1
|
Souza AKP, Cruz CADM, Júnior ÉCDES, Pontes FB. Current Mirror Improved Potentiostat (CMIPot) for a Three Electrode Electrochemical Cell. SENSORS (BASEL, SWITZERLAND) 2024; 24:5897. [PMID: 39338641 PMCID: PMC11435731 DOI: 10.3390/s24185897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/07/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024]
Abstract
This work presents a novel compact CMOS potentiostat-designed circuit for an electrochemical cell. The proposed topology functions as a circuit interface, controlling the polarization of voltage signals at the sensor electrodes and facilitating current measurement during the oxidation-reduction process of an analyzed solution. The potentiostat, designed for CMOS technology, comprises a two-stage amplifier, two current mirror blocks coupled to this amplifier, and a CMOS push-pull output stage. The electrochemical method of cyclic voltammetry is employed, operating within a voltage range of ±0.8 V and scan rates of 10 mV/s, 25 mV/s, 100 mV/s, and 250 mV/s. The circuit is capable of reading currents ranging from 10 µA to 500 µA. Experimental results were obtained using a potassium ferrocyanide K3[Fe(CN)6] redox solution with concentrations of 10, 15, and 20 mmol/L, and their corresponding voltammograms were evaluated. The experimental results from a discrete circuit demonstrate that the proposed potentiostat topology produces outcomes consistent with those of classical topologies presented in the literature and industrial equipment.
Collapse
Affiliation(s)
- Alexandre Kennedy Pinto Souza
- Senai Institute of Innovation in Microelectronics (ISI-ME), Manaus 69075-000, Brazil; (É.C.D.e.S.J.); (F.B.P.)
- Department of Electronics and Computation, Federal University of Amazonas, Manaus 69077-000, Brazil;
| | | | - Élvio Carlos Dutra e Silva Júnior
- Senai Institute of Innovation in Microelectronics (ISI-ME), Manaus 69075-000, Brazil; (É.C.D.e.S.J.); (F.B.P.)
- Department of Electronics and Computation, Federal University of Amazonas, Manaus 69077-000, Brazil;
| | - Fagnaldo Braga Pontes
- Senai Institute of Innovation in Microelectronics (ISI-ME), Manaus 69075-000, Brazil; (É.C.D.e.S.J.); (F.B.P.)
| |
Collapse
|
2
|
Manikandan S, Deena SR, Subbaiya R, Vijayan DS, Vickram S, Preethi B, Karmegam N. Waves of change: Electrochemical innovations for environmental management and resource recovery from water - A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121879. [PMID: 39043086 DOI: 10.1016/j.jenvman.2024.121879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 04/27/2024] [Accepted: 07/12/2024] [Indexed: 07/25/2024]
Abstract
Environmental electrochemistry and water resource recovery are covered in this review. The study discusses the growing field's scientific basis, methods, and applications, focusing on innovative remediation tactics. Environmental electrochemistry may solve water pollution and extract resources. Electrochemical methods may effectively destroy or convert pollutants. This method targets heavy metals, organic compounds, and emerging water contaminants such as pharmaceuticals and microplastics, making it versatile. Environmental electrochemistry and resource recovery synergize to boost efficiency and sustainability. Innovative electrochemical methods can extract or synthesise metals, nutrients, and energy from wastewater streams, decreasing treatment costs and environmental effect. The study discusses electrocoagulation, electrooxidation, and electrochemical advanced oxidation processes and their mechanics and performance. Additionally, it discusses current electrode materials, reactor designs, and process optimisation tactics to improve efficiency and scalability. Resource recovery in electrochemical remediation methods is also examined for economic and environmental feasibility. Through critical examination of case studies and techno-economic evaluations, it explains the pros and cons of scaling up these integrated techniques. This study covers environmental electrochemistry and resource recovery's fundamental foundations, technology advances, and sustainable water management consequences.
Collapse
Affiliation(s)
- S Manikandan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - S R Deena
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - R Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box 21692, Kitwe, Zambia; Oliver R. Tambo Africa Research Chair Initiative (ORTARChI) Environment and Development, The Copperbelt University, P.O. Box 21692, Kitwe, Zambia
| | - D S Vijayan
- Department of Civil Engineering, Aarupadai Veedu Institute of Technology, Vinayaka Mission Research Foundation (VMRF - DU), Paiyanur, Chennai, 603104, Tamil Nadu, India
| | - Sundaram Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - B Preethi
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - N Karmegam
- PG and Research Department of Botany, Government Arts College (Autonomous), Salem, 636 007, Tamil Nadu, India.
| |
Collapse
|
3
|
Vamos I, Kertesz V. HunStat - a simple and low-cost potentiostat for analytical and educational purposes. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4198-4204. [PMID: 38860466 DOI: 10.1039/d4ay00791c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
We have developed a truly low-cost (15 USD), simple do-it-yourself (DIY) potentiostat with compact dimensions. The output potential range of this device is between ±1.65 V. The developed instrument takes advantage of a Seeeduino XIAO microcontroller equipped with 10 bit digital-to-analog (D/A) and 12 bit analog-to-digital (A/D) converters and supports various voltammetry techniques, including cyclic voltammetry (CV), differential pulse voltammetry (DPV), and chronoamperometry (CA). Interested users are provided with circuit diagrams, bill of materials, and design files. Additionally, software components are also provided free of charge, including an Arduino sketch and control software. The software enables easy manipulation of electrochemical parameters and visualization of results. The presented design introduces a simple and low-cost DIY potentiostat recommended for both analytical and educational purposes.
Collapse
Affiliation(s)
- Istvan Vamos
- Lajos Petrik Vocational Chemistry School, Budapest, Hungary
| | - Vilmos Kertesz
- Biosciences Division, Oak Ridge National Laboratory, USA.
| |
Collapse
|
4
|
Mahapatra S, Kumari R, Chandra P. Printed circuit boards: system automation and alternative matrix for biosensing. Trends Biotechnol 2024; 42:591-611. [PMID: 38052681 DOI: 10.1016/j.tibtech.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 12/07/2023]
Abstract
Circuit integration has revolutionized the diagnostic sector by improving the sensing ability and rapidity of biosensors. Bioelectronics has led to the development of point-of-care (PoC) devices, offering superior performance compared with conventional biosensing systems. These devices have lower production costs, are smaller, and have greater reproducibility, enabling the construction of compact sensing modules. Flexible upgrades to the fabrication pattern of the printed circuit board (PCB) remains the most reliable and consistent means so far, offering portability, wearability, a lower detection limit, and smart output integration to these devices. This review summarizes the advances in PCB technology for biosensing devices for introducing automation and their emerging application as an alternative matrix material for detecting various analytes.
Collapse
Affiliation(s)
- Supratim Mahapatra
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Rohini Kumari
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Pranjal Chandra
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India.
| |
Collapse
|
5
|
Manoharan V, Rodrigues R, Sadati S, Swann MJ, Freeman N, Du B, Yildirim E, Tamer U, Arvanitis TN, Isakov D, Asadipour A, Charmet J. Platform-agnostic electrochemical sensing app and companion potentiostat. Analyst 2023; 148:4857-4868. [PMID: 37624366 PMCID: PMC10518900 DOI: 10.1039/d2an01350a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 07/11/2023] [Indexed: 08/26/2023]
Abstract
Electrochemical sensing is ubiquitous in a number of fields ranging from biosensing, to environmental monitoring through to food safety and battery or corrosion characterisation. Whereas conventional potentiostats are ideal to develop assays in laboratory settings, they are in general, not well-suited for field work due to their size and power requirements. To address this need, a number of portable battery-operated potentiostats have been proposed over the years. However, most open source solutions do not take full advantage of integrated circuit (IC) potentiostats, a rapidly evolving field. This is partly due to the constraining requirements inherent to the development of dedicated interfaces, such as apps, to address and control a set of common electrochemical sensing parameters. Here we propose the PocketEC, a universal app that has all the functionalities to interface with potentiostat ICs through a user defined property file. The versatility of PocketEC, developed with an assay developer mindset, was demonstrated by interfacing it, via Bluetooth, to the ADuCM355 evaluation board, the open-source DStat potentiostat and the Voyager board, a custom-built, small footprint potentiostat based around the LMP91000 chip. The Voyager board is presented here for the first time. Data obtained using a standard redox probe, Ferrocene Carboxylic Acid (FCA) and a silver ion assay using anodic stripping multi-step amperometry were in good agreement with analogous measurements using a bench top potentiostat. Combined with its Voyager board companion, the PocketEC app can be used directly for a number of wearable or portable electrochemical sensing applications. Importantly, the versatility of the app makes it a candidate of choice for the development of future portable potentiostats. Finally, the app is available to download on the Google Play store and the source codes and design files for the PocketEC app and the Voyager board are shared via Creative Commons license (CC BY-NC 3.0) to promote the development of novel portable or wearable applications based on electrochemical sensing.
Collapse
Affiliation(s)
| | - Rui Rodrigues
- Institute of Digital Healthcare, WMG, University of Warwick, Coventry, CV4 7AL, UK.
| | - Sara Sadati
- Institute of Digital Healthcare, WMG, University of Warwick, Coventry, CV4 7AL, UK.
| | - Marcus J Swann
- 5D Health Protection Group Ltd, Accelerator Building, 1 Daulby Street, Liverpool L7 8XZ, UK
| | - Neville Freeman
- 5D Health Protection Group Ltd, Accelerator Building, 1 Daulby Street, Liverpool L7 8XZ, UK
| | - Bowen Du
- Institute of Digital Healthcare, WMG, University of Warwick, Coventry, CV4 7AL, UK.
| | - Ender Yildirim
- Middle East Technical University, Mechanical Engineering Department, 06800, Ankara, Turkey
| | - Ugur Tamer
- Department of Analytical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, 06330, Turkey
| | - Theodoros N Arvanitis
- Institute of Digital Healthcare, WMG, University of Warwick, Coventry, CV4 7AL, UK.
- School of Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Dmitry Isakov
- Institute of Digital Healthcare, WMG, University of Warwick, Coventry, CV4 7AL, UK.
| | - Ali Asadipour
- Computer Science Research Centre, Royal College of Art, London, SW7 2EU, UK.
| | - Jérôme Charmet
- Institute of Digital Healthcare, WMG, University of Warwick, Coventry, CV4 7AL, UK.
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
- HE-Arc Ingénierie, HES-SO University of Applied Sciences and Art of Western Switzerland, 2000 Neuchâtel, Switzerland
| |
Collapse
|
6
|
Ibrahim NFA, Noor AM, Sabani N, Zakaria Z, Wahab AA, Manaf AA, Johari S. We-VoltamoStat: A wearable potentiostat for voltammetry analysis with a smartphone interface. HARDWAREX 2023; 15:e00441. [PMID: 37396412 PMCID: PMC10314292 DOI: 10.1016/j.ohx.2023.e00441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/04/2023]
Abstract
Wearable technology, such as electronic components integrated into clothing or worn as accessories, is becoming increasingly prevalent in fields like healthcare and biomedical monitoring. These devices allow for continuous monitoring of important biomarkers for medical diagnosis, monitoring of physiological health, and evaluation. However, an open-source wearable potentiostat is a relatively new technology that still faces several design limitations such as short battery lifetime, bulky size, heavy weight, and the requirement for a wire for data transmission, which affects comfortability during long periods of measurement. In this work, an open-source wearable potentiostat device named We-VoltamoStat is developed to allow interested parties to use and modify the device for creating new products, research, and teaching purposes. The proposed device includes improved and added features, such as wireless real-time signal monitoring and data collection. It also has an ultra-low power consumption battery estimated to deliver 15 mA during operating mode for 33 h and 20 min and 5 mA during standby mode for 100 h without recharging. Its convenience for wearable applications, tough design, and compact size of 67x54x38 mm make it suitable for wearable applications. Cost-effectiveness is another advantage, with a price less than 120 USD. Validation performance tests indicate that the device has good accuracy, with an R2 value of 0.99 for linear regression of test accuracy on milli-, micro-, and nano-Ampere detection. In the future, it is recommended to improve the design and add more features to the device, including new applications for wearable potentiostats.
Collapse
Affiliation(s)
- Nur Fatin Adini Ibrahim
- Faculty of Electronic Engineering & Technology (FKTEN), Universiti Malaysia Perlis, Arau 02600, Malaysia
| | - Anas Mohd Noor
- Faculty of Electronic Engineering & Technology (FKTEN), Universiti Malaysia Perlis, Arau 02600, Malaysia
- Center of Excellance Micro System Technology (MicTEC), Universiti Malaysia Perlis, Arau 02600, Malaysia
| | - Norhayati Sabani
- Faculty of Electronic Engineering & Technology (FKTEN), Universiti Malaysia Perlis, Arau 02600, Malaysia
- Center of Excellance Micro System Technology (MicTEC), Universiti Malaysia Perlis, Arau 02600, Malaysia
| | - Zulkarnay Zakaria
- Faculty of Electronic Engineering & Technology (FKTEN), Universiti Malaysia Perlis, Arau 02600, Malaysia
- Sports Engineering Research Center (SERC), Universiti Malaysia Perlis, Arau 02600, Malaysia
| | - Asnida Abdul Wahab
- Department of Biomedical Engineering and Health Sciences, Universiti Teknologi Malaysia, Johor, Bahru 81310, Malaysia
| | - Asrulnizam Abd Manaf
- Collaborative Microelectronic Design Excellence Centre (CEDEC), Universiti Sains Malaysia, Bayan Lepas 11900, Malaysia
| | - Shazlina Johari
- Faculty of Electronic Engineering & Technology (FKTEN), Universiti Malaysia Perlis, Arau 02600, Malaysia
- Center of Excellance Micro System Technology (MicTEC), Universiti Malaysia Perlis, Arau 02600, Malaysia
| |
Collapse
|
7
|
Adiraju A, Munjal R, Viehweger C, Al-Hamry A, Brahem A, Hussain J, Kommisetty S, Jalasutram A, Tegenkamp C, Kanoun O. Towards Embedded Electrochemical Sensors for On-Site Nitrite Detection by Gold Nanoparticles Modified Screen Printed Carbon Electrodes. SENSORS (BASEL, SWITZERLAND) 2023; 23:2961. [PMID: 36991672 PMCID: PMC10054825 DOI: 10.3390/s23062961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 06/19/2023]
Abstract
The transition of electrochemical sensors from lab-based measurements to real-time analysis requires special attention to different aspects in addition to the classical development of new sensing materials. Several critical challenges need to be addressed including a reproducible fabrication procedure, stability, lifetime, and development of cost-effective sensor electronics. In this paper, we address these aspects exemplarily for a nitrite sensor. An electrochemical sensor has been developed using one-step electrodeposited (Ed) gold nanoparticles (EdAu) for the detection of nitrite in water, which shows a low limit of detection of 0.38 µM and excellent analytical capabilities in groundwater. Experimental investigations with 10 realized sensors show a very high reproducibility enabling mass production. A comprehensive investigation of the sensor drift by calendar and cyclic aging was carried out for 160 cycles to assess the stability of the electrodes. Electrochemical impedance spectroscopy (EIS) shows significant changes with increasing aging inferring the deterioration of the electrode surface. To enable on-site measurements outside the laboratory, a compact and cost-effective wireless potentiostat combining cyclic and square wave voltammetry, and EIS capabilities has been designed and validated. The implemented methodology in this study builds a basis for the development of further on-site distributed electrochemical sensor networks.
Collapse
Affiliation(s)
- Anurag Adiraju
- Chair Measurement and Sensor Technology, Department of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Rohan Munjal
- Chair Measurement and Sensor Technology, Department of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Christian Viehweger
- Chair Measurement and Sensor Technology, Department of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Ammar Al-Hamry
- Chair Measurement and Sensor Technology, Department of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Amina Brahem
- Chair Measurement and Sensor Technology, Department of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Jawaid Hussain
- Chair Measurement and Sensor Technology, Department of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Sanhith Kommisetty
- Chair Measurement and Sensor Technology, Department of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Aditya Jalasutram
- Chair Measurement and Sensor Technology, Department of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Christoph Tegenkamp
- Analysis of Solid Surfaces, Institute for Physics, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Olfa Kanoun
- Chair Measurement and Sensor Technology, Department of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09107 Chemnitz, Germany
| |
Collapse
|
8
|
Li D, Sun C, Mei X, Yang L. Achieving broad availability of SARS-CoV-2 detections via smartphone-based analysis. Trends Analyt Chem 2023; 158:116878. [PMID: 36506266 PMCID: PMC9728015 DOI: 10.1016/j.trac.2022.116878] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
With the development of COVID-19, widely available tests are in great demand. Naked-eye SARS-CoV-2 test kits have recently been developed as home tests, but their sensitivity and accuracy are sometimes limited. Smartphones can convert various signals into digital information, potentially improving the sensitivity and accuracy of these home tests. Herein, we summarize smartphone-based detections for SARS-CoV-2. Optical detections of non-nucleic acids using various sensors and portable imaging systems, as well as nucleic acid analyses based on LAMP, CRISP, CATCH, and biosensors are discussed. Furthermore, different electrochemical detections were compared. We show results obtained using relatively complex equipment, complicated programming procedures, or custom smartphone apps, and describe methods for obtaining information with only simple setups and free software on smartphones. Then, the combined costs of typical smartphone-based detections are evaluated. Finally, the prospect of improving smartphone-based strategies to achieve broad availability of SARS-CoV-2 detection is proposed.
Collapse
Affiliation(s)
- Dan Li
- Jinzhou Medical University, Jinzhou, China
| | - Cai Sun
- AECC Shenyang Liming Aero-Engine Co, Ltd., Shenyang, China
| | - Xifan Mei
- Jinzhou Medical University, Jinzhou, China,Corresponding author
| | - Liqun Yang
- NHC Key Laboratory of Reproductive Health and Medical Genetics (China Medical University), Liaoning Research Institute of Family Planning (The Affiliated Reproductive Hospital of China Medical University), Shenyang, China,Corresponding author
| |
Collapse
|
9
|
de Brito Ayres L, Brooks J, Whitehead K, Garcia CD. Rapid Detection of Staphylococcus aureus Using Paper-Derived Electrochemical Biosensors. Anal Chem 2022; 94:16847-16854. [DOI: 10.1021/acs.analchem.2c03970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Lucas de Brito Ayres
- Department of Chemistry, Clemson University, Clemson 29634, South Carolina, United States
| | - Jordan Brooks
- Department of Chemistry, Clemson University, Clemson 29634, South Carolina, United States
| | - Kristi Whitehead
- Department of Biological Sciences, Clemson University, Clemson 29634, South Carolina, United States
| | - Carlos D. Garcia
- Department of Chemistry, Clemson University, Clemson 29634, South Carolina, United States
| |
Collapse
|
10
|
Screen-printed electrochemical sensors for environmental monitoring of heavy metal ion detection. REV CHEM ENG 2022. [DOI: 10.1515/revce-2022-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Heavy metal ions (HMIs) are known to cause severe damages to the human body and ecological environment. And considering the current alarming situation, it is crucial to develop a rapid, sensitive, robust, economical and convenient method for their detection. Screen printed electrochemical technology contributes greatly to this task, and has achieved global attention. It enabled the mass transmission rate and demonstrated ability to control the chemical nature of the measure media. Besides, the technique offers advantages like linear output, quick response, high selectivity, sensitivity and stability along with low power requirement and high signal-to-noise ratio. Recently, the performance of SPEs has been improved employing the most effective and promising method of the incorporation of different nanomaterials into SPEs. Especially, in electrochemical sensors, the incorporation of nanomaterials has gained extensive attention for HMIs detection as it exhibits outstanding features like broad electrochemical window, large surface area, high conductivity, selectivity and stability. The present review focuses on the recent progress in the field of screen-printed electrochemical sensors for HMIs detection using nanomaterials. Different fabrication methods of SPEs and their utilization for real sample analysis of HMIs using various nanomaterials have been extensively discussed. Additionally, advancement made in this field is also discussed taking help of the recent literature.
Collapse
|
11
|
Demirhan A, Eksin E, Kilic Y, Erdem A. Low-Cost High-Resolution Potentiostat for Electrochemical Detection of Nucleic Acids and Biomolecular Interactions. MICROMACHINES 2022; 13:1610. [PMID: 36295963 PMCID: PMC9610652 DOI: 10.3390/mi13101610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/13/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
A handheld USB-powered instrument developed for the electrochemical detection of nucleic acids and biomolecular interactions is presented. The proposed instrument is capable of scanning ± 2.25 V while measuring currents up to ±10 mA, with a minimum current resolution of 6.87 pA. Therefore, it is suitable for nucleic acid sensors, which have high background currents. A low-cost microcontroller with an on-chip 16-bit analog-to-digital converter, 12-bit digital-to-analog converter, and a built-in USB controller were used to miniaturize the system. The offset voltages and gain errors of the analog peripherals were calibrated to obtain a superior performance. Thus, a similar performance to those of the market-leader potentiostats was achieved, but at a fraction of their cost and size. The performance of the application of this proposed architecture was tested successfully and was found to be similar to a leading commercial device through a clinical application in the aspects of the detection of nucleic acids, such as calf thymus ssDNA and dsDNA, and their interactions with a protein (BSA) by using single-use graphite electrodes in combination with the differential pulse voltammetry technique.
Collapse
Affiliation(s)
- Alper Demirhan
- Department of Biotechnology, Graduate School of Natural and Applied Sciences, Ege University, Izmir 35100, Turkey
| | - Ece Eksin
- Department of Analytical Chemistry, Faculty of Pharmacy, Ege University, Izmir 35100, Turkey
| | - Yalin Kilic
- Department of Biomedical Engineering, Izmir University of Economics, Izmir 35330, Turkey
- Solar Biyoteknoloji Ltd. (SolarBiotec), Bayrakli, Izmir 35530, Turkey
| | - Arzum Erdem
- Department of Analytical Chemistry, Faculty of Pharmacy, Ege University, Izmir 35100, Turkey
| |
Collapse
|
12
|
Ruiz-Gonzalez A, Kempson H, Haseloff J. In Vivo Sensing of pH in Tomato Plants Using a Low-Cost and Open-Source Device for Precision Agriculture. BIOSENSORS 2022; 12:447. [PMID: 35884250 PMCID: PMC9313326 DOI: 10.3390/bios12070447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
The development of sensing devices for precision agriculture is crucial to boost crop yields and limit shortages in food productions due to the growing population. However, current approaches cannot provide direct information about the physiological status of the plants, reducing sensing accuracy. The development of implanted devices for plant monitoring represents a step forward in this field, enabling the direct assessment of key biomarkers in plants. However, available devices are expensive and cannot be used for long-term applications. The current work presents the application of ruthenium oxide-based nanofilms for the in vivo monitoring of pH in plants. The sensors were manufactured using the low-cost electrodeposition of RuO2 films, and the final device could be successfully incorporated for the monitoring of xylem sap pH for at least 10 h. RuO2 nanoparticles were chosen as the sensing material due to its biocompatibility and chemical stability. To reduce the noise rates and drift of the sensors, a protective layer consisting of a cellulose/PDMS hybrid material was deposited by an aerosol method (>GBP 50), involving off-the-shelf devices, leading to a good control of film thickness. Nanometrically thin films with a thickness of 80 nm and roughness below 3 nm were fabricated. This film led to a seven-fold decrease in drift while preserving the selectivity of the sensors towards H+ ions. The sensing devices were tested in vivo by implantation inside a tomato plant. Environmental parameters such as humidity and temperature were additionally monitored using a low-cost Wio Terminal device, and the data were sent wirelessly to an online server. The interactions between plant tissues and metal oxide-based sensors were finally studied, evidencing the formation of a lignified layer between the sensing film and xylem. Thus, this work reports for the first time a low-cost electrochemical sensor that can be used for the continuous monitoring of pH in xylem sap. This device can be easily modified to improve the long-term performance when implanted inside plant tissues, representing a step forward in the development of precision agriculture technologies.
Collapse
|
13
|
Anshori I, Mufiddin GF, Ramadhan IF, Ariasena E, Harimurti S, Yunkins H, Kurniawan C. Design of smartphone-controlled low-cost potentiostat for cyclic voltammetry analysis based on ESP32 microcontroller. SENSING AND BIO-SENSING RESEARCH 2022. [DOI: 10.1016/j.sbsr.2022.100490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
14
|
Bullen JC, Dworsky LN, Eikelboom M, Carriere M, Alvarez A, Salaün P. Low-cost electrochemical detection of arsenic in the groundwater of Guanajuato state, central Mexico using an open-source potentiostat. PLoS One 2022; 17:e0262124. [PMID: 35045132 PMCID: PMC8769315 DOI: 10.1371/journal.pone.0262124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/18/2021] [Indexed: 12/13/2022] Open
Abstract
Arsenic is a carcinogenic groundwater contaminant that is toxic even at the parts-per-billion (ppb) level and its on-site determination remains challenging. Colorimetric test strips, though cheap and widely used, often fail to give reliable quantitative data. On the other hand, electrochemical detection is sensitive and accurate but considerably more expensive at the onset. Here, we present a study on arsenic detection in groundwater using a low-cost, open-source potentiostat based on Arduino technology. We tested different types of gold electrodes (screen-printed and microwire) with anodic stripping voltammetry (ASV), achieving low detection limits (0.7 μg L-1). In a study of arsenic contaminated groundwaters in Mexico, the microwire technique provides greater accuracy than test strips (reducing the median error from -50% to +2.9%) and greater precision (reducing uncertainties from ±25% to ±4.9%). Most importantly, the rate of false negatives versus the World Health Organisation’s 10 μg L-1 limit was reduced from 50% to 0% (N = 13 samples). Arsenic determination using open-source potentiostats may offer a low-cost option for research groups and NGOs wishing to perform arsenic analysis in-house, yielding superior quantitative data than the more widely used colorimetric test strips.
Collapse
Affiliation(s)
- Jay C. Bullen
- Department of Earth Science and Engineering, Faculty of Engineering, Imperial College London, London, United Kingdom
- * E-mail: (JCB); (PS)
| | | | - Martijn Eikelboom
- Caminos de Agua, San Miguel de Allende, Guanajuato, Mexico
- Department of Earth, Ocean and Ecological Sciences, School of Environmental Sciences, University of Liverpool, Liverpool, United Kingdom
| | | | | | - Pascal Salaün
- Department of Earth, Ocean and Ecological Sciences, School of Environmental Sciences, University of Liverpool, Liverpool, United Kingdom
- * E-mail: (JCB); (PS)
| |
Collapse
|
15
|
Pietrzak M, Jopa S, Mames A, Urbańczyk M, Woźny M, Ratajczyk T. Recent Progress in Liquid State Electrochemistry Coupled with NMR Spectroscopy. ChemElectroChem 2021. [DOI: 10.1002/celc.202100724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Mariusz Pietrzak
- Institute of Physical Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Sylwia Jopa
- Faculty of Chemistry University of Warsaw Pasteura 1 02-093 Warsaw Poland
| | - Adam Mames
- Institute of Physical Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Mateusz Urbańczyk
- Institute of Physical Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
- Centre of New Technologies University of Warsaw Banacha 2 C 02-097 Warsaw Poland
| | - Mateusz Woźny
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Tomasz Ratajczyk
- Institute of Physical Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| |
Collapse
|
16
|
Thomaz DV, Contardi UA, Morikawa M, Santos PAD. Development of an affordable, portable and reliable voltametric platform for general purpose electroanalysis. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Advancement in Salmonella Detection Methods: From Conventional to Electrochemical-Based Sensing Detection. BIOSENSORS-BASEL 2021; 11:bios11090346. [PMID: 34562936 PMCID: PMC8468554 DOI: 10.3390/bios11090346] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023]
Abstract
Large-scale food-borne outbreaks caused by Salmonella are rarely seen nowadays, thanks to the advanced nature of the medical system. However, small, localised outbreaks in certain regions still exist and could possess a huge threat to the public health if eradication measure is not initiated. This review discusses the progress of Salmonella detection approaches covering their basic principles, characteristics, applications, and performances. Conventional Salmonella detection is usually performed using a culture-based method, which is time-consuming, labour intensive, and unsuitable for on-site testing and high-throughput analysis. To date, there are many detection methods with a unique detection system available for Salmonella detection utilising immunological-based techniques, molecular-based techniques, mass spectrometry, spectroscopy, optical phenotyping, and biosensor methods. The electrochemical biosensor has growing interest in Salmonella detection mainly due to its excellent sensitivity, rapidity, and portability. The use of a highly specific bioreceptor, such as aptamers, and the application of nanomaterials are contributing factors to these excellent characteristics. Furthermore, insight on the types of biorecognition elements, the principles of electrochemical transduction elements, and the miniaturisation potential of electrochemical biosensors are discussed.
Collapse
|
18
|
Clark RB, Dick JE. Towards deployable electrochemical sensors for per- and polyfluoroalkyl substances (PFAS). Chem Commun (Camb) 2021; 57:8121-8130. [PMID: 34323258 DOI: 10.1039/d1cc02641k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are an emerging class of pervasive and harmful environmental micropollutant with negative health effects on humans. Therefore, there has been extensive research into the remediation (i.e., the detection, extraction, and destruction) of these chemicals. For efficient extraction and destruction, PFAS contamination must be detected at its onset; however, conventional PFAS detection methods rely on sample collection and transport to a centralized facility for testing, which is expensive and time-consuming. Electrochemistry offers a robust, inexpensive, and deployable sensing strategy that could detect pollution at its onset; however, the electrochemical inactivity of PFAS necessitates the use of a surface functionalization strategy. Molecularly imprinted polymers (MIPs), which are a popular surface functionalization strategy, have been around since the 1980s for specific electrochemical detection and have expanded electrochemical detection to analytes that are not electrochemically active. MIPs have been more recently demonstrated for the detection of a variety of PFAS species, but additional advances must be made for realization of a deployable, electrochemical MIP-based sensor. This Feature highlights the history of MIPs for PFAS detection and our group's recent advances that are essential to enable the creation of a deployable electrochemical PFAS sensor: development of rigorous analytical standards to quantify interferent effects, miniaturization of the detection platform for quantification in river water, the use of ambient O2 as the mediator molecule for detection, and the development of hardware for in-field multiplexed electrochemical sensing.
Collapse
Affiliation(s)
- Rebecca B Clark
- The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.
| | | |
Collapse
|