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 294:118063. [PMID: 40107220 DOI: 10.1016/j.ecoenv.2025.118063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/27/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025]
Abstract
The microbiological safety of urban rivers that flow through cities is crucial to local public health. However, detailed insights into the key characteristics of pathogens in urban rivers remain limited due to the lack of efficient high-throughput analysis tools. In this study, a comprehensive profiling of potential pathogens, antibiotic-resistant pathogens (ARPs), and multidrug-resistant pathogens (MDRPs) in the Hai River, which runs through the central city of Tianjin, was conducted using metagenomic assembled genome (MAG) analysis. Of the 436 recovered MAGs assigned to 430 species, 110 MAGs were identified as potential pathogens due to the presence of virulence factors (VFs), whereas 19 MAGs containing both antibiotic resistance genes (ARGs) and VFs, were classified as potential ARPs, predominantly belonging to the genera Kluyvera, Enterobacter, and Klebsiella. Notably, nine species of MDRPs, including Enterobacter kobei, Klebsiella pneumoniae, Morganella morganii, Kluyvera intermedia, Aeromonas salmonicida, Rahnella aceris, Hafnia paralvei, the unidentified species Sep. D_bin46, and Vibrio cholerae, exhibited resistance to multidrug, beta-lactam, polymyxin, bacitracin, tetracycline, other peptide antibiotics, macrolide-lincosamide-streptogramin, aminoglycoside, and chloramphenicol. The unknown pathogen Sep. D_bin46, classified under Aeromonas, showed resistance to both carbapenems and polymyxins. The strong co-occurrence of ARGs, VFs, and mobile genetic elements suggests a significant risk of ARGs and VFs transfers among MDRPs with last-resort ARGs (r > 0.8; p < 0.05). Interestingly, the sampling location significantly influenced the presence of pathogens, ARPs, and MDRPs carrying last-resort ARGs in the water. Notably, their abundance was lower downstream of the Hai River compared to upstream. This observation suggests that urban environmental sanitation facilities may be more effective in reducing contaminants as the river flows from upstream to downstream. Nevertheless, the presence of pathogens, ARPs, and MDRPs with last-resort ARGs in the water underscores the ongoing microbiological risks associated with urban surface water.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Environment and Health, Tianjin Key Laboratory of Risk Assessment and Control for Environment & Food Safety, State Key Laboratory of Pathogen and Biosecurity,Tianjin Institute of Environmental & Operational Medicine, Tianjin 300050, China
| | - Shuqing Zhou
- Department of Environment and Health, Tianjin Key Laboratory of Risk Assessment and Control for Environment & Food Safety, State Key Laboratory of Pathogen and Biosecurity,Tianjin Institute of Environmental & Operational Medicine, Tianjin 300050, China
| | - Chunyan Cheng
- Department of Environment and Health, Tianjin Key Laboratory of Risk Assessment and Control for Environment & Food Safety, State Key Laboratory of Pathogen and Biosecurity,Tianjin Institute of Environmental & Operational Medicine, Tianjin 300050, China
| | - Yang Yang
- Department of Environment and Health, Tianjin Key Laboratory of Risk Assessment and Control for Environment & Food Safety, State Key Laboratory of Pathogen and Biosecurity,Tianjin Institute of Environmental & Operational Medicine, Tianjin 300050, China
| | - Dong Yang
- Department of Environment and Health, Tianjin Key Laboratory of Risk Assessment and Control for Environment & Food Safety, State Key Laboratory of Pathogen and Biosecurity,Tianjin Institute of Environmental & Operational Medicine, Tianjin 300050, China
| | - Danyang Shi
- Department of Environment and Health, Tianjin Key Laboratory of Risk Assessment and Control for Environment & Food Safety, State Key Laboratory of Pathogen and Biosecurity,Tianjin Institute of Environmental & Operational Medicine, Tianjin 300050, China
| | - Haibei Li
- Department of Environment and Health, Tianjin Key Laboratory of Risk Assessment and Control for Environment & Food Safety, State Key Laboratory of Pathogen and Biosecurity,Tianjin Institute of Environmental & Operational Medicine, Tianjin 300050, China
| | - Zhongwei Yang
- Department of Environment and Health, Tianjin Key Laboratory of Risk Assessment and Control for Environment & Food Safety, State Key Laboratory of Pathogen and Biosecurity,Tianjin Institute of Environmental & Operational Medicine, Tianjin 300050, China
| | - Tianjiao Chen
- Department of Environment and Health, Tianjin Key Laboratory of Risk Assessment and Control for Environment & Food Safety, State Key Laboratory of Pathogen and Biosecurity,Tianjin Institute of Environmental & Operational Medicine, Tianjin 300050, China
| | - Junwen Li
- Department of Environment and Health, Tianjin Key Laboratory of Risk Assessment and Control for Environment & Food Safety, State Key Laboratory of Pathogen and Biosecurity,Tianjin Institute of Environmental & Operational Medicine, Tianjin 300050, China
| | - Min Jin
- Department of Environment and Health, Tianjin Key Laboratory of Risk Assessment and Control for Environment & Food Safety, State Key Laboratory of Pathogen and Biosecurity,Tianjin Institute of Environmental & Operational Medicine, Tianjin 300050, China.
| |
Collapse
|
2
|
Mamawal DRD, Rivera WL. Combined application of metagenomics and FEAST to trace sources of microbial eukaryotic contamination in the Pasig-Marikina-San Juan (PAMARISAN) river system in Metro Manila, Philippines. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:196. [PMID: 39856417 DOI: 10.1007/s10661-025-13630-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
Microbial eukaryotes are vital to global microbial diversity, but there is limited information about their composition and sources in contaminated surface waters. This study examined the pathogens and potential sources of microbial eukaryotic communities in polluted sink environments using the 18S rDNA amplicon sequencing combined with the fast expectation-maximization for microbial source tracking (FEAST) program. Six sampling sites were selected along the Pasig-Marikina-San Juan (PAMARISAN) River System, representing different locations within the waterway and classified as sinks (n = 12), whereas animal fecal samples collected from various farms were classified as sources (n = 29). Taxonomic composition revealed Stramenopila, Alveolata, Rhizaria (SAR), Archaeplastida, and Excavata in the rivers, accounting for 85.1%, 13.2%, and 0.36% mean abundance of microbial sink communities, respectively. Clinically relevant human pathogens were also observed in sink environments. The correlation test demonstrated that dissolved oxygen, total suspended solids, pH, temperature, fecal coliform count, and phosphates were important environmental factors driving community variations. Moreover, FEAST results indicated that sewage (19.6%) was the primary source of microbial eukaryotes, followed by duck (0.644%) and cow (0.566%) feces. Spatio-seasonal variations showed higher contributions at downstream stations and during the wet season, highlighting the role of rainfall in enhancing microbial dispersal. Results from community-based microbial source tracking can be used to explore factors shaping microbial eukaryotes in freshwater environments, assess potential pathogen-related hazards, and inform river conservation and management strategies. Furthermore, this also serves as preliminary data for microbial eukaryotic source tracking in the Philippines, laying groundwork for future research.
Collapse
Affiliation(s)
- Diana Rose D Mamawal
- Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, 1101, Quezon City, Philippines
| | - Windell L Rivera
- Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, 1101, Quezon City, Philippines.
| |
Collapse
|
3
|
Ngo QMT, Thi Tran N, Nguyen Thi Thu P, Thi TN, Nguyen Manh K, Nguyen Van H, Pham Van L, Nguyen Van K. Carotane sesquiterpenes from Peperomia pellucida and their anti-infective activities. Nat Prod Res 2024; 38:4325-4331. [PMID: 37950747 DOI: 10.1080/14786419.2023.2280923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/16/2023] [Accepted: 11/03/2023] [Indexed: 11/13/2023]
Abstract
Owing to the challenges of antimicrobial resistance, investigations of new antibiotics from medicinal plants are continuously being conducted. Peperomia pellucida is a pantropical plant used in traditional medicine for the treatment of various disorders. From the ethanol extract of a whole P. pellucida plant, one previously undescribed carotane sesquiterpene (pellucarotine), one known carotane sesquiterpene (daucol), and one phenylpropanoid (dillapiol) were isolated and structurally elucidated. Their structures were determined based on 1D and 2D NMR, HR-ESI-Mass, experimental, and computational electronic circular dichroism spectroscopic data and compared with those reported in the literature. Antimicrobial assay results showed that pellucarotine had an anti-infective effect on Candida albicans with an MIC of 512 µg/mL.
Collapse
Affiliation(s)
- Quynh-Mai Thi Ngo
- Faculty of Pharmacy, Hai Phong University of Medicine and Pharmacy, Haiphong, Vietnam
- Biomedical - Pharmaceutical Sciences Research Group, Hai Phong University of Medicine and Pharmacy, Haiphong, Vietnam
| | - Ngan Thi Tran
- Faculty of Pharmacy, Hai Phong University of Medicine and Pharmacy, Haiphong, Vietnam
- Biomedical - Pharmaceutical Sciences Research Group, Hai Phong University of Medicine and Pharmacy, Haiphong, Vietnam
| | - Phuong Nguyen Thi Thu
- Faculty of Pharmacy, Hai Phong University of Medicine and Pharmacy, Haiphong, Vietnam
- Biomedical - Pharmaceutical Sciences Research Group, Hai Phong University of Medicine and Pharmacy, Haiphong, Vietnam
| | - Thu Nguyen Thi
- Department of Analytical Chemistry and Standardization, National Institute of Medicinal Materials, Hanoi, Vietnam
| | - Khoa Nguyen Manh
- Department of Analytical Chemistry and Standardization, National Institute of Medicinal Materials, Hanoi, Vietnam
| | - Hung Nguyen Van
- Faculty of Pharmacy, Hai Phong University of Medicine and Pharmacy, Haiphong, Vietnam
- Biomedical - Pharmaceutical Sciences Research Group, Hai Phong University of Medicine and Pharmacy, Haiphong, Vietnam
| | - Linh Pham Van
- Biomedical - Pharmaceutical Sciences Research Group, Hai Phong University of Medicine and Pharmacy, Haiphong, Vietnam
| | - Khai Nguyen Van
- Biomedical - Pharmaceutical Sciences Research Group, Hai Phong University of Medicine and Pharmacy, Haiphong, Vietnam
| |
Collapse
|
4
|
Yang X, Lan W, Sun X. Effects of chlorogenic acid-grafted-chitosan on biofilms, oxidative stress, quorum sensing and c-di-GMP in Pseudomonas fluorescens. Int J Biol Macromol 2024; 273:133029. [PMID: 38852716 DOI: 10.1016/j.ijbiomac.2024.133029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/09/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
This study determined the inhibitory mechanism as well as anti-biofilm activity of chlorogenic acid-grafted-chitosan (CS-g-CA) against Pseudomonas fluorescens (P. fluorescens) in terms of biofilm content, oxidative stress, quorum sensing and cyclic diguanosine monophosphate (c-di-GMP) concentration, and detected the changes in the expression levels of related genes by quantitative real-time PCR (qRT-PCR). Results indicated that treatment with sub-concentrations of CS-g-CA for P. fluorescens led to reduce the biofilm size of large colonies, decrease the content of biofilm and extracellular polymers, weaken the motility and adhesion of P. fluorescens. Moreover, CS-g-CA resulted in higher ROS levels, diminished catalase activity (CAT), and increased superoxide dismutase (SOD) in P. fluorescens. CS-g-CA reduced the production of quorum-sensing signaling molecules (AHLs) and the concentration of c-di-GMP in bacteria. Genes for flagellar synthesis (flgA), the resistance to stress (rpoS and hfq), and pde (phosphodiesterases that degrade c-di-GMP) were significantly down-regulated as determined by RT-PCR. Overall, CS-g-CA leads to the accumulation of ROS in bacteria via P. fluorescens environmental resistance genes and decreases the activity of enzymes in the bacterial antioxidant system, and interferes with the production and reception of quorum-sensing signaling molecules and the synthesis of c-di-GMP in P. fluorescens, which regulates the generation of biofilms.
Collapse
Affiliation(s)
- Xin Yang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China.
| | - Xiaohong Sun
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
5
|
Naqqash T, Aziz A, Gohar M, Khan J, Ali S, Radicetti E, Babar M, Siddiqui MH, Haider G. Heavy metal-resistant rhizobacteria fosters to alleviate the cadmium toxicity in Arabidopsis by upregulating the plant physiological responses. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:557-568. [PMID: 37705142 DOI: 10.1080/15226514.2023.2253923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
This study was designed to investigate the role of Morganella morganii strains in alleviating Cd stress in Arabidopsis seedlings under controlled conditions. Both M. morganii strains ABT3 (ON316873) and ABT9 (ON316874) strains isolated from salt-affected areas showed higher resistance against Cd and possess plant growth-promoting traits such as nitrogen fixation, indole-acetic acid production, ammonia production, phosphate solubilization, and, catalase, gelatinase and protease enzyme production. Plant inoculation assay showed that varying concentration of Cd (1.5 mM and 2.5 mM) significantly reduced Arabidopsis growth, quantum yield (56.70%-66.49%), and chlorophyll content (31.90%-42.70%). Cd toxicity also triggered different associations between lipid peroxidation (43.61%-69.77%) and enzymatic antioxidant mechanisms. However, when both strains were applied to the Arabidopsis seedlings, the shoot and root length and fresh and dry weights were improved in the control and Cd-stressed plants. Moreover, both strains enhanced the resistance against Cd stress by increasing antioxidant enzyme activities [catalase (19.47%-27.39%) and peroxidase (37.50%-48.07%)]that ultimately cause a substantial reduction in lipid peroxidation (27.71%-41.90%). Both strains particularly ABT3 also showed positive results in improving quantum yield (73.84%-98.64%) and chlorophyll content (41.13%-48.63%), thus increasing the growth of Arabidopsis seedlings. The study suggests that PGPR can protect plants from Cd toxicity, and Cd-tolerant rhizobacterial strains can remediate heavy metal polluted sites and improve plant growth.
Collapse
Affiliation(s)
- Tahir Naqqash
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Aeman Aziz
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Madiha Gohar
- Institute of Plant Breeding and Biotechnology, MNS University of Agriculture, Multan, Pakistan
| | - Jallat Khan
- Department of Bioscience and Technology, Khwaja Fareed University of Engineering, and Information Technology, Pakistan
| | - Shahbaz Ali
- Department of Bioscience and Technology, Khwaja Fareed University of Engineering, and Information Technology, Pakistan
| | - Emanuele Radicetti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Muhammad Babar
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ghulam Haider
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|
6
|
Touchette D, Maggiori C, Altshuler I, Tettenborn A, Bourdages LJ, Magnuson E, Blenner-Hassett O, Raymond-Bouchard I, Ellery A, Whyte LG. Microbial Characterization of Arctic Glacial Ice Cores with a Semiautomated Life Detection System. ASTROBIOLOGY 2023; 23:756-768. [PMID: 37126945 DOI: 10.1089/ast.2022.0130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The search for extant microbial life will be a major focus of future astrobiology missions; however, no direct extant life detection instrumentation is included in current missions to Mars. In this study, we developed the semiautomated MicroLife detection platform that collects and processes environmental samples, detects biosignatures, and characterizes microbial activity. This platform is composed of a drill for sample collection, a redox dye colorimetric system for microbial metabolic activity detection and assessment (μMAMA [microfluidics Microbial Activity MicroAssay]), and a MinION sequencer for biosignature detection and characterization of microbial communities. The MicroLife platform was field-tested on White Glacier on Axel Heiberg Island in the Canadian high Arctic, with two extracted ice cores. The μMAMA successfully detected microbial metabolism from the ice cores within 1 day of incubation. The MinION sequencing of the ice cores and the positive μMAMA card identified a microbial community consistent with cold and oligotrophic environments. Furthermore, isolation and identification of microbial isolates from the μMAMA card corroborated the MinION sequencing. Together, these analyses support the MicroLife platform's efficacy in identifying microbes natively present in cryoenvironments and detecting their metabolic activity. Given our MicroLife platform's size and low energy requirements, it could be incorporated into a future landed platform or rovers for life detection.
Collapse
Affiliation(s)
- David Touchette
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Canada
- McGill Space Institute, Montréal, Canada
- Environmental Engineering Institute, River Ecosystems Laboratory, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Catherine Maggiori
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Canada
- McGill Space Institute, Montréal, Canada
| | - Ianina Altshuler
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Canada
- Environmental Engineering Institute, MACE Laboratory, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Alex Tettenborn
- Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, Canada
| | - Louis-Jacques Bourdages
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Canada
- Department of Mechanical Engineering, Faculty of Engineering, McGill University, Montréal, Canada
| | - Elisse Magnuson
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Canada
| | - Olivia Blenner-Hassett
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Canada
- McGill Space Institute, Montréal, Canada
| | - Isabelle Raymond-Bouchard
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Canada
- McGill Space Institute, Montréal, Canada
| | - Alex Ellery
- Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, Canada
| | - Lyle G Whyte
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Canada
- McGill Space Institute, Montréal, Canada
| |
Collapse
|
7
|
Shukla M, Singh V, Habeeballah H, Alkhanani MF, Lata M, Hussain Y, Mukherjee M, Pasupuleti M, Meena A, Mishra BN, Haque S. Quorum Quenching-Guided Inhibition of Mixed Bacterial Biofilms and Virulence Properties by Protein Derived From Leaves of Carissa carandas. Front Cell Infect Microbiol 2022; 12:836819. [PMID: 35909977 PMCID: PMC9329584 DOI: 10.3389/fcimb.2022.836819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/16/2022] [Indexed: 11/21/2022] Open
Abstract
The inhibition/degradation potential of Carissa carandas proteinaceous leaf extract against mixed bacterial biofilm of Staphylococcus aureus MTCC 96, Escherichia coli MTCC 1304, Pseudomonas aeruginosa MTCC 741, and Klebsiella pneumoniae MTCC 109, responsible for nosocomial infections, was evaluated. Distinct inhibition/degradation of mixed bacterial biofilm by the proteinaceous leaf extract of C. carandas was observed under a microscope, and it was found to be 80%. For mono-species biofilm, the maximum degradation of 70% was observed against S. aureus biofilm. The efficiency of aqueous plant extracts to inhibit the mono-species biofilm was observed in terms of minimum inhibitory concentration (MIC), and the best was found against P. aeruginosa (12.5 μg/ml). The presence of flavonoids, phenols, and tannins in the phytochemical analysis of the plant extract suggests the main reason for the antibiofilm property of C. carandas. From the aqueous extract, protein fraction was precipitated using 70% ammonium sulfate and dialyzed. This fraction was purified by ion-exchange chromatography and found to be stable and active at 10°C (pH 7). The purified fraction showed less than 40% cytotoxicity, which suggests that it can be explored for therapeutic purposes after in-depth testing. In order to investigate the mechanistic action of the biofilm inhibition, the plant protein was tested against Chromobacterium violaceum CV026, and its inhibitory effect confirmed its quorum quenching nature. Based on these experimental analyses, it can be speculated that the isolated plant protein might influence the signaling molecule that leads to the inhibition effect of the mixed bacterial biofilm. Further experimental studies are warranted to validate our current findings.
Collapse
Affiliation(s)
- Manjari Shukla
- Department of Biotechnology, Institute of Engineering and Technology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow, India
| | - Vineeta Singh
- Department of Biotechnology, Institute of Engineering and Technology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow, India
- *Correspondence: Vineeta Singh, ; Bhartendu Nath Mishra, ; Shafiul Haque,
| | - Hamza Habeeballah
- Faculty of Applied Medical Sciences in Rabigh, King Abdulaziz University, Rabigh (Jeddah), Saudi Arabia
| | - Mustfa F. Alkhanani
- Emergency Medical Services Department, College of Applied Sciences, AlMaarefa University, Riyadh, Saudi Arabia
| | - Manjul Lata
- Microbiology Division, CSIR, Central Drug Research Institute, Lucknow, India
- Microbiology Division, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Yusuf Hussain
- Microbiology Division, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Bioprospection and Product Development Division, CSIR, Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | | | - Mukesh Pasupuleti
- Microbiology Division, CSIR, Central Drug Research Institute, Lucknow, India
- Microbiology Division, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Abha Meena
- Microbiology Division, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Bioprospection and Product Development Division, CSIR, Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Bhartendu Nath Mishra
- Department of Biotechnology, Institute of Engineering and Technology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow, India
- *Correspondence: Vineeta Singh, ; Bhartendu Nath Mishra, ; Shafiul Haque,
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- *Correspondence: Vineeta Singh, ; Bhartendu Nath Mishra, ; Shafiul Haque,
| |
Collapse
|
8
|
Urvoy M, Lami R, Dreanno C, Daudé D, Rodrigues AMS, Gourmelon M, L'Helguen S, Labry C. Quorum sensing disruption regulates hydrolytic enzyme and biofilm production in estuarine bacteria. Environ Microbiol 2021; 23:7183-7200. [PMID: 34528354 DOI: 10.1111/1462-2920.15775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/02/2021] [Accepted: 09/10/2021] [Indexed: 12/18/2022]
Abstract
Biofilms of heterotrophic bacteria cover organic matter aggregates and constitute hotspots of mineralization, primarily acting through extracellular hydrolytic enzyme production. Nevertheless, regulation of both biofilm and hydrolytic enzyme synthesis remains poorly investigated, especially in estuarine ecosystems. In this study, various bioassays, mass spectrometry and genomics approaches were combined to test the possible involvement of quorum sensing (QS) in these mechanisms. QS is a bacterial cell-cell communication system that relies notably on the emission of N-acylhomoserine lactones (AHLs). In our estuarine bacterial collection, we found that 28 strains (9%), mainly Vibrio, Pseudomonas and Acinetobacter isolates, produced at least 14 different types of AHLs encoded by various luxI genes. We then inhibited the AHL QS circuits of those 28 strains using a broad-spectrum lactonase preparation and tested whether biofilm production as well as β-glucosidase and leucine-aminopeptidase activities were impacted. Interestingly, we recorded contrasted responses, as biofilm production, dissolved and cell-bound β-glucosidase and leucine-aminopeptidase activities significantly increased in 4%-68% of strains but decreased in 0%-21% of strains. These findings highlight the key role of AHL-based QS in estuarine bacterial physiology and ultimately on biogeochemical cycles. They also point out the complexity of QS regulations within natural microbial assemblages.
Collapse
Affiliation(s)
- Marion Urvoy
- Ifremer, DYNECO, Plouzané, F-29280, France.,Université de Bretagne Occidentale, CNRS, IRD, Ifremer, UMR 6539, Laboratoire des Sciences de l'Environnement Marin (LEMAR), Plouzané, F-29280, France
| | - Raphaël Lami
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), 66650 Banyuls-sur-Mer, France
| | | | - David Daudé
- Gene&GreenTK, 19-21 Boulevard Jean Moulin, Marseille, 13005, France
| | - Alice M S Rodrigues
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), 66650 Banyuls-sur-Mer, France
| | | | - Stéphane L'Helguen
- Université de Bretagne Occidentale, CNRS, IRD, Ifremer, UMR 6539, Laboratoire des Sciences de l'Environnement Marin (LEMAR), Plouzané, F-29280, France
| | | |
Collapse
|
9
|
Minnullina L, Kostennikova Z, Evtugin V, Akosah Y, Sharipova M, Mardanova A. Diversity in the swimming motility and flagellar regulon structure of uropathogenic Morganella morganii strains. Int Microbiol 2021; 25:111-122. [PMID: 34363151 DOI: 10.1007/s10123-021-00197-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 10/20/2022]
Abstract
In current times, the opportunistic pathogen Morganella morganii is increasingly becoming a cause of urinary tract infections. The condition has been further complicated by the multiple drug resistance of most isolates. Swimming motility plays an important role in the development of urinary tract infections, allowing bacteria to colonize the upper urinary tract. We determined the differences between the growth, swimming motility, and biofilm formation of two M. morganii strains MM 1 and MM 190 isolated from the urine of patients who had community-acquired urinary tract infections. MM 190 showed a lower growth rate but better-formed biofilms in comparison to MM 1. In addition, MM 190 possessed autoaggregation abilities. It was found that a high temperature (37 °C) inhibits the flagellation of strains and makes MM 190 less motile. At the same time, the MM 1 strain maintained its rate of motility at this temperature. We demonstrated that urea at a concentration of 1.5% suppresses the growth and swimming motility of both strains. Genome analysis showed that MM 1 has a 17.7-kb-long insertion in flagellar regulon between fliE and glycosyltransferase genes, which was not identified in corresponding loci of MM 190 and 9 other M. morganii strains with whole genomes. Both strains carry two genes encoding flagellin, which may indicate flagellar antigen phase variation. However, the fliC2 genes have only 91% identity to each other and exhibit some variability in the regulatory region. We assume that all these differences influence the swimming motility of the strains.
Collapse
Affiliation(s)
- Leyla Minnullina
- Institute of Fundamental Medicine and Biology, Kazan (Volga region) Federal University, Kazan, Russia.
| | - Zarina Kostennikova
- Institute of Fundamental Medicine and Biology, Kazan (Volga region) Federal University, Kazan, Russia
| | - Vladimir Evtugin
- Interdisciplinary Center for Analytical Microscopy, Kazan (Volga region) Federal University, Kazan, Russia
| | - Yaw Akosah
- Institute of Fundamental Medicine and Biology, Kazan (Volga region) Federal University, Kazan, Russia
| | - Margarita Sharipova
- Institute of Fundamental Medicine and Biology, Kazan (Volga region) Federal University, Kazan, Russia
| | - Ayslu Mardanova
- Institute of Fundamental Medicine and Biology, Kazan (Volga region) Federal University, Kazan, Russia
| |
Collapse
|